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Dedicated to Louis Nirenberg on the occasion of his 70th birthday

1. Introduction. We study the qualitative properties of travelling
fronts of the semilinear parabolic equation

Ou/ot — Au = f(u), (t,z)€ (0,00) x %,

where ¥ = R x Q with 2 C R"! being a bounded smooth domain
and n > 2. We often denote z € ¥ by z = (z1,y) with ; € R and
y € Q, and the outer unit normal to 92 or to 0% by v.

In the above equation the term f(u) represents a source term with
f(0) = f(1) = 0. Equations as above have been derived to model
problems arising from applied sciences, such as population dynamics,
genetics, combustion and flame propagation. In these situations one of
the most interesting and natural questions is the behavior of solutions
u(z,t) as t — +o0; in particular, the question about the existence of
travelling fronts, and whether the general solutions approach travelling
fronts (i.e., the stability of travelling fronts). Travelling fronts are
solutions of the form u = u(z;+ct, y) satisfying u — Qor 1 as z; — —00
or +00, respectively (here c¢ is a real constant and is usually referred to
as the speed of the front). In the past several decades, the questions of
existence, nonexistence and stability of travelling fronts have attracted
the attention of many mathematicians, leading to the production of a
large literature on the subject. The interested readers may refer to the
book [17] by P. Fife, the paper [14] by H. Berestycki and L. Nirenberg
and the papers [37, 38] by A. Volpert (see also, [1, 2, 4-13, 15-26,
29-36, 39-42]) for the history of problems related to travelling fronts.

Throughout this paper the homogeneous Neumann boundary condi-
tions on 0Y are assumed. Therefore, the following equation must be
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satisfied by (c, u):
Au — c(Ou/0z1) + f(u) =0 on %,

(1.1) Ou/ov =0 on 0%,
’U/(—OO, y) = Oa ’U,(+OO, y) = ]-a
O<u<l1 on X.

H. Berestycki and L. Nirenberg carried out the first systematic study
of equation (1.1) and its generalization in higher dimension, n > 2,
in a sequence of papers. Concerning the existence and the asymptotic
behavior of travelling fronts of (1.1), they proved

Theorem A [14, pp. 503-504]. Assume that f € C12([0,1],R) for
some o € (0,1) and f(0) = f(1) =0, f'(1) < 0. Then

(a) If f > 0 in (0,1), then there exists ¢c* > 0 such that there exists
a solution u of (1.1) if and only if ¢ > c*. For every c > c*, there is
a solution with Ou/dx1 > 0 in 3. Furthermore, if f'(0) > 0, then for
each fized ¢ > c* the solution u is unique (modulo translation in the
direction) and it decays exponentially at x1 = £oo. (See Dy below.)

(b) If for some 6 € (0,1) f =0 in (0,6), f > 0 in (6,1), then there
ezxists a unique solution (c,u) of (1.1) with Ou/dx1 > 0, i.e., if (¢, u)
is also a solution; then ¢’ = ¢ and v'(x1,y) = u(z1 + 7,y) for some real
7. Furthermore, it decays exponentially at v1 = *oo. (See D1 below.)

(c) If for some 6 € (0,1) f < 0 in (0,6) and f > 0 in (6,1) and
Q is convez, then there exists a solution (c,u) of (1.1) which decays
ezponentially at ©1 = oo and du/0x1 > 0. Furthermore, if f'(0) <0

or f'(0) =0 and fol f(s)ds > 0, then the solution (c,u) is unique.

Remark 1.1. Actually in many cases [14] allows more general source
term f than being C%®. The requirement of C1® is for the simplicity
of the statements.

Case (a) with f/(0) = 0 occurs in many models and deserves further
study. In particular, we want to distinguish fast decay or stable
travelling fronts from others. Note also that Case (a) with f'(0) =0
is between Case (a) with f'(0) > 0 and Case (b) in some sense where
all solutions are classified and they are all exponential decay solutions.
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An open question about the structure of solutions of (1.1) for Case (a)
with f’(0) = 0 was raised by H. Berestycki and L. Nirenberg in [14,
p. 505]. In this paper we are able to show that (¢*,u*) is the unique
exponential decay solution which is also stable for compact supported
initial-values (please see Theorems 1 and 4 for details) and all other
solutions (¢,u) with ¢ > ¢* are not exponential decay solutions. This
result implies in some sense that c* is the “preferred” or natural speed
at which solutions travel. The same result indicates in a certain sense
that nonexponential decay solutions are unstable.

As in [14], in some applications, the dependence on ¢ in (1.1) may
be different, and the source term f may be spatially inhomogeneous.
Therefore, we also treat a more general problem:

Au — /8(07 y)(au/axl) + f(yau) =0 on Ea

(1.2) Ou/ov =0 on 0%,
' u(—00,y) =0, wu(+o00,y) =1,
O<u<l1 on .

We always assume throughout this paper that

(C1) B(c,y) is continuous in (c,y) € R x Q such that 3(0,y) = 0
and B(c,y) is strictly increasing in ¢ with 3(—o0,y) = —oo and
B(400,y) = +00 uniformly in y € Q.

(C2) f e C"*(Q x [0,1],R) for some o € (0,1) and f(y,0) =
f(y,1) =01in Q. Let k := || f|lcra-

Definition 1. A solution u of (1.2) is said to decay exponentially at
—oo if there exists some ag > 0 and M > 0 such that

(Do) e %y(z,y) <M on (—o00,0) x Q.
Similarly, it decays exponentially at +oo if
(D4) e (1 — u(z1,y)) <M on (0,00) x Q.

And any solution satisfying both D is said to decay exponentially.

Definition 2. For a continuous ¥(y) on €, u;(¥) is defined to be
the principal eigenvalue of the “linearized equation” of (1.2) at ¥ in y

{ ~Ayp — fuly, ¥(y))p = pp on Q,

1.
(13) Op/0v =0 on 99.
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Our first main result concerns the existence of exponential decay
solutions of (1.2). In particular, we prove the existence, uniqueness
and monotonicity of exponential decay solutions in Theorem 2 under
some mild nondegenerated conditions on f. In Theorem 1 we give a
rather general study on the qualitative properties of exponential decay
solutions. Theorem 4 treats the stability of exponential decay travelling
fronts.

Because of Theorem 3 below, to have an exponential decay solution,
one of p1(0), p1(1) must be positive. Without loss of generality we will
assume the following condition when we deal with exponential decay
solutions.

(C3) (1) > 0.

For otherwise we may use the transformation v(z1,y) = 1 — u(—z1,y).
Theorem A (a) assures the existence of exponential decay solution
under the condition p1(0) < 0. We now deal with the case p;(0) = 0.
More precisely we sometimes assume

(C4) f(y,s) > 0 on Q x [0,1] and max, g f(y,s) > 0 for every
s €(0,1), and p;(0) =0.

Theorem 1. Assume (C1)—(C4). Then there exists a unique
c* > 0 such that (1.2) has an exponential decay solution (c*,u*) with
Ou/0zy > 0, and there exists a solution (c,u) of (1.2) if and only if
c>c*.

Furthermore u* is the unique solution for ¢ = ¢* (modulo translation)

and solutions (c,u) of (1.2) for ¢ > ¢* do not decay exponentially at
—00.

Theorem 2. Assume, in addition to (C1)-(C3) that p1(0) > 0.
Then the exponential decay solution of (1.2) is unique (if (c,u) and
(c',u') are two such solutions, then ¢ = ¢ and u(z1,y) = v'(x1 + 7,y)
for some real T).

Next we will prove a set of nonexistence of exponential decay solu-
tions.
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Theorem 3. (i) If 41(0) <0 and

(1.4) /ﬂ /0 ' flyrs)dsdy <0,

then (1.2) does not have any solution decaying exponentially at —
(D).

(ii) If p1(1) < 0 and [, dy fo s)ds > 0, then (1.2) does not have
any solution u decaying emponentzally at 400 (D).

(iil) If u1(0) < 0 and pi(l) < 0, then (1.2) does not have any
exponential decay solution in 2.

In [14] the following results on the asymptotic behavior of solutions
of (1.2) are given.

Theorem B [14, Theorem 3.1]. (i) Any solution u of (1.2) decays
exponentially at —oo if either p1(0) # 0 or u1(0) = 0 with f(y,s) —
fu(y,0)s <0 near s =0 and [, dy fol fly,s)ds > 0.

(ii) Any solution u of (1.2) decays exponentially at +oo if either

pi1(1) #0 or/,tl( )—0 with f(y,1—8)+ fu(y,1)(1—s) >0 near s =0
and fQ dy fo s)ds < 0.

Combining the above results with Theorem B we are able to prove
the nonexistence of solution (1.2) in several situations.

Corollary 1. (i) If p1(0) < 0, then [, dy fo s)ds < 0 implies
that (1.2) possesses no solution.
(ii) If pi(1) < 0, then [, dyf0 s)ds > 0 implies that (1.2)

possesses no solution.

(iii) Assume that p1(0) < 0. Also assume that pi(1) < 0. Then (1.2)
possesses no solution.

Remark 1.2. The conditions in the above corollary are optimal in
the sense that if f(y,s) = f(s) > 0 in (0,1) so that f/(0) > 0 and
Jo dy fo s)ds > 0, then Theorem A (a) in [14] proves the existence
of solutions of (1.1) for all ¢ sufficiently large.
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Finally we come to the stability of exponential decay travelling front
solutions. Consider the following parabolic equation

ug — Au = f(y,u) in (0,00) x X,
(1.5) Ou/dv =0 on (0,00) x 0%,
u(0,z) = ¢(z).

Theorem 4. Assume (C1)—(C2) and that f,(y,0) <0, fu(y,1) <0,
fQ dy fol f(y,s)ds > 0 and (1.5) has a travelling front (c*,u*) that
decays exponentially. Assume also that the initial value ¢(x) is compact
supported and satisfies ¢p(x1 — &o,y) > a, for some oy € (0,1), R > 0,
& € R, y € X and |z1| < R. Then there exist positive constants 3, qo
and &1, & € R such that for (t,x) € (0,00) x X,

(1.6) w*(z1 +c*t+£&1,y) +u(—z + 't +&,y) — 1 — goe™??
< u(t, z1,9)
<ut(z1 4t +&,y)
+u*(—zy + 't + &, y) — 1+ goe P

Please refer to Lemma 4.3 for the precise definition of oy and R.

Remark 1.3. Inequality (1.6) shows that the zq-profile of u(t, )
approaches that of the travelling fronts. In particular, it shows that
the interval on which w is close to 1 is expanding at the speed of c¢*.

Remark 1.4. If [, fol f(y,s)dsdy < 0, then an analogous stability
result can be obtained (where the solution approaches 0 at the speed
c*).

Remark 1.5. The stability in the case of one spatial dimension, n = 1,
is treated in [3].

This paper is organized as follows. In Section 2 we give a proof of
Theorem 3 and Corollary 1. In Section 3, Theorem 2 and Theorem 1
are proved; in addition, we state and prove several propositions using
the method developed in [14, 27, 28]. Section 4 is devoted to the
stability of exponential decay travelling fronts.
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2. Nonexistence results. In this section we prove Theorem 3 and
its corollaries.

Proof of Theorem 3.

Part (i) of Theorem 3. Assume that u is a solution of (1.2) which
satisfies (D_) for some ¢c € R, M > 0 and ap > 0. We can apply the
LP estimates to get
6Ut
el —0.
8171 (wla y) ‘

(2.1) lim sup
Q

|z1|—00

Now multiplying (1.2) by 0u/0z; and integrating it over X, we get

ery - ﬂ(c,y>(§—;)2+ [ flns)ds =,

which gives by (1.4)

/Eﬂ(c,y)<§—fz>2=/gdy/olf(y,S)dsso.

Hence (C1) implies that (¢, y) < 0.
In ¥~ = (—00,0) x Q, we have

(2'3) f(y7 u(xlv y)) = fu(yv O)U’(wl: y) + d(w)u1+a ('1'17 y)v

where d(z) may depend on u but ||d||p= < ||f|lcr.e = k.

Let ¢ be a positive eigenfunction of (1.3) for ¢ = 0 with u1(0) <0
and u(z) = ¢(y)w(z). It is easy to see that:

(2.4) 0 <w(z)=0(e*") atz =—o0,
and

(2.5) Aw - B(e, y)T +24=4

Now for some R large, we have

a2 /4 +d(z)e*(y)w*(z) — p1(0) >0 in (—oo, —R] x Q
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since w — 0 as 1 — —oo and p;(0) < 0.
Therefore w satisfies
ow VypVyw a?

(2.6) Aw — B(c, y1)3_m1 +2 - Iow <0 in (—oo,—R] x .

But e(®0/2)71 is a subsolution of (2.6) since B(c,y) < 0. The maximum
principle and the Hopf boundary lemma imply that

w(z) — {min w(—R, y)}e(O‘O/Z)(zlJrR) >0 in (oo, —R] x £,

yew

which is a contradiction to (2.4). Part (i) of Theorem 3 is proved.

Part (ii) and (iil) of Theorem 3. Let v(z1,y) =1 —u(—z1,y). Then v
satisfies (i) if u satisfies (ii). This proves part (ii). Part (iii) is a direct
consequence of (i) and (ii). Theorem 3 is proved. O

Corollary 1 is a direct consequence of Theorem 3 and Theorem B.

3. Existence, uniqueness and monotonicity properties of
exponential decay solutions. We prove Theorems 1 and 2, always
assuming (C1)—(C3) in this section.

Lemma 3.1. If (c,u) and (c,u’) are two exponential decay solutions
of (1.2) with the same c, then u'(z1,y) = u(x1 +71,y) for some T € R.
Furthermore, w is increasing in x1, namely au/awl >0 in X.

Proof. Let (c,u) and (c,u) satisfy (D) for some oy > 0. Theo-
rem 3.2 in [14] shows that there exist some ¢; > 1, o > 0 such that

Cl_leiazl S u(fxlay)v (1 - U(Il,y)),
(3.1) ' (z1,y), and u'(—z1,y) < cre”*™,
in ¥ = (0,00) x Q.

Therefore, by Theorem 4.1 in [14], we have the following asymptotic
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expansions:

(3.2)
u(wy,y) = a1eM® ¢y (y) + o(eM®?) at r; = —oo,
v (z1,y) = a2e? ™ ¢ (y) + o(eM®1) at x; = —oo,
or

u(z1,y) = 1M (d2(y)(—z1) + ¢3(y)) + o(eM™)  at z; = —oo,
u(w1,y) = a2e’ ™ (ha(y)(— 1) + daly)) + o(eM™)  at x; = —oo,

(3 3) 1-— ’U,($1,y) = 0436_>\zz1¢5(y) + O(e—)\zzl) at 1 = +00,
' u'(21,y) = ase” " 5 (y) + o(e™H2"1) at Ty = +oo.

where ¢1, 2 and ¢5 are smooth, positive functions on X.

These asymptotic expansions imply that the proof of Theorem 7.1 in
[14] can be applied here to prove Lemma 3.1. o

Theorem 3.1. In addition to (C1)—(C3), suppose that u1(0) > 0. If
(co,up) is an exponential decay solution of (1.2), then there exists no
solution of (1.2) for ¢ < cp.

Proof. By Lemma 3.1, we have Qug/0z1 > 0 in ¥ and Theorem 3
implies that if p;(0) = 0, then

(3.4) /Q dy /01 f(y,s)ds > 0.

This, (C1) and (2.2) imply that ¢g > 0. Thus we proved that either
¢o > 0 or u1(0) > 0. Now suppose to the contrary that (1.2) has a
solution (¢, u) for some ¢ < cp.

Let po(y) and ¢;1(y) > 0 be the eigenfunctions of (1.3) with respect
to p1(0) and p1(1). Choose § >0, € € [0,a0/2), Lo > 0 so that

|f(ya 1- 3) + fu(y7 1)(1 - 5)| + |f(y7 3) - fu(y70)5|

3.5
(3.5) < k§* for s €0,4],

(3.6) uo(z1,y) + 1 —ug(—21,y) <6/2 for zy < —Lyg
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(3.7) {52 —eB- + k% — 1 (0) < —(e® + 111(0)/2)

ko™ — pa (1) < —pa(1)/2

where B_ = min, g B(c,y).

Note that if ©1(0) > 0 then one can simply take ¢ = 0, and if
p1(0) = 0 then S_ > 0 which also ensures the existence of ¢ > 0
and ¢ > 0 satisfying (3.7).

Define w(z1,y) = u(z1 + R,y) — uo(z1,y)-

Notice that

Gl w(e1,9) =1 uoler,y) >0

and

lim wf(zy,y) = —ug(z1,y) <0
R——o00

uniformly on [—Lg, Lo] x Q.
Therefore there is an Ry > 0 such that, for R > Ry,

u(zy + R,y) >1—-6/2 for z1 > Ly,
and

wh(zy,y) >0 and wf(zy,y) <0 on [~Lg, Lo] x Q.

Let

(3.8) wh(z1,y) = ®(x1,y)v(z1,y) on (—oo,+00) x Q,

where

ey

€ ()DO(y) T1 S _L07
(3.9) ®(z1,y) = § ¢1(y) z1 > Lo
positive and smooth otherwise.

Let X2 = {(21,9) € ¥ | wf(z1,y) < 0}. Using the fact that
B- < B(e,y) < PB(co,y) and dug/dzy > 0, we obtain, for some
6 €(0,1),

Ow®

+ fu(ya euR + (1 o Q)UO)wR < 07
0I1

AwR - ﬂ(ca y)
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and
R P R
(3.10) Av® — B(c, y)aL + QM +d(z1,y)vT <0
8301 (]
in 2, where
AP 0P
d(z1,y) = — = B(e,y) 5— + fu(y,0u™ + (1 = O)uo)
(3.11) ¢ 01
_ ming(0), (1)
- 2

for || > Ly on . For R > Ry, |z1| < Ly, we have
wh(zy,y) > 0.
It is easy to check that in ©2

(3.12) lim  o®(zy,y) > 0.

|21 |—+00

Thus, if ¥ is not empty, we can find

(jl,?j) € ERa
such that
v’(Z,75) = min _o®(z1,y) <0
(3.13) (#1,y)€(—00,+00) X2
for |Z1| > Lo.

Combined with the fact that 9v®/dr = 0 on (—o0, 00) x 0, we get
Vol(z,,7) =0, AvR(Z1,7) > 0.
From (3.1), we derive
d(z1,9)v"(1,9) <0,

which contradicts (3.11) and (3.13). Thus, we have proved that v >0
or wf >0 for R > Ry. Strong maximal principle implies that w® > 0.
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Now let R_be the smallest number such that v > 0 for R > R.
Obviously, R > —Ry. Continuity and the maximum principle imply
(

v7*(z1,y) > 0 since it cannot be identically 0. In particular,

1—u(z1 + R,y) <1—up(z1,y)

é
Sl_i for 1 > Lg.

Thus, there exists some ¢; > 0 such that
1—u(zy+R,y) <1-—46 for z; > Ly,

and v®(z1,y) > 0 for |z1| < Lo for R > R — . A similar argument as
before leads to B
v (x1,y) >0 for R>R ¢

on (—00,+00) x  which contradicts the fact that R is the smallest
one.

This completes the proof of Theorem 3.1. O

Remark 3.1. Theorem 3.1 holds even if pi(1) = 0, since then
#1(0) > 0 by Theorem 3 for the existence of ug. It is clear that
Theorem 3.1 implies Theorem 2.

Next we will give a proof of Theorem 1 which will be divided into
several steps.

Let ¢(s) be a smooth monotone function such that ¢((—o0,1])
0, ¢([2,+00)) = 1 and strictly positive otherwise and f.(y,s)
©(s/e)f(y,s). First we have

Proposition 3.1. Assume conditions (Cl)—(C4). For each ¢ €
(0,1/4), there exists a unique exponential decay solution (c., u:) of (1.2)

with f replaced by f. and Ou./Oxy > 0 in (—o0,00) x Q.

The proof of Proposition 3.1 follows from the one given in [14], with
some slight modifications. The solution for a given ¢ is constructed by
solving the corresponding problems in finite cylinders ¥, = (—a, a) x Q
and then letting a — oo.
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Proposition 3.2. Assume conditions (C1)—(C4). Then there exists
a sequence €, — 0 such that (ce,,uc,) converges to a solution (co, uo)
of (1.2) with ¢y € R. Furthermore, uy decays exponentially.

Proof of Proposition 3.2. First we show that c. are bounded. By
translation along the z; direction we may assume that maxg uc(0,y) =
d for some fixed § € (0,1). Similar to the proof of Theorem 3, we
can conclude that ¢, > 0. Therefore, we only need to obtain an upper
bound for ¢.. The arguments on page 559 of [14] apply here to give us
the upper bound of ¢, with only the modification of fy in [14] being
replaced by H, = max, g fe(y,s).

With the bounds on c., we can apply the standard elliptic estimates
to conclude that there exists a sequence &, — 0 such that (c.,,uc,)
converges to a solution (cg,ug) of

Au— B(e,y)(Bu/0m) + F(y,u) = 0 on 3,
Ou/ov =0 on 0%,
u(—00,y) =9 (y) <0 < u(+o0,y) =14 (y) <1

Ou/ozy > 0,

with ¢y € R. It is easy to see that f(y,¥_) =0 = f(y,%+) and (C4)
implies that ¢ = 0 and 1, = 1. Therefore uy is a solution of (1.2).

Let 00> B =sup, _,, . ,cqBlce,,y) 2B-=inf,_ _ 5B8((ce,,y) >
0. By (1.2) and (C4) we obtain

Ou,
Auan - /B(Canay) 8%: <0

and hence 9
u
Ausn ,8+ = < 0
since

Oue,

0
81‘1 >

which gives for @(z1) = [, u(x1,y) dy that

(3.14) @~ fail, <0
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and integrating it from —oo to z; we have

(3.15) u;, — By, <0.

Note that since f,(y,0) > 0 and p1(0) = 0 we have f,(y,0) =0 and
1 can be taken as the corresponding eigenfunction . Hence similar to
(2.3) and (2.5) we have

Oue,,

Auen B 6_ 6371

+ kuija >0 in (—00,0) x .

Therefore we have

Jue
Au., — B 225 4 kg, >0 in (—00,0) x Q
8£E1
and hence
(3.16) a; —fB_u, +ké*G., >0 in (—00,0) x Q.

Now choose § so that kd* < 52 /4.

Claim 1.
B

(3.17) 7_12% <y, <file, in(—o0,0)x Q.

From (3.15) we need only to show the left half of (3.17).
Since f., =0 for 0 < u < &,, there exists ., < 0 such that

Au,, — B(ce,,v) =0 in (—o0,ze,) X

and hence
al —p_a, >0 in (—oo,xz.,) x Q,

€n €

which implies

i, —f_T., >0 in (—o0,z.,) x Q.

Define R., = sup{R € (—00,0] | @, (21) > (B-/2)i.,(x1) for all
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Note R., > z.,. And we want to show R. = 0. If not, say R., <O0.
Then (3.16) and the definition of R, imply that

u, (z) > (B-/2)e, (z1)
in (—o0, R, | x Q,
al (x) — B-a;, + k%, >0

En

and hence o g
a; — p_u, + ; a,, > 0.

And after integrating it from —oo to 1, we have

_ 250\ _ B_ _ .
> _ 7= _
ag > (ﬂ_ 5 >u5n > 5 U, in (—oo, Re, ]

which contradicts the definition of R., and the claim is proved. From
(3.17), we have for § = [, u(0,y) dy ~ & that

dePrmr < @i, (1) < §eP-/P? in (—o0,0).

Now the L? estimates imply that, for some D > 1 independent of u.,,
such that

(3.18) e, (x1,y) < DieP-/P1 in 1~
and taking the limit as €, — 0T, we have
uo(z1,y) < DseP-/2z1 i T,
which shows that wg(x1,y) decays exponentially at —oco. Exponential

decay of up(z1,y) at +oo is a direct consequence of (C3) and Theorem
B. Thus, the proof of Proposition 3.2 is completed. u]

Proposition 3.3. Case (1.2) has a solution (c,u) if ¢ > cg.

In Section 9.1 of [14], H. Berestycki and L. Nirenberg proved the
existence of solutions in the case f independent of y. However, their
proof can be used to prove Proposition 3.3 without any change.
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Proof of Theorem 1. Proposition 3.2 shows that (cp,up) is an ex-
ponential decay travelling front. Theorem 3.1 proves that if ¢ < ¢
then (1.2) has no solution. Proposition 3.3 implies that ¢y = ¢*. And
Theorem 2 means that any solution of (1.2) with ¢ > ¢* cannot decay
exponentially at —co. Theorem 1 is proved. O

4. Stability. In this section we will give a proof of Theorem 4 in the
introduction, namely, the stability of travelling fronts with exponential
decays at 1 = £0o. Hence the hypotheses of Theorem 4 are assumed
throughout this section.

Under the assumptions of Theorem 4, we have pi(1) > 0 by Theo-
rem 3, and then Theorem 3.1 implies that the exponential decay solu-
tion is unique. Let us assume that (¢*,u*) is the unique travelling front
with exponential decay of

Au* — c*(0u*/0z1) + f(y,u*) =0 in X,
(4.1) u*(—00) =0, u*(+o00)=1
0<u* <1 in %,

where f,(y,0) < 0 and without loss of generality we may assume that
fu(y,1) < —1. Then we have that du*/dz; > 0 for all z € 3, and

(4.2) u*(z1,y) < koe®®  in (—o0,0) x Q
(4.3) 1 —u*(—z1,y) < koe®®* in (—o00,0) x Q

for some ag, kg > 0.

From [, dy fol f(y,s)ds > 0, we have c* > 0. And, for convenience,
we choose ay, ko such that

(44) (674} S C*, k= ||f||cl,a S ko,

and hence

(4.5) {f(y,a) + f(y,b) — f(y,a+b) < koa®b

f(yal_a)+f(y71_b)_f(yal_a_b)Skoaab

for a,b,a + b € [0,1].
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By suitable rescaling of the variables, we may assume that f,(y,0) <

—1 for y € X. Let §9 > 0 be such that

(4.6) fuly,s) < f% if s € [1— 6,1

and

(47) fulyos) <7 it s e [0,0]

where

(4.8) 0-min{%,%,5c*/2+\/}m}.

After a translation in the x;-direction, we may assume that

s \'* do
4. min u* >1— | —= >1 - =,

Let M > 1 such that

do

(4.10) u*(z) < > in (—oo,—M) x Q,

and we define here some positive constants
) ou*
min
—M<z:<1 0z

B . 1 Oc* « Q0 (50
= -, —.QpC _— = —,
min 47 4 » &0C 4 ’ qo

l:

(4.11)

For the construction of a lower solution of

(4.12) % —Au= f(y,u) in (0,00) X X,

we first let

(4.13) q(z,t) = qoe_ﬁt min]1, 6_‘%1_9“*’57 eezl—ec*t]

)
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and
(4.14) C(t) = Coe Pt with ¢’ <0,
where
2

k2 + koo [ 48K2 \ Y%
4.15 = o o )
A1) G [ MR (18T
Then let

Q(xat) = u*(fxl +c't+ C(t)a y)
(4.16) +u(z1+ct+((t),y) — 1 —q(x,t)
= u*,(:v,t) + ui(ac,t) —-1- Q(mat)a
and

(4.17) a(z,t) = max{0,0(z,t)}.

Lemma 4.1. a is a subsolution to (4.12).

Proof. Since 0 is a solution of (4.12) and « is symmetric in xq,
we only need to check when z; > 0 and f(z,t) > 0. Now let
N(w) =0w/dt — Aw — f(w) and z = —x1 + c*t.

Case 1. z+((t) > 0, 1 > 0. In this case, we have
>uy +ul —1—q2>2u"(0,y) —1—3dp/3,

do oo
>2{l—-—)—-1——=1-— 4.9).
< 3> 3 do by (4.9)

Then we obtain

flysul)+f(y,ul) - f(y,0)
= f(y,u})+f(y,u”) = f(y, uf+u” — 1)
+ fy,uf +ut —1) = f(y,0)
<ko(1—ul)(1—ut)*—q/2 by (4.5) and (4.6)
(4.18) < kokge®0 =< D)1 — u*(0))* — g/2
= (3kg /0o)(1—u*(0))*goe 0@ FeTtH(M) g /9
<gq/4-q/2=—q/4,
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since ag(z1 + c*t+((t)) > max{Bt, Bt + Oz, + Oc*t, Bt — Ox1 + Oc*t} by
(4.8), (4.11) and (3k2/80)(1 — u*(0))* < 1/4 from (4.9).

On the other hand, we derive easily by (4.13) that

3q_

5t Ag> —(B+6c" +6%)g> —q/4

by our choice of #. Therefore we have

NO) = ¢ (G (o + 1 €0 + G+t C0))

F 1)+ f) - £0.0) ~ (5 - 8a)

S DR SR
S —q4t7a=0

Case 2. —M < z+((t) < 0, z; > 0. In this region we have
(Ou*/0x1)(—x1 + c*t + ((t),y) > 1 > 0 and z < 0 since ¢ > 0. Hence,
by (4.13) we have

7Bt60z (Oc™—B)t—6z,

q(z,t) = qoe = qoe
such that
* 2 GC*
0q/0t — Aq = (0c* — 3 —07)q > 5 —B)a
(4.19) oo
C
> >
z92 0

by (4.8), (4.11) and as before we obtain

Flyw) + Fly,w) = f(3,0) < ko(1— w})(1—u”)®
+ Hfu||L°°q
<ko(l—uf)+k
(4.20) < k%iao(zﬁc*wg(qt))
+ kogoe P17
< (k§ + kogo)e™P".
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Therefore we derive that

N(0) = C’(gzl (—z1+ct+((t),y) + gzl (z1+c"t+ C(t),y)>
dq

1)+ ) - 100 - (52 - aa)

*

ou
<
_Cal‘l

(—z1+c"t+C(8),y)

# 1)+ ) - £0.0) — (5 - 8a)
< [~1B8Co + kg + kogo| e P
<0 by (4.15).

Case 3. z+((t) < —M, z1 > 0. Then by (4.10) and (4.7) we obtain
O=ul +u’ —1—qg<u} +ul —1<ul <§y/2,
and
f(ya uf}- + ’U,i - ]-) - f(y,Q) S (90*/8)q,
and as in (4.18) we have
fly,ul) + fy,uZ) — f(y,0) < ko(L —u}) + (6c"/8)q
< ke colmte tH () 4 (ge* /8)q
= [(kg/qo)efao(ml+c*t+C(t))+0z17(06*7B)t
(4.21) +(0c/8)]a
< (0c*/8 + 6c*/8)q
= (0c*/4)q,

by choosing M sufficiently large that depends only on c¢*, ag, kg and .
Thus, by (4.19) we obtain that

ou* ou*

N = ¢ (Go o+ 14 0. + G+ 1+ G(0,0))

0
F H) + S - 100 - (G- aa)
< fc*  fc*
=4i
=0

q
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which shows that « is a subsolution. O

Next let n(t) = —((t) = —Coe P! with ¥ > 0 and q(z,t) as before.
Let

O(z,t) = u*(—z1 + "t +n(t),y)
+u*(zy+c*t+nt),y) —1+4qg
=u" +ul —1+¢q
and

a(z,t) = min{1,0(z,t +to)}
where tg = max{2¢y/c*, (1/8)In(o,2/(coc*)}. Then we have

Lemma 4.2. & is an upper solution to (4.12).

Proof. As in the proof of Lemma 4.1, we only need to check when
xz1 >0,t>0and f(z,t) < 1 since 1 is a solution of (4.12).

Case 1. z+n(t) > 0, z —1 > 0. In this case we have

uh >u* >u(0) >1—260/3
6>ul +ut —1>2u"(0)—1>1-—2§/3.

Similar to (4.18) we have by (4.5) and (4.6) that

fly,ul) + fy,u”) — f(y,6)

= f(y,u})+f(y,ul)—f(y,ul +ul —1)
+ f(y,ul +ul —1) — f(y,0)

> —ko(1 —ul)(1—u")*+q/2

> —kge =) (1 — u*(0))* + g/2

= [(1/2) - (k5 /q0) (1 — w*(0))*

efaozlfagc*tfaon(t)+ﬁtj|
> [1/2- (k§/q0)(1 — u*(0))*

—apc totagloe 0 +ﬁt0] q

q

€
> q/4
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since —agc*ty + agloe Pt + Bty < 0 by the definition of t.
Now
9q

1
—Aq=-q—Bq>0.
5 4= 4 Bg=>0

N > a+ 9

Case 2. —M < z+n(t) <0, z; > 0. In this region again we have
(Ou*/0z1)(—xz1 + c*t +n(t),y) > 1 > 0. Similar to (4.20) we have

Fly,ul)+F(y,u) = F(y,0) > —ko(1=uf)(1—u2)* = || fullL=g
> —ko(1 —u}) — kog
> _Zeoolaat-n®) _ oo
> —k:ge_ﬁt — kogoe™ Pt
= —(k§ + kogo)e "
and since ¢ = goe P min{1, e*9}, we obtain
9q —Bt Bt
5 Agq > —Bqoe™"" > —kogoe

Thus,

*

_ ou ou*
! * *
N(6) >n <8x1(_x1 +ct+n(t),y) + o, (z1+¢ t+n(t),y)>

+H )+ ) = 100+ (G- aa)

a *
> G (4 e n(t),0) + (o)
+f(yau+ (? >
> (1o, B — k§ — 2kogo)e ™"
>0 by (4.15).

Case 3. z+mn(t) < =M, 1 > 0. Then z < =M — n(t) <
—1 + Coe™ Bt < 0 which implies that ¢ = goe P*e?* and hence by
(4.19),

aq Oc*
— Ag >
o "=y

q.
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Similar to (4.21) we obtain

fly,ul) + fly,ul) — f(y,0) > —ko(1 —ul) — (6c"/8)q

> 7kgeao(*w1*0*t*77(t)) _ (90*/8)(]

- _ [(kg/qo)e—ag(zl—l—c*t-i—n(t))-l—ﬂt—ﬁz
+6c*/8q

> —(6c*/4)q,

as before. Therefore,
~ Oc* Oc*
N(0) > - Z q+ z ¢>0. O

After the constructions above, we need the following comparison
results to prove Theorem 4.

Lemma 4.3. Let ay = maxzex a(z,0) € (0,1) and R = max((,¢ +
(1/(ap —0)) In(ko/d0)). If there exists & € R such that ¢(x1 — o, y) >
g for (z1,y) € (—R, R) X Q, then

u(t,z) > a(zr + €o,y,t) in (0,00) X X.

Proof. Since ¢ > 0 and « is symmetric in z1, we only need to check
that @ < 0 on the interval (—oo, —R].

Since R > ¢, (4.2) and (4.3) imply

a(z,0) = max{0,6(z,0)}
= max{0, u" (=21 + () + u*(z1 + () =1 —q(z,1)}
= max{0, u*(—z1 + ) + u*(z1 + ¢) — 1 — goe?™1}
< max{0, koe® @1+ _ goef71}

= 0.

Therefore, the maximum principle for parabolic equations shows wu(t, 21—
,y) > a(zy,y,t) which finishes the proof. O
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Next we will use a(z,t) to obtain some upper bound on u(t, z).

Lemma 4.4. For each 0 < ¢ < 1 with compact support, there exists
some T > 0 such that a(z,T) > ¢(z) forz € X, and

u(t,z) < a(z,t+T) in (0,00) x X.

Proof. Assume that the support of ¢ is in [—M, M] for some M > 0.
From the choice of ¢y, we have that & > 0. Hence we only need to
check that (z,t) > 1 on [—M, M] x Q.

Since f is symmetric in z1, we will assume that z; € [~M,0]. But
for t > (M + ¢)/c* we have from (4.2) and (4.3) that

O(z,t) =u*(—z1 + "t +n(t)) + v (z1 + "t +n(t)) —1+¢
>1-— koe—ao(—11+c*t+n(t)) +1— koe—ao(zl-I-c*t-Hl(t)) -1

+ qoe—ﬂt—i-awl—GC*t

> 1 — 2kge 0" Mtet=Co) 4 g o= ft=M—bc"t

> 1 — Qkoe_ao(_M‘i'C*t—CO) + qoe—ﬁt—M—HC*t'

From (4.8) and (4.11), we have

Oc* 50c* < 5agc*

e < fc* =
B < - +bc 4 = 16

*
< apc,

which implies that §(z,¢) > 1 on [~ M, 0] x 2 for all ¢ large, and hence

O(z,t) >1 on [-M,M] x Q x [T, ),

for some T' > 0. The maximum principle for parabolic equations derives
the assertion of this lemma. ]

Proof of Theorem 4. From Lemmas 4.3 and 4.4, for such 0 < ¢ <1
with compact support in the x; direction we can find some 7" > 0 and
& € R such that

(4.22) a(r1 +&o,y,t) < u(t,z) < a(x,t+T) in (0,00) x X.
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Since u* is increasing in z; we obtain from (4.22) and (4.13) that

a(z1 + o, y, t) = max{0,0(z1 + &o,y,1)}
> 0(x1 + &o,y,t)
=u*(—wy — & + "t +((1),v)
+u* (w1 + &o + 't +((t),y) — 1
—q(x1 + &0, y,t)
> u*(—z1 — o + 't y) +u(z1 + &0 + L, y)
—1—qoe 7",

and

a(zy + €o,y,t +T) = min{1,0(xy + &o,y,t + T +to)}

<O(z1+&o,y,t+ T +to)

= u*(fml + C*(t+T+t0) + C(t+T+t0),y)
tu(zr+c(t+T+to)+C(E+T+to),y) — 1
+q(z1,y,t+ T + to)

<u'(—z1+c(E+T+to),y)
+u(zy+cE+T +to),y) — 1
+ goe AT Ht0)

<u(—z1+ " E+T+to),y)
+u(zy+c(E+T +tp),y) —1
—i—qge*ﬁt.

Therefore, Theorem 4 is proved with & = ¢*(T + ¢o). O
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