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ABSTRACT. One extends the notion of Hellinger integral
for vector valued functions with respect to a scalar function,
and one gives representation theorems for bounded linear
operators F' : Qo(T,X*) — R, F : V)(T,X) — Y and
F: M(T,X) — Y satisfying a certain boundedness condition.
Here X and Y are arbitrary Banach spaces. The other spaces
are defined in Sections 2, 3 and 4, respectively.

1. Introduction. The basic concept in this paper is the Hellinger
integral for point functions or for set functions. The aim of the work
is to present the problem of representation of the linear continuous
operators using the Hellinger integral. The notion of Hellinger integral
appeared when L.V. Kantorovitch considered (in 1940) vector integrals
of the Hellinger type in connection with the problem of representation
of linear operators. In [19] he introduces an integral of Hellinger type
for a pair of functions f and g defined on the closed interval [a, b] of
the real axis where f has real values and g is a vector function.

The quoted paper contains theorems of representation for linear
continuous operators which are defined on an ordered linear space of
real functions (M or L) into an ordered linear space or a Banach space.
The vector integrals of Hellinger type are also used in the spectral
theory of self-adjoint operators (see [25]).

Romulus Cristescu [3] introduces a vector integral of Hellinger type
for functions with values in a Banach space, with respect to a function
whose values are operators. He establishes with this integral the general
form of the linear continuous operators defined on the space of vector
functions which are Bochner integrable. Afterwards, he gives further
representations in [4, 5, 6].

In 1967, J. Webb, II. Alexandrov and H. Salehi considered also
different types of vector Hellinger integrals and, using them, they
established the general form of some linear operators. In [34], J. Webb
considered the space of complex quasi-continuous functions on a closed
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interval [a, b] of the real axis, organized as a normed linear space with
the “sup” norm, and he proved that any bounded linear functional on
this space has a Hellinger type for summable vector set functions. The
relationship between Alexandrov’s integral and the Hellinger integral is
analogous to the one between the Lebesgue integral and the Riemann
integral. Alexandrov uses the integral introduced by him to the
representation of some linear functionals or for the representation of
some linear operators defined on spaces of set summable functions.
H. Salehi [24] defines a Hellinger integral for measures with matrix
values, and he generalizes some of U. Grenander and G. Szego’s results
[2] and some of E.W. Hobson’s results [15]. The integral introduced
by Salehi is important in stochastic process theory, and it allows the
generalization of some of P. Masani’s results [21] and of some of A.N.
Kolmogorov’s results [20].

Some other types of Hellinger vector integrals and some theorems of
representation of the linear operators using these integrals were also
presented by G. Grigore in [13] and [14] and by G. Vraciu in [27, 28,
29, 30, 31, 32, 33|.

In the first part of this paper, Section 2, we consider the space
Qo(T, X) of all functions defined on the compact interval T' with values
in the dual space X*, functions obtained as limits of sequences of step
functions on 7. As in [34] one gives a theorem of representation for
linear bounded functionals defined on Qo (7, X*).

In Section 3 the space V,, (T, X) is the space of functions v : T — X
with the slope variation bounded with respect to the increasing func-
tion u, where X is a Banach space. Here we extend the results from
Section 2, proving the theorem of representation for linear bounded
operators defined on this space. In Section 3 we consider the space
M (T, X) which is the space of functions f € L(T, X) with the proper-
ties:

1. There is a set {fy, }nen of simple functions (with values in X)) such
that || fn(t)]] < X almost everywhere for all n € N.

2. ||fn(t) — f(t)|] — O almost everywhere.

We prove that the bounded operators defined on this space can be rep-
resented using Hellinger integrals with respect to absolutely continuous
functions. This representation is similar to the representation given in
[3] for continuous operators defined on L(T, X).
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2. Hellinger vector integrals. We introduce the Hellinger integral
for vector functions with respect to a scalar function, generalizing the
basic idea from [34]. Using this we shall give a representation for the
linear bounded functionals defined on the space Qo(T, X*) ={z: T —
X*, x is the limit of step functions on T'}.

2.1. Preliminaries. Let X be a real Banach space; T = [a,b] a
segment of the real axis. We shall denote by B(T, X) the set of the
bounded functions, organized as a normed space with respect to the
usual operations and the supremum norm ||z|| = sup;cy ||z (t)]].

Consider the real functions:

[0 ifte€la,c)
Rc(t)_{1 if t € [c, b]

for any ¢ € (a,b] and

0 ifté€]a, (]
Lc(t)_{l if t € (c,b]

for any ¢ € [a, ).

We'll call a step function, any linear combination of the form:

S(t) = Z achk (t)wk =+ Z akLck (t)xk
k=1 k=m+1
with zp € X.

Let Qo(T,X) be the closure in B(T,X) of the space of the step
functions. Q(T, X) is a Banach space.

Definition 2.1. Let v: T — X and u : T — R, u strictly increasing.
v has bounded slope variation with respect to u if, for every subdivision
{tp}§ of T' = [a, b], there exists a number B such that:

<B.

u(tpi1) —ultpy)  ulty) — u(tp-1)

n—1
p=1

”(tp+1) - ”(tp) ”(tp) - U(tpfl)
(tp+1)

X
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The lower bound for all such Bs is called the slope variation of v with
respect to u over [a,b], and it is denoted by var®(dv/du).

Definition 2.2. Let u : [a,b] — R strictly increasing, v : [a,b] = X
and w : [a,b] = B(X,Y) where B(X,Y) is the space of all the linear
bounded operators from X into the Banach space Y. The Hellinger

integral
/b (dw)(dv) cy
a du

exists if, for any number € > 0, there is a division D, such that, for
any refinement {¢,}§ of the division D,, we have

-1

? (dw)(dv) [ (Aw(ty))(Av(ty)
H/ FranD D rra R Bk
where
Au(ty) = u(ty) — ultp-1),
Av(ty) = v(tp) — v(tp-1),
Aw(ty) = w(tp) — wltp-1).

The following two properties result directly from the definition of the
Hellinger integral.

1. If

b .
/ (dw)(dvl) ’ = ]-7 2;
@ du

exists, then there exists

/ " (dw)(dv)

where v = avy + Bus
du

and

/ab (dw)(dv) _ a/ab (dwc)iidvl) +/6/ab (dw()iidvg)‘

b .
/ (dwl)(dv) ’ i = la 27
@ du
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exists, then there exists

/ * (dw)(dv)

where w = aw; + Bw;
du

and

Definition 2.3. Let u : [a,b] — R be a strictly increasing function,
v : [a,b] - X and ¢ € [a,b). D (c) is the right derivative of the
function v with respect to the function w at c, if

v(t)

b —u(e) ~ Do

t—ct

D v(c) can be defined similarly for any ¢ € (a, b].

We shall prove some propositions that will be used in the next
sections.

Lemma 2.1. If n is an integer greater than 2, and xg, T1,... , T, are
vectors in X and a1, s, ... ,q, 1S a sequence of positive real numbers,
then

n—1 n
Z Tpy1 —Tp Tp—Tp 1 < 1 Za T, — To Tpn_1— To
- = q n o n—1
p=1 Qp+1 Qp Qp q=1 Zq:l Qq Zq:l Qg
n—2
+Z wp+1—x0_xp—m0
p+1 p )
p=1 Eq:l Qq Zq:l Qq

This lemma is a generalization of Lemma 3.1 in [34], given in a
numeric case.

Lemma 2.2. If n is an integer greater than 2 and xg,X1,...,Tn
are vectors in X and By, B1,---,0n 18 an increasing sequence of real
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numbers, then

n—1 n—1

Lp+1 —Tp  Tp — Tp-1

/Bp+1 - /Bp a /Bp - Bpfl

Tp4+1 — To Tp — L0

Bp+1 — Bo B Bp — Bo

p=1

p=1

Lemma 2.3. If var’(dv/du) < oo, then for any t € (a,b] there
exists D, v(t), and for any t € [a,b) there exists D v(t).

2.2. The Hellinger integral for functions in Q (7, X).

Lemma 2.4. Let Z be defined by Z = B(X,Y). Let w be a fized
operator wy = Ryw and varb(dv/du) < oo. Then there exists the
integral

/a ’ (dwt(;zt(dv) ,

and this integral is equal to w(D; v(t*)).

Lemma 2.5. If var®(dv/du) < co and s is a step function on [a, b]
with values in Z, then there exists the integral

Proof. This result can be obtained by the above lemma and by
Properties 1 and 2 of the Hellinger integral. ]

Theorem 2.1. If var®(dv/du) < oo and f € Qo([a,b],Z), then

there exist the integral
/Wﬂmm
a du

and

o |

d
Ys{w¢<£>+wnmmu}mL
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Proof. The function f is the limit of a sequence {si} of step functions.
We can assume ||s; — f|| < 1/k, k € N*. Let {¢,}§ be a division of the
interval [a,b] and k € N*. The integral sum o(s;) relative to the step
function si is given by

o Aulty)
S

+ [sk(tn) — Sk(tnl)]izgi:;
Sy

S
-5 s (tp) (iv( p+1) Av(tp)>

Therefore,

lo(se)lly < ||Sk||{ 2 iZEffiii _ i’igp;

‘ X

< sul(5+ % >

From the definition of the Hellinger integral and the definition of the
left derivative of the function v with respect to u at b, it follows that

e

S skl (B + Dy v(®)])
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and, by taking liminf with respect to B, we get the inequality (2.1).
If we take s — s,, instead of s, we obtain
/b (dsk)(dv) /b (dsm)(dv) | _ /b (d(sk — sm))(dv)
a du @ du v a du
< llsk = smll(B + D v (b))

< (3+2) B+ 10001

which shows that there exists the limit

? (dsi) (dv)
. k)(adv
=1 .
vo = lim [ =0
Let us determine yo: if Dy = {t,}7 is a division of [a,b], then the
integral sum which corresponds to the function satisfies the relations

o (D1, f = si)|| = g = _ZCZEZ;M%) Y
<7 - m{Z iuiti; - iug; I,
‘Av(b)—v(t' 1)‘ }
Au(b) —u(t, )| x
2(%)
o llo(D1, f) — o(D1, sx)|ly < %
T

+llo(Dy, f = sl
+lo(D1, sx) = yoll

|/ @)
i

T—U(Dl,f)H
+ =2+ Ok).
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The result follows by taking the limit with respect to k. a

2.3. The representation of the linear continuous functionals on the
space Qo(T, X™).

Theorem 2.2. If var®(dv/du) < oo, f € Qo(T,Z), then the
functional F : Qo(T,X*) — R defined by

F - [ @

du

is linear and its norm is var®(dv/du) + ||D;v(b)| x.

Theorem 2.3. If F is a bounded linear functional on Qo([a,b], X*)
and X 1s a reflexive space, then there exists an increasing real function
u and a vector function v : [a,b] — X, with var®(dv/du) < oo, for
which

(22) F(p) = [,

for each f € Qo([a, b], X™*).

Proof. Let F,; be defined by
Fy(z) = F(zg)

where z4(t) = x(t)X4(t), g is an arbitrary subset of [a,b] and X, €
Qo(T,X). Let A and p be defined by

A(e) = lm ||F o)
t—c
=1l F .
pc) = lim [|Fcpll
There exists a countable subset § of [a, b] such that, if ¢ is in [a, b] but
not in ¢, then A(¢) = p(¢t) = 0.

We shall consider the function w defined as in [34]; wu(t) is an
increasing function which has jumps at the points where A(c) # 0 or
p(c) # 0. Consider

Ut(s)_{u(s)—u(t) %ft<s§b
0 ifa<s<t.
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If z* € X* is a fixed functional, then for f- ;(s) = us(s)z* we have
fz+t € Qo([a, b], X*).
Let
g: X*—R

be defined by
gi(z") = =F(for t)-

The function g; is in X™** so, by reflexivity, g; € X. We define
v:T — X, v(t) = g+ such that z*(v(t)) = g:(2*). Thus z*(v(t)) =
—F(fz+ ). In [27] one proves that the function v(¢) has bounded slope
variation with respect to u. We prove now that the functional F' can
be represented by the integral (2.2).

ot - [ @),

Consider

du
If fo« = R.(t)z*, then by Lemma 2.4, we have

G(far) = — lim u(t) — u(e)

= )

Therefore

G(fy-) = F( lim Rea") +F< lim Mx[t,c]x*)

t—c_ t—c_ u(t) — u(c

From the definition of u(t), we have

| im [|Fg,0)ll =0
t—c

and
i Y t) — u(s)

Jm e ) =
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Thus, G(R.z*) = F(R.z*). In a similar way it can be proved that
G(L.z*) = F(L.x*) so, for any step function s, G(s) = F(s). But the
linear span of the step functions is dense in Qo([a, b], X*). O

3. The representation of bounded linear operators. We
use the integral of Hellinger type introduced in Section 2 for linear
operators with respect to vector functions. We shall give a theorem
of representation for bounded linear operators defined on the space of
vector functions with bounded variation on a closed interval, which
takes the value zero at the left end of the interval.

Let X be a Banach space, T = [a,b] a segment of the real axis,
u : T — R an increasing function with u(a) = 0 and v : ' — X.
We suppose that the function v has the slope variation bounded with
respect to u (Section 2).

Lemma 3.1. The set
dv
W(T,X) = S (t ol —
Vu(T, X) {v()|vara<du><oo}

is a linear space with respect to the usual operations and

dv _
ol = (@)l + vart (52 ) + 1050

is a norm on this space [28].
Lemma 3.2. The space V,,(T, X) is a Banach space [28].

3.1. The representation of the bounded linear operators on the space
VT, X). Consider Z = B(X,Y) and Qo(T, Z) the closure of the step
functions space. For w € Qo(T, Z),

[[wl| = sup [lw(t)]|-
teT
It is clear from Theorems 2.1 and 2.2 that, for any v € V,,(T, X), there

exists
b
F(v):/ (dw;l(tdv)
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and
(3.3) 1F)lly < [lwl|slv]v,-

Lemma 3.3. F: V)(T,X) — Y defined above is a bounded linear
operator.

Lemma 3.4. Letv € Vu(T,X) and € > 0. Then there exists a
division Ay of the interval [a,b] such that, for any refinement Ay =
(a =to,t1,... ,t, =b) of Ay the function ¥ defined by

o u(t) — u(ty) _
’U(t) - U(t U(tp+1) — U,I()tp) [v(tPJrl) U(tp)]
for any t € [tp,tp11], p=10,1,... ,n —1, satisfies |[v — 9|y, <e.

Theorem 3.1. The general form of the bounded linear operators
defined on VO(T, X) with values in Y is

(3.4) F@:/EQ%@

for some w € Qo(T, Z); moreover,

IF]Bvo,y) < |lwls-

Proof. As we know from Lemma 3.3, equality (3.4) defines a linear
continuous operator on V2(T, X) with values in Y. Conversely, let F
be a linear continuous operator that maps V,’(T, X) into Y. For fixed
z € X we denote

UM@ZW@Z{

u(t)(z) ifa<t<p
u(p)r ifp<t<b.

Then v,(t) € V)(T, X) and v,(a) = u(a)z = 0.

Let A be adivision, A:fa <ty < -+ <t < p<tpp1 < - <t,<
b]. For all the ¢,’s to the left of p, we have

Up(tp+1) — vp(tp) _ u(tp+1)z — ul(ly)x —

U(tp+1) - U(tp) U(tp+1) - U(tp)




HELLINGER INTEGRALS 655

and for the ones to the right of p,

(p+1) v

() _ ulp)e—ulp)r _
( p+1) (tp (tp-i-l) (tp)
so that
« Vp(tpt1) — vp(t) - Up(tp) — Vp(tp—1)
I; u(tp1) — u(tp) u(ty) — u(tp-1) ‘X
> llz—all+[lz = 0] + (|0 - 0]| = |-
p<k—1
Hence,
vart (2 = il
and

Doy (t) = lim Yol =%0)

So, for p < b, v,(t) € VX(T,X) and ||v,|lv, = |lz]|x. For p =b all t,
are less than p, so

var® (%) =0, D, v,(b) ==

and
lvpllv, = llzllx-

Define w(p) : [a,b] = Z by w(p)(z) = F(vp,z). But w(a)(z) = F(v,) =
F(0) = 0; it follows that w(a) = 0.

We shall prove that w(p) € Qo(T, Z). One can show that there exists
lim, .+ w(p) for any ¢ € [a,b) and lim,_,.- w(p) for any c € (a,b].
Consider 0 < hy < hy. We shall compute

[w(e+ h2) —w(c+ hi)]z = F(vetrn, — Vet )-
We have

Vc+ho (t) — Ucthy (t)
[u(t) — u(c+ h1)]x ift € [c+ h1,c+ ho]

[u(c+ h2) —u(c+ hy)]z ift > c+ ho.
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It follows that
[Vetns (t) = Vetn, (B)lv, < [u(e+ h2) —u(c+ ha)]||z]| — 0

for h1,h2 — 0. Then ||w(c+ k) — w(c+ h1)|| = 0, for hy,hy — 0, so
that the limit lim,_, .+ w(p) exists. In a similar way one can prove that
the limit lim, ,.— w(p) exists. Denote

_ (", (dw)(dv)
G(v)—/a w—

Since w € Qo(T,Z), G is a bounded linear operator defined on
VI(T, X) with values in Y (Lemma 3.3). We prove that G = F.

Let A = {t,}, p = 1,2,... ,n be a division of the interval [a,b]. Set
zp = v(tp) € X. The integral sum which corresponds to this division
is:

_ Z ) Av(tp))

p=1

n—1
w(tp+1) mp+1) w(tp)(Tpt1)
;1 p—i-l) (tp)

w(tpr1)(zp) + w(ty)(zy)
u(tpy1) — ulty)

F Utp+1,zp+1) F(vt
— u(tpr1) — u(tp)
F(Utpﬂ,zp) + F(Utpamp)

u(tp+1) - u(tp)

n-l T Utpaprr  Vtpiia, — Vb
-r( X [ - )

p=1

—_

< )
prTp+1l

=

Keeping track of the definitions of v, , .,,, for each p, it turns out
that

S

i: |:vtp+17zp+1 Utp,a:p+1 vtp-%-l:zp B Utp,zp:| _
=1 (tp+1) — ulty) u(tp1) — u(tp)
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where ¢ was defined in Lemma 3.4. Thus 0,(A) = F(9). For each
€ > 0 choose A such that

G(v) —on(A)]y <e
and
lv =9y, <e.

Then
|£(v) = G)[| < [[F]|[lv—12][ +e <e(||F|| + 1)

for any € > 0. Therefore, F(v) = G(v). O
4. The representation of bounded operators.

4.1. Preliminaries. We shall give a theorem of representation of linear
continuous operators which satisfy the condition

Wl < / 1£(8)] dus(t)

on the space M(T,X) of the essentially bounded functions, on a
segment 7" with values in a Banach space X. M (T, X) is the space
of the functions f € L(T, X) which verify the properties:

1. There exists a set {f, }nen of simple functions from L(T, X) such
that || f(¢)|| < A almost everywhere for all n € N.

2. |fn(t) — f(®)|| — O almost everywhere.

The operators are defined using Hellinger integrals with respect to
absolutely continuous functions on the compact interval T'.

For f:[0,1] - X, G:T — B(X,Y) and A a division of T
0=ty <t1 <- <ty =1

U(f) = lim,, Sa, (f), where Sa is given by

—

m—

5a(1) = Y = [G(tin) = GO (1) = (0]

i=0 *
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Denote
Ui = | Gaco)@ o).
(See [3].)

In the same way, it can be introduced

1
| aatacnarn
0

with u an increasing function. This integral is more general than the
one introduced in Section 2.

4.2.  The representation of the bounded operators using Hellinger
integrals. Let X and Y be two Banach spaces, T' = [0, 1], L(T, X) be
the space of Bochner integrable functions. Let M (T, X) be a subspace
of L(T, X) and f € L(T, X).

Theorem 4.1. Consider the operator defined on M(T,X) with
values in 'Y given by

(45) U(f) = /0 w

with

(4.6) F®=Af®ﬁ

and G an absolutely continuous function on T into B(X,Y). Then U
exists, is linear and satisfies the inequality

(4.7) TN < /0 1f ()] dpu(t)

with p a positive measure, absolutely continuous with respect to the
Lebesgue measure.

Proof. We show that the integral exists for G absolutely continuous

and .
lim S, = / (dG)(dF™)
n 0 dt
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which proves the inequality (4.7) i

Theorem 4.2. If U is a linear operator defined on M (T, X) with
values into Y that satisfy the condition (4.7), then U can be represented

as in (4.5) with G an absolutely continuous function on T with values
into B(X,Y).

Proof. Let U be such an operator. For G(t) = U(y:(7)z) with

1 ifrel0,t)
0 ifreltl].

%(7')—{

We shall prove that G is absolutely continuous. Let §; = (¢;,15),
t=1,...,p be a system of disjoint intervals. We have

Z IG(#) — Gt:)| =Y sup [|G(tit1)z — Glt:)z|

i l=l<1

- Z Sup ||U(’yti+1(7-)a") - U(’Yt,- (T)l’)”

; l=l<1

=3 sup U (s, () = e, (7))l

: l=ll<1

By hypothesis,

0k ()= 3Dl < [ 1tus () = 2 ()l ditt)
= [ sl autt

_ loll(uttien) — p(t)
— lallu).

Substituting, we have

D IG(tirn) = Gta)l < Y- sup fell(ulti) — p(t)

i 5 llzll<1

< ZH((Z’)-
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If 7, (tig1—t;) <6, then ), u(d;) < €, since p is absolutely continuous
with respect to the Lebesgue measure. Then

Y IG(tiy) — Gt < &

so G is absolutely continuous.
Consider f € M(T, X) of the form

t) = Z7[ti,ti+1](t)a

with f(t) a simple function, ¢; the points of a division D, and a; € X.

We have
J”‘(tzvrl)—f*(ti):/Hr1 dt—/ f(t)

tir1
_ / £(t) dt.
t;
Since f(t) = a; on [ti, tiy1],
(b)) = ()
o tiy1 — t; .

Thus
U(f) = U(Z(’Y[ti,ti+1}ai)>
= Z U[(’Yti-i—l - Vti)ai]
= Z (V:42@i) — Uy, 0i)]

= Z tiy1)(a:) — G(t:)(as)]

_ Z (ti1) = (0

2+1_t

with Gz = G(ti+1) — G( i), which is

/1 (dG)(df*)
0 dat -
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Let f be an arbitrary element in M (T, X). There exists a set of simple
functions {f, }nen such that f, — f in the space M (T, X). Then

/0 1) = £l du(t) — 0 for n —s oo,

since p is absolutely continuous with respect to the Lebesgue measure;
therefore U(f,,) — U(f). Thus U(f) is given by formula (4.5). O
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