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FACTORIZATIONS IN UNIVERSAL
OPERATOR SPACES AND ALGEBRAS

DAVID P. BLECHER

ABSTRACT. We build on previous work with V. Paulsen,
using a notion of quantum variables. This enables us to
give an explicit description of the norm in many universal
C*-algebras, operator algebras and operator spaces. This
yields curious factorization results, for example a “generalized
Fourier series” representation of all continuous functions on a
compact group.

1. Introduction. Let f be a function in the Wiener algebra.
Thus, we think of f as a function on the circle, and we may write
f =0 _ ape’*® where Y72 _ |ax| < co. Now rewrite f in a
slightly different but exactly equivalent way:

1 0 0 0 c
0 e 0 0 c;
= ..110 0 e 0
f [bl b2 b3 ] 0 0 0 621'0 . C3

This may be done, for example, by relabelling the double series as an
ordinary series d; + doe?® + dse % + dye?® + ... and then taking the
b = |di|*? and cp equal to by, multiplied by a complex number of
modulus 1. Then the row and column matrices above have bounded
norm. Let us write the factorization above as f = b'Z(f)c. The
coefficients (by and cg) are no longer uniquely determined; however,
the Wiener algebra norm may be obtained by

oo

Ifllw = > laxl = min{|b"|| l|c|| : f = b*Z(8)c}.

k=—o0

We can again rewrite f equivalently as f = EtZ (8)c, but now we allow
Z(#) to be a diagonal matrix with powers ¢**¢ on the diagonal in any
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order, and allowing repetition. Again it is clear that ||f||w equals the
same minimum as above. So this is simply a curious way to describe
the Wiener algebra.

Of course, the Wiener algebra is a proper *-subalgebra of C(T'), and
the ||f||w norm is very different from the uniform (|| f||co) norm.

Now consider a more general form of function. Consider functions
which can be written as a product as above, except that we add in
more matrices in the middle. Namely, we consider functions of the
form

f=1[br by ---]1Z1(0)D122(6)Ds -

Here the matrices Zy () are as described above (diagonals with integer
powers of e? on the diagonal), and the Dy matrices are scalar matrices
of norm 1, of infinite size but which are compact. If one supposes an
infinite number of matrices in the product above, one needs a certain
convention (described later) to make sense of the infinite product, which
converges uniformly to a continuous function on the circle.

Very surprisingly, it turns out that all continuous functions f on the
circle have such a form. Moreover, now the supremum norm || f|| is
essentially achieved by some such factorization: if one again considers
the numbers ||b’| ||c|/, then there is such a factorization of f with this
number as close as we wish to ||f|lco. Thus, factorizations with one
middle term give the Wiener algebra norm, while factorizations with
infinitely many middle terms give the uniform norm.

We shall see that there is a similar result for continuous functions
on any compact group, or indeed for any compact quantum group (see
Example 3.23 and [7]).

This type of factorization result is essentially a corollary of a char-
acterization of operator algebras we gave several years ago with Z-j.
Ruan and A.M. Sinclair. In work with V. Paulsen [9], we found the
first such factorization formulae, at least for dense subalgebras of three
particular universal operator algebras. Although it seemed clear that
this should work more generally, we were unable at that time to 1) give
a framework in which to fit all these types of results and 2) to move
from the dense subalgebra to the full algebra completion.
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Here we add these two ingredients and give a universal approach to
operator spaces and algebras, which may be described as “varieties of
operator algebras,” and we construct what seems to be an operator
algebraic version of the coordinate ring of a variety.

We give a long list of examples which fit into our framework. Some
of these examples are old, and some have not been described elsewhere
in this generality, as far as we know (such as the crossed product of a
discrete semigroup by an operator algebra). This section should also
be of interest to nonspecialists in that it assembles together most of
the basic important universal constructions with operator spaces and
algebras. Our theorems show that they all have explicit factorization
type norm formulae. To save space we leave it to the reader to
extract, and in some cases simplify, the form of the factorization (for
example, the norm in the crossed product mentioned above can be
given over factorizations alternating diagonal matrices with entries in
the semigroup and matrices of norm < 1 from the operator algebra).
By considering the finite factorizations we get norm formulae for a
dense subalgebra, respectively subspace. In certain particular examples
(such as the projective operator space tensor product and the maximal
operator space of a normed space) we recover useful norm formulae
which have been discovered by other authors [15, 20]. Indeed, in
these two examples, knowing the norm formulae is essential in some
situations. To see this more clearly, recall that it is essential for
many purposes to know the explicit formulae inf{}", ||z;||||v:|| : v =
> i ®y; } for the Banach space projective tensor product (as opposed
to simply knowing the norm as a supremum over a family of bounded
bilinear functionals).

In fact, we not only describe the norm on these universal spaces and
algebras X, we describe the norms || -||,, on the space of n x n matrices
with entries in X.

Our notation is standard: see [1, 19, 14, 12]. We assume a certain
familiarity with some basic concepts of this theory. Throughout H is
a Hilbert space and the algebra of bounded linear operators on H is
denoted B(#). An operator space X is a linear subspace of B(H),
for some Hilbert space 7. These have an elegant characterization by
Ruan [23, 17]. An operator algebra is a (not necessarily self-adjoint)
subalgebra of B(#), and we will assume the presence of an identity of
norm 1. These have been characterized in [10]. The spaces M, (X) of
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n X n matrices with entries in X inherits a norm as a subspace of

Mo(BH)=BHoOH® - & H).

n

This enables us to refer to an operator space without referring to ‘H by
keeping note of the sequence of matrix norms (the norms on M, (X)).
Of course, the completion of an operator space is an operator space, and
we usually assume all spaces are complete. The appropriate morphisms
between operator spaces are the completely bounded maps (cb) [1,
19]. If X and Y are two operator spaces, and if T : X — Y is a
linear transformation, then we write T,, for the linear transformation
mapping M, (X) to M,,(Y) defined by T,,([z;;]) = [T(zi;)]. If each T,
is bounded, and if sup,, || T, is finite, then we say that T"is completely
bounded (or cb) and we define ||T||, the completely bonded (cb) norm
of T to be the supremum. We say that 1" is completely contractive or
cc in case ||T||lcb < 1, and we say that T is completely isometric, or is
a complete isometry, if each T}, is an isometry.

We identify operator spaces and algebras which are completely iso-
metrically and algebraically isomorphic,

2. A framework and some theorems. Let I be a set, and let
n : I' — {Sets} be a function with n(y) = n,. In most cases and
examples below n, is a finite or countable set, in which case we write
n, also for the cardinality. Let A be a set of variables (or formal
symbols) J;Zj, one variable for each y € I, 4,5 € n,. If ny, = 1 we call
the variable an ordinary variable. We differentiate two cases, universal
operator algebras and universal operator spaces and proceed as one
might expect (see [2]). Form the free associative algebra (respectively
free vector space) ® on A. Assume in addition some relations between
the variables, as follows. Let R be a set of polynomial identities
(respectively linear identities) P = 0 in the variables in A. Regard
R as a subset of ®. We give many examples below, but for now note
that the most common relation in the algebra case is that there is an
element e € I' with n, = 1, such that z°z]; = z;2° = «J; for all v, 1, j.
We write z¢ as 1 and say that A has identity. It is unnecessary, but
sometimes helpful intuitively, if at this point one takes a quotient of
® by the ideal (respectively subspace) generated by R. We define a
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semi-norm on M, (®) by

[[feesj]l| o = sup{[{fm(uiz)]lI}

where the supremum is taken over all algebra, respectively linear,
representations m of ® on a Hilbert space satisfying the condition
[[m(z7;)]ll < 1 for all y. This latter matrix is indexed on rows by i
and on columns by j, for all 1 <4, j <n,.

That is, a matrix of polynomials (respectively linear combinations)
is normed (in general only ‘seminormed’) by taking a supremum of
the norms one obtains by substituting (Hilbert space) operators Ti';- in
for the variables. However, the T;; must form a complete solution
set in B(H) of the relations in R, and also [[T}}]|| < 1 for all
v € T. The identity [|[T;}]|| < 1 in the case that n, is infinite is
interpreted as saying that the finite square submatrices are uniformly
bounded. Now quotient by the nullspace of this semi-norm to obtain an
operator algebra (respectively operator space) FA(A, R) (respectively
FS(A,R)). One may use our characterization of operator algebras
[10, 6], respectively Ruan’s theorem [23, 17], here if one wishes to
avoid set theoretic difficulties. The completion of this space is denoted
by OA(A,R) (respectively OS(A,R)). We call this the free operator
algebra (respectively space) on A with relations R. We continue however
to write xZJ for the equivalence class of the generator, even if by now
it has vanished. If the completion is not the zero space, then (A, R)
is said to be admissible. This condition implies, in the algebra case,
that if A has identity then OA(A, R) will be an operator algebra with
identity of norm 1. It will be a C*-algebra if we know further that
(:L‘;YJ)* € A for all v,4,j. This may be ensured by specifying conditions
such as: for each v, € T, there exists 72 € T such that z; and 77
satisfy the algebraic conditions which force the matrix [azzjl] to have
inverse [aczjz] In this case, since these matrices have norm 1, they are
unitary so that (:v;y;)* = x;’f € A.

Remark 1. This framework can be extended to also include (or replace
the contraction inequalities by) a set of inequalities which must be
satisfied by certain matrices of polynomials (linear combinations) in
the variables of A as in [2], and to include “approximate relations,”
that is, nets of polynomials which converge to zero, but we will not use
this further generality.
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Remark 2. A special case of the free operator algebra construction
above was used in [6] to give a useful characterization of all operator
algebras up to completely bounded isomorphism.

Now we state some theorems. The first significance of these theorems
are that they allow a more tractable (or at least more appealing)
expression for the norms in these universal spaces. Some comments
on the notations below: for concreteness you may wish to assume that
all of the n, are finite, although that is not significant. Secondly, in
many concrete examples, the method of proof gives the form of the
factorization in a more appealing looking form; in particular, we can
often rearrange the forms of the block matrices (see [9] for example).

Theorem 2.1.  Suppose that (A,R) is admissible. If U €
M, (FS(A,R)), then ||U|| < 1 if and only if we can write U in FS
as a product AX B, where A and B are scalar matrices (with a finite
number of nonzero entries), with ||A|| < 1, ||B|| < 1, and where X is
a block diagonal matriz with a finite number of blocks, and each block
equal to a matriz [z];] for some v € T.

Proof. Let U € M,(FS(A,R)). That some factorization U = AXB
exists as above (with no attempt to control ||A||,||B]|) is an elementary
exercise (see the proof of Theorem 2.3). By appealing to Ruan’s
theorem as in [9], one can show that defining |U| equal to the infimum
of ||Al|||B|| over all representations as above, and taking a quotient by
the nullspace, gives a new operator space structure on FS(A,R). It
is clear that [[z};]| < 1 for all , that is, the finite square submatrices
are uniformly bounded. Hence, by definition |- | < || - ||. However, the
other direction that || - || < |- | is obvious. Hence, these matrix norms
|l - || and | - | are identical, from which the assertion follows. O

Note that if A = [AjAz---] and B = [ByBj---]' are compact
matrices, and if each A;, B; has only a finite number of nonzero entries,
then of course [|[A, Apt1 - |||I[BnBn+1---]¢]] = 0 as n — co. Thus, if
llz:]| <1 for all ¢, then > °7 ; A,z2,B, is Cauchy and hence converges.
We write the limit as AZB, where Z = diag {#z1,22...}. We say that
A; and B; are blocks corresponding to z;. This notation is used in the
next theorem.
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Theorem 2.2. Suppose (A, R) is admissible. If U € M, (OS(A,R)),
then |U]| < 1 if and only if we can write U in OS as a product AXB,
where X 1s a block diagonal matriz, with each block equal to a matriz
[QTZJ] for some v € I, and where A and B are compact scalar matrices
with ||A|| < 1, ||B]| < 1, and the corresponding blocks in A and B
(corresponding to the diagonal blocks in X) have only finitely many
nonzero entries.

Proof. The discussion above the theorem demonstrates the one
direction. The other direction proceeds as follows. Suppose that
U € M,(OS(A,R)), [U|| < 1. Given € > 0 there exists a U; in
M, (FS(A,R)),U; = A1 X, B; as in Theorem 2.1, with [|[U — U1 ||, < &,
and ||A4|] = ||B1]] < 1. Now choose Uz = A3X2Bs with ||[U — Uy —
Uslln < €/2, and ||As]| = ||B2]| < v/e. Choose Us = A3X3Bs with
|U~Uy —Us—Us||, < €/4, and ||A3|| = || Bs|| < \/¢/2. Continue in this
manner. From these inequalities it follows that ||[[A;42---]|| < 1 + 2e,
|[BiBa---*|| <1+ 2¢, and that > -, A, X, B, converges uniformly
to U. o

We remark that this also gives an explicit norm formula for elements
in OS(A,R). Namely, [|U|| = inf{||A||||B|| : U = AX B as above}.

We now turn to the algebra case.

Theorem 2.3. Suppose that (A, R) is admissible and has identity. If
U € M, (FA(A,R)), then ||U|| < 1 if and only if there exists k € N such
that we can factor U in FA as a product AgX1A1X, -+ Xy Ay, where
the A; are scalar matrices (with a finite number of nonzero entries),
each ||A;|| < 1, and where each X; is a block diagonal matriz with a
finite number of blocks, and each block equal to a matriz [azzj] for some
vyel.

Proof. Again, that any U € M,,(FA(A,R)) has some such factoriza-
tion AgX1A1X5 --- XpAg (with no attempt to control the norms of the
A;) is a simple exercise. For the reader’s convenience, we sketch how
this may be seen. Firstly, note that if U has only one nonzero entry
in the ¢ — j position, and if this entry is a monomial (a product of a
finite number of elements of A), or a monomial times a scalar, then it
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is clear that U may be written in form AgX;A;X; -+ XA (in fact
we can take each X, to be of the form [z];] for some 7, and the A,
to consist only of zeros and ones). Now a general U € M, (FA(A, R))
may be written as a finite sum »_ U,, where U, is of the form just
described, namely U, = AfXTAYX? ... X7 AP, We have assumed here
that a single £ will suffice for all p, which is justified since we can add
copies of the identity matrix in the products to ensure that they all
have the same length. We now set Ay = [A}A%---], A = [AL A2 ---],
X, =X'oX2®---XF A, = Al®A2@- .- AF. Here ® means the block
diagonal direct sum of matrices. Clearly U = AgX1 A1 Xy -+ - X Ap.

By appealing to the characterization of operator algebras [10] as
in [9], one can show that defining |U| equal to the infimum of
l4o|| - - - ||Ak|| over all k and all representations as above, gives (after
taking a quotient by the nullspace) a new operator algebra structure on
FA(A,R). Now proceed as in Theorem 2.1 to deduce that |U| = |U]|,
which proves the result stated. ]

We now give a method giving a formula for the norm in M,,(OA(A, R)).
To extend the previous theorem to the closure we need to note
that the method of the proof actually gives the norm of an element
U € Mp,(FA(A,R)) equal to an infimum over representations of U
of form Zﬁ;l ASXTAFXE ... Ak | where ||AF|| < 1 for all k and
1 < i < my —1. Here, of course, each A;? has finitely many nonzero en-
tries, and X} is a block diagonal matrix with a finite number of blocks,
each block is [7;] for some . We shall term XF amajor block. We will
adopt the following convention in all that follows to make all the mys
equal; namely, add identity matrices between the last X and last A.
Once all the ms are equal, the usual direct sum trick (see proof of The-
orem 2.3) is used to write U = [A§A3 -+ | X1 D1 X2+ - X, [A}L A2 -+ -]0
Here the X; are block diagonals, each block equal to an z7, and D; is
a block diagonal matrix of scalars, with blocks corresponding to major
blocks in the X;. Simply for notational convenience we also call the
blocks in D; major blocks.

It makes sense to talk about such a product even if there are infinitely
many matrices. Write Ag X1 D1 X5+ Doo_1X s Ao for an infinite such
product. Here all matrices have an infinite number of major blocks,
but major block positions correspond, and also given m there exists
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an N such that, for ¢ > N, the mth major blocks of D; and X; are
copies of the identity matrix. All subblocks of the D; are the identity
matrix or have a finite number of entries and norm < 1. In addition, Ag
and A, must be compact, with each sub-block having a finite number
of entries. Labelling the major block entries in the matrices as A¥
and X¥, we see that the product A9X;D; - Dy Ay is simply the
uniform limit of the Cauchy sequence {Zszl ASXEARXE - AR In.
This limit is an element of M,,(OA(A,R)) and also equals the uniform
limit hmkﬁoo AOXlDl s Dk:lek:Aoo-

This infinite factorization is somewhat reminiscent of the Blaschke
product. Indeed, applying the next theorem in the disk algebra, which
is the unital universal operator on one generator, we see that we have
an infinite matrix factorization for functions in the disk algebra.

Theorem 2.4. Suppose that (A, R) is admissible and has identity.
If U € M,(OA(A,R)), then ||U|| < 1 if and only if there exists
a factorization U = AgX1Dy- - XooAoo as above, with ||Ao| < 1,
lAso || < 1. (By definition, the ||D;|| < 1.)

Proof. The argument above the theorem establishes the one direction.
The other direction follows the proof of Theorem 2.2. We use Theo-
rem 2.3 to construct successive approximations Uy as in Theorem 2.2.
We use copies of the identity matrix, with the convention above, to
equalize the lengths of representations of the successive approxima-
tions Ug. Finally, U = Y, U, uniformly. This may, by the direct
sum procedure described in the beginning of the proof of Theorem 2.3,
or in the paragraph after the proof of Theorem 2.3, be written in the
form U = AgX1D;1--- XoAs. The reader should check that we are
obeying the conventions described above for such an infinite product.
O

Again, the infimum over factorizations gives the norm formula.

Namely, [|U]| = inf {||Ao|||[Asc|| : U = Ao X1 D1 - - Xoo Auo as abovel.

3. Examples. We now list a host of examples of universal
construction which fit into the framework described above. In the
interests of brevity we do not prove many of our assertions, and the
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method of proof is in most cases clear. We also assume all operator
spaces and algebras are complete.

Remark 3.1. The theorems above give interesting information in most
cases, but as we observed earlier before Theorem 2.1, we may need to
simplify the block matrices in specific examples: the appearance of
naked generators is frightening until one quotients out by the relations
and simplifies.

Remark 3.2. We observe that (assuming that one has already taken
a quotient by R) it is unnecessary to take the discussed quotient of ®
in nearly all of the examples below (or, in other words, the semi-norm
is already a norm).

Example 3.3. Let X be an operator space (respectively unital op-
erator algebra) define 'y = U,BALL (M, (X)) and take Ax to be
the set of all matrix entries, considered as variables J;Z] indexed by
v = [z};] € Tx and i,j. Let R be the set of all linear (respec-
tively polynomial) identities satisfied in X by elements in Ax. Then
OS(Ax,R) = X (respectively for OA). If X is simply a matrix normed
space (respectively algebra with identity of norm 1) which does not sat-
isfy the L> condition of Ruan [23] then the construction produces the
maximal operator space (respectively algebra) envelope. We observe
that this is possibly inadmissible. An interesting case is the opera-
tor algebra envelope OA(MAX (L'(G))) for a compact group G (with
convolution multiplication), which is C*(G). These envelopes have the
expected universal property: given any cc morphism X — W, into
an operator space (respectively algebra) W there exists a unique cc
extension from the envelope into W.

Example 3.4 (Quotient spaces [23, 10]). Let X be an operator
space (or algebra), F a closed subspace (respectively two-sided ideal)
of X, and form Ax as above. Let R be the algebraic relations satisfied
in X by elements of Ax, together with the relations y = 0 for all
y € Y. Then OS(Ax,R) is the quotient operator space (respectively
OA is the quotient operator algebra) [23, 10]. This has universal
property: given any completely contractive morphism ¢ from X into
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an operator space (respectively algebra) W, with ¢ annihilating E, then
there exists a unique morphism from the quotient into W completing
the commutative diagram.

Example 3.5 (The universal operator space for a row (column)
contraction). Let I' have one element -, and let the associated matrix
entries be zero except for the first row (this statement constitutes
the relations). Then OS(A,R) is column Hilbert space [8, 16, 4].
Similarly, if the associated matrix entries are zero except for the first
column, then OS(A,R) is a row Hilbert space.

Example 3.6 (The universal operator space for a matrix contrac-
tion). Let I' have one element 7, and let n, = n (possibly infinite).
Then OS(A) is T, the standard pre-dual [3] of M,,.

Example 3.7 (The universal operator space for m contractions). Let
I have m elements, with each n, = 1. Then OS(A) is I}, with MAX
matrix norm structure (see Example 3.11).

Example 3.8 (Coproduct). Suppose that X, is a family of complete
operator spaces. Let I'x_,Ax,_ be as in Example 3.3, let I' = U,I'x_,
let A be the collection of entries in the matrices in I and let R be the
union of the algebraic relations satisfied in X, by elements of Ax, .
Then OS(A,R) is the L' direct sum operator space defined in [3].
This has the coproduct universal property for the operator spaces and
cc maps. See [5] for a proof of this, and for a proof of the fact that this
construction commutes with the quotient construction.

Example 3.9. Let X and Y be operator spaces, and let I be the set
of formal symbols [z;; ® yxi] for all [z;;] and [yr] in BALL (M, (X)).
Note that [z;; ® yx] is a matrix with (4, k), (j,1) entry z;; ® yr;, rows
numbered by i, k, columns by j,[. Let A be the set of these entries. Let
R include

1) for fixed y € Ay, relations between tensors of form - ® y
corresponding to relations satisfied in X by elements of Ax;

2) corresponding relations for fixed x € Ax;
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Thus we include all relations of the form

(A1z1 4+ Aoz2) @y = Ai(z1 @ ) + Xe(22 ® ¥),

T ® My + A22) = Mz @ y1) + Xz @ y2)
In these identities we have used symbols zg, x,yx,y to represent ele-
ments of Ax and Ay. Then OS(A,R) is the operator space projective
tensor product [8, 15]. In [5] we show this commutes with the previous
two constructions. We remark that the theorem above gives the form
of the norm given in [15].

Example 3.10. Proceed as in the previous example, but now I' are
the matrices [y ;_, Zir ® yk;j]. Then OS(A, R) is the Haagerup tensor
product [8, 16].

Example 3.11 (The maximal universal operator space of a normed
space [3, 8, 20]). Let X be a Banach space and I' = A = BALL (X),
each n, = 1. Let R be the linear relations satisfied in BALL (X). Then
OS(A,R) = MAX (X). The theorem above gives the form of the norm
given in [20].

Example 3.12. Take an operator space X, and take I' to be the set
of completely contractive maps of X into B(?), where H is separable.
Fix an orthonormal basis of H. Let n, = dim (H). For each T € T’
consider the coefficients of T', namely the entries in its matrix, and let
A be the collection of such scalar valued functions on X. For relations
identify functions that are equal on BALL (X). Then OS(A, R) is the
standard dual [3] of X.

Example 3.13. Direct limits of operator spaces (and algebras) are
defined in the obvious way, see [6]. To keep in the context of this
paper we insist that morphisms are cc (respectively and unital). We
take I' as in Example 3.8 but add to R the condition that x = y if

Jin(2) = fem(y) (here z € X,,,y € Xp).

Example 3.14 (The universal operator algebra on matrix units).
Let ' have two elements, one corresponding to an identity, the other
having n, = n and let A be the entries in a matrix [e;;]. Let R be the
relations e;jex = djkeir, D pey €kk = 1. Then OA(A, R) = M,,.



FACTORIZATION 163

Example 3.15 (The universal operator algebra on n noncommuting
(commuting) unitaries). Let A have identity and also contain 2n
ordinary variables u; and vg, 1 < k < n, and let R be the relations
upvr = vgur = 1, 1 < k < n. Then OA(A,R) = C*(F,), the C*-
algebra of the free group on n generators.

If you now add to R the relations uxv; = vpuy, 1 < k, I < n, then
OA(A,R) = C(T™), the continuous functions on the n-torus.

Example 3.16. Let A have identity and also contain the entries in a

row matrix [u1, ... ,u,] and a column matrix [vy, ... ,v,] (so there are
some relations forcing the other entries to be zero), let R, in addition,
have relations 22:1 upvr = 1, and vyur, = 1, 1 < k < n. Then

OA(A,R) = O, the Cuntz C*-algebra. A similar approach gives the
irrational rotation C*-algebras.

Example 3.17 (Universal matrix unitaries). Let A have identity
and also contain the entries of the n x n matrices [u;;] and [v;;], and
let R be the relations Y, _; uipvr; = 6;;1 = > p_, viug; for all ¢ and
j. Then OA(A,R) = U°¢, Brown’s universal noncommuting unitary
C*-algebra [11]. If we further add to R the polynomial relations
making the transposed matrices [u;;] a unitary with inverse [v);], then
OA(A,R) = A(n), Wang’s universal compact quantum group [26]. If
we further add to R the relations making all variables commute, then
OA(A, R) = C(Up,), the continuous functions on the unitary group.

Example 3.18 (Universal operator algebra on a discrete contraction
semi-group). Let G be a discrete group. Put I' = A = G, ny, =1 for
all 7. Let R be the group relations. Then OA(A, R) = C*(G), the
group C*-algebra. If G is a semigroup with identity, then we obtain
OA(A,R) = OA(G) as defined in [9].

Example 3.19 (Free product with amalgamation). Let 4, B,C be
unital operator algebras, and let ¢ and 1 be unital completely isometric
homomorphisms from C into A and B, respectively. Let ' =T' 4 U 'z,
let A be the collection of entries in matrices in I', and let R be the

collection of relations satisfied as in 3.8, but now together with relations
#(z) = ¢(x) for elements = € Ball(C). Then OA(A, R) = A ¢ B, the
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amalgamated free product operator algebra discussed in [9]. If C = C
then this is the coproduct in the associated category.

Example 3.20. The maximal tensor product operator algebra
A @max B [9, 21]. This is described on the set I' as in Example 3.19,
C = C, but with additional relations ab = ba.

Example 3.21. Let A have two elements, one of which is the identity.
Then OA(A,R) = A(D), the disk algebra. Now if A has three elements
1,u,v, and if uwv = vu then OA(A, R) = A(D x D) the bi-disk algebra
[9].

Example 3.22. Let G be a discrete semigroup with identity, A
a unital operator algebra and « a unital homomorphism of G into
Aut (A), the set of completely contractive automorphisms of A. Let
' = GUT 4, and let A be the entries. Thus, A is the union of the
ordinary variables represented by entries in G, together with the matrix
entry variables coming from matrices with entries in 4 and norm < 1.
We take R to include the group identities, the relations satisfied in A,
the relation 1g = 14, together with the identities g - a = a(g)(a) - g.
We call OA(A, R) the maximal crossed product operator algebra. For
a discrete group and a C*-algebra, this is the usual crossed product.

Example 3.23. Let G be a compact group, or more generally let
G = (A,®) be a compact quantum group [27]. Let T = G be a
complete set of representatives of equivalence classes of unitary matrices
[117;] coming from the Peter-Weyl theorem. Define A to be the set
of entries (which generate a dense *-subalgebra 4y of A) and their
adjoints. Let R be all polynomial relations satisfied in A4g. Then
OA(A,R) is a C*-algebra and, indeed, a compact quantum group (or
more precisely, a Woronowicz Hopf C* algebra). We note that O A is the
maximal Woronowicz C*-algebra of the quantum group. An example
to keep in mind is the various C*-algebras of the free group on two
generators. We do not know when OA = A, there certainly are plenty
of examples where they differ, but it has the same dense *-subalgebra
and maps onto. We have been told that these should be viewed as
the same quantum group, even if the C*-algebras are different. In
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many cases the C'*-algebras are equal, and perhaps a more restrictive
condition would ensure it, such as some type of amenability. In the non-
quantized case there is no problem, of course; this is just C(G). As a
consequence of Theorems 3.3 and 3.4, we get factorizations and norm
formulae for elements in OA and its important dense *-subalgebra.
This is all discussed thoroughly in [7].

Example 3.24. Let A be a separable matrix normed algebra and
an h-coalgebra (operator convolution algebra [6, 18]). Suppose that A
has counit of norm 1. Then A* is an operator algebra. The Fourier-
Stieltjes algebra of coefficient operators form a subalgebra of A4* (see
[18]). Fix a Hilbert space H of dimension large enough, and pick a
fixed orthonormal basis. If we take I' to be the set of all completely
contractive representations v of A on H, n, = dim (#), A to be the
set of coefficients of the representations (the entries in the matrix of
the representation) and R to be the relations identifying functions
if they are equal on A together with the convolution multiplication
relations, then OA(A,R) is the enveloping operator algebra of the
Fourier-Stieltjes algebra. In the commutative compact group case this
is all of A* by the Stone-Weierstrass theorem.

We finish by showing that T),, the n x n trace class matrices, with
operator space structure as the standard pre-dual of M,,, is (completely
isometrically) embedded in U}¢ by the map e;; — u;;, see Examples
3.6 and 3.17. Certainly, by the universal properties, this map is a
complete contraction. However, if T' = [T;;] is any matrix of operators
with [|[T};]]] < 1, then we may dilate T' to an n X n unitary matrix by
the 2 x 2 dilation trick, for instance. Thus, there is a map from U*¢
onto the C*-algebra generated by the elements of the unitary matrix,
and hence there is by compression a complete contraction taking u;; to
T;;. This establishes the result.

This result should be compared with Paulsen’s result [20] embedding
MAX (%), the standard pre-dual of [2°, completely isometrically into
the C*-algebra of the free group on n — 1 generators.

We note that MIN (7,) is completely isometrically embedded in
C(U,), and from Example 3.17 it is clear that we may assign new

operator space structures to 7T}, (and keeping the original Banach space
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norm) by considering the embedding into the quantum groups A(n)
and Ay(n) of Wang [26]. Based on a suggestion of his we have checked
that these matrix norm structures differ from the ordinary matrix norm
structures.
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