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DISCRETE GROUPS AND DISCONTINUOUS ACTIONS

SATYA DEO AND K. VARADARAJAN

Introduction. Discontinuous actions of groups play an important
role in complex function theory, especially in the study of Riemann
surfaces. The study of Kleinian groups, Fuchsian groups, the theory of
automorphic forms are all rich areas of mathematics with many deep
results. The work of Thurston on 3-manifolds has given additional
focus to this very rich field of discontinuous group actions. However,
there does not seem to be complete agreement regarding notation and
terminology. For instance, the concept of “properly discontinuous”
action is defined differently by different authors and these definitions
in general are not equivalent. The present paper is a semi-expository
paper devoted mainly to clarifying various concepts and studying the
interrelationships between these concepts.

There are two definitions of “properly discontinuous actions” of a
group G on a space X frequently used in literature. One of them
requires the existence for each x € X of an open set U in X with x € U
and {g € G | UNgU # ¢} finite. The other requires that, for any
compact set K of X, the set {g € G | K NgK # ¢} be finite. Even
when X is a very nice space like a manifold the two definitions are
not equivalent. To clarify the difference, we introduce the concept
of “strongly properly discontinuous actions” as a generalization of
“properly discontinuous actions” (see Definition 5). It turns out that if
G acts strongly properly discontinuously on X, then for any compact
set K C X the set {g € G | KNgK # ¢} is finite (Proposition 7).
In general, even when X is a very nice space (for instance a manifold)
when G acts properly discontinuously on X, the orbit space X/G need
not be Hausdorff. When G acts properly discontinuously on a Hausdorff
space X, the orbit space X/G is Hausdorff if and only if the action of
G on X is strongly properly discontinuous (Proposition 6). Examples
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exist in literature to show (i) that a group action even on a nice space
could be discontinuous without being properly discontinuous and (ii)
that a group G can act properly discontinuously on X with X/G non-
Hausdorff. However, these examples are complicated. In Section 2 of
the present paper, we give easy examples to illustrate these phenomena
(Examples 5 and 4).

There are also generalizations of proper discontinuous actions and
strongly proper discontinuous actions in literature [6, 7 and 12]. There
is again no complete agreement regarding the notation and terminology.
Section 3 of the present paper is devoted to clarifying these concepts
and studying the interrelationship between these concepts.

In the excellent article of Peter Scott on the geometries of 3-manifolds
[13], the starting point is the result that for a connected Riemannian
manifold M, any discrete subgroup of the group I(M) of isometries
of M acts strongly properly discontinuously on M. In his exposition
he requires M to be complete. However, the result is valid without
completeness, but connectedness of M is very crucial for the validity
of the result. Actually, this result is valid more generally for the group
I(X) of isometries of a connected, locally compact, separable metric
space X. In our present article, we present a complete proof of the
known result that any discrete subgroup of I(X) acts strongly properly
discontinuously on X whenever X is a connected, locally compact,
separable metric space (Theorem 3). Also, it is a known result that for
a connected Riemannian manifold M, the isotropy group I(M), at any
x € M is compact. A similar result is valid for any connected, locally
compact, separable metric space X.

In the case of a connected Riemannian manifold M one has the deeper
result of Myers and Steenrod [11] that I(M) is a Lie group. But this is
not needed in establishing the link between discrete subgroups of I(M)
and discontinuous actions.

J. Lehner’s treatise [8] on discontinuous groups is a comprehensive
account of the deep results on discontinuous groups and automorphic
forms. For the work of W. Thurston, the reader could refer to [14].

The authors are thankful to the referee for bringing [6, 7 and
12] to their notice and suggesting that the results on proper and
strongly proper discontinuous actions could be extended to “proper”
and “strongly proper” actions. The non-Hausdorff quotients in [7] are
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of interest in theoretical physics.

1. Discontinuous and properly discontinuous group actions.
Throughout this paper X will denote a Hausdorff space. G will denote
an abstract group acting on X by means of homeomorphisms. C' will
denote an infinite cyclic group written multiplicatively.

Definition 1. 8The action of G will be said to be discontinuous at
x € X if the following two conditions are satisfied:

1. The orbit Gz of x is a closed discrete subset of X and
2. The isotropy group G, at z is finite.

For any y = gz € Gz we have Gy = Gz and G, = gG,g~*. Hence, G
acts discontinuously at z < G acts discontinuously at any y € Gz. In
other words, discontinuity of action of G is property of an orbit rather
than of a point.

Proposition 1. Let G act discontinuously at x. Then, for any
sequence {gn}n>1 of distinct elements in G, the sequence {gnx}n>1
cannot converge in X .

Proof. Suppose, on the contrary, lim,, ,., g, = ain X. Then a € Gz
since Gz is closed. Let a = gz. Since Gz is discrete, there exists an
open set U of X with U N Gz = {gz}. Since lim,_, gz = gz,
there exists an Ny such that g,z € U for n > N,. But then
gnt € UN Gz = {gz} for n > Ny yielding g~'g, € G, for n > Nj.
This contradicts the finiteness of G. a

When X satisfies the first axiom of countability, we have the following
converse to Proposition 1.

Proposition 2. Let X satisfy the first axiom of countability. Assume
that, for any infinite sequence {gn}n>1 of distinct elements in G,
{gnx}n>1 does not converge in X. Then G acts discontinuously at
x.
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Proof. Suppose Gz is not closed in X. Let a € Gz\Gz. Since
X satisfies the first axiom of countability, there exists a sequence of
elements of the form g,x with g, € G and satisfying lim,, .~ gnT = a.
Since a ¢ Gz, we see that g,z # a for any n. Since g,z converges
to a, it follows that {g,2 | n > 1} is an infinite set. In particular,
{gn | n > 1} is an infinite set. By passing to a subsequence, if necessary,
we may assume that {g, }»>1 are all distinct. But then lim,_, gnz = a
contradicts the hypothesis.

Now suppose Gz is not discrete. Then there exists an element
hx € Gz with the property that every open set U in X with ha € U
will satisfy U N Gz 2 {hz}. We can pick a countable family of open
sets V1. D Vo D V5 D --- in X with {hz} = N,>1V, and elements
gnt € V,\{hz}. Then lim, . g,z = hz. Since g,z # hx for each n,
as earlier this leads to a contradiction.

Suppose G, is infinite. Then we can pick an infinite sequence
{gn}n>1 of distinct elements in G,. Then g,z = z for all n, hence
lim, ,- gnT = z, a contradiction. O

Definition 2. We say that G acts discontinuously on X if its action
is discontinuous at every x € X.

Remarks. 1. The orbit space X/G will always be endowed with the
quotient topology. 1 : X — X/G will denote the canonical quotient
map. As =} (n(U)) = UyeggU, for any open set U of X we see that
n~t(n(U)) is open in X. Hence, n : X — X/G is an open map. Also,
X/G is a Ty space if and only if each orbit is closed. In particular, if
G acts discontinuously on X, then X/G is a 17 space.

2. Let G be a Hausdorff topological group acting as a topological
transformation group in the sense that the map p: G x X — X given
by u(g,x) = gz is continuous. Suppose there exists an element z¢ € X
with Gz, discrete and G, finite. Then G itself is discrete. In fact,
the map 8 : G — X given by B(g) = gzo is continuous. Since Gz is
discrete there exists an open set U in X with UNGzy = {zo}. Clearly
B~YU) = G,,. Hence Gy, is open in G. Let G,, = {e,01,.-- ,9r}-
Then {e} = Gz, \{91,--. ,9-} is open in G. Hence G is discrete.

In particular, any Hausdorff topological transformation group G
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whose action is discontinuous at at least one point zog € X has to
be a discrete group.

If X is locally compact and locally connected, a result of R. Arens [1]
asserts that the group H(X) of homeomorphisms of X is a Hausdorff
topological transformation group on X when we put the compact open
topology on H(X). In particular, a subgroup G of H(X) acting dis-
continuously at at least one point of X has to be a discrete subgroup
of H(X). The following examples illustrate that a group of homeomor-
phisms which is discrete in the compact open topology need not act
discontinuously at any point.

Examples. 1. Let M™ = RTUR} be the disjoint union of two
copies of R™ with the usual differentiable structure, where n > 1. Let
C x C denote the direct product of two infinite cyclic groups with
generators 7 and 6. Let 0 # a; € R}, j = 1,2. Define an action of
C xCon M" by (7%,1)(z) = z+kay, (7%,1)(y) = v, (1,6")(z) = = and
(1,01 (y) = y+lay for all z € R}, y € RY and k, 1 in Z. For this action,
every orbit is closed and discrete in M™. The isotropy group at any
x € R} is 1 x C' and the isotropy group at any y € R3 is C' x 1. Hence,
the action is nowhere discontinuous. For any k,[ in Z, we can find open
balls B; in R} such that ka; € By, k'ay; ¢ By for any k # k', lay € Bs
and l'as ¢ By for any [ # I’. The only element of C' x C' carrying 0 of
R} into By and 0 of R} into By simultaneously is (7%, 6!). This shows
that C' x C is discrete in the compact open topology. Here C' x C' acts
by C'*° diffeomorphisms on M™.

2. Let A= {(m,0) € R?® | m € Z}, B = {(m,2) € R* | m € Z}
and X the cone over AU B in R? with vertex (0,1). The points in
X will be of the form (m(1 — ¢),¢) for 0 < t < 1 and m € Z or
(m(1—38),2—3) for 0 < s<1and m € Z. Let the group C' x C act
on X by (Tka 1)(m(1 - t)at) = ((m + k)(l - t)at)a (]-7 Hl)(m(]. - t)at) =
(m(l o t)at)a (Tka 1)(m(1 o 5)5 2- S) = (m(l o S)a 2- 5)5 (]-a 0l)(m(l B
8),2—3)=((m+1)(1—35),2—s) for any k,! in Z. For this action of
C x C on X each orbit is closed and discrete. However, at no point of
X is the action discontinuous. The isotropy group at (m(1 —t),t) is
1 x C for 0 <t < 1, the isotropy group at (m(l —s),2—s) is C x 1 for
0 < s < 1, and the isotropy group at (0, 1) is the whole of C' x C'. We
omit the proof that C' x C' is discrete in the compact open topology.
Note that X is a connected, second countable, metric space. However,
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X is not locally compact.

3. Let the infinite cyclic group C act on R", n > 1, via 7%z = 2%z
for all £k € Z and x € R™. Then, for any 0 #£ x € R", the orbit of =
is not closed in R"™ since 0 is in the closure of the orbit but not on the
orbit. The isotropy group at 0 is the whole of C. Hence, this action
is nowhere discontinuous. Again, it is easy to see that C is discrete in
the compact open topology.

Definition 3. The action of G is said to be properly discontinuous
at € X if there exists an open set U in X with « € U and
{g € G|UNgGU # ¢} finite.

When U satisfies the condition stated in Definition 3, for any h € G,
hU is an open set in X with hez € hU and {a € G | AU NahU # ¢} =
{a € G|UNh tahU # ¢} = hEh™! where E = {g € G | UNgU # ¢}.
Thus, the set {a € G | hU N ahU # ¢} is finite. It follows that
G acts properly discontinuously at z if and only if it acts properly
discontinuously at hx for any h € G. Since G, C E we see that G is
finite. The set {g € G | gx € U} is a subset of E. If A = E\G,, then
V=U-—{gz|g € A}isanopen set in X with VN Gz = {z}. For any
h € G, the set AV is an open set in X with AV NGz = {hz}. Thus Gz
is discrete.

In case G is a topological transformation group of X acting properly
discontinuously at some z € X, then from Remark (2) it follows that
G is discrete.

Let G act properly discontinuously at z, and let Gy be an orbit of
y with ¢ ¢ Gy. The Hausdorffness of X yields open sets W and V in
X withye W,z €V and WNV = ¢. We may choose V to satisfy
the condition that the set E = {g € G | VN gV # ¢} is finite. We
claim that the set D = {h € G | hy € V'} has to be finite. If D # ¢,
let hg € D. From hy = hh,'hoy we see that {hhy' | h € D} C E.
Hence D is finite. The set U = V\{hy | h € D} is an open set in X
with z € U and U NGy = ¢. Hence, n(U) is an open set in X/G with

n(x) € n(U) and n(y) ¢ n(U).

Remark 3. In Example 3, the action of C' on R"™ is properly
discontinuous at any = # 0 in R™. To see this, let ||z|| = r and ¢ = 7 /4.
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We claim that 6% (B, (z)) N B.(x) = ¢ for every k # 0 in Z. In fact, for
any y € B.(x), we have

Ity — all = [|2*y — ]|
> |28z — x| - [[2°y - 2*<]
> 28 = 1||z]| = 2(r/4)-

For k > 1, we have

Ry — z|| > (2% — 1)r — 2872
> 2k 2(4r — 1) — 7
> k=23 —p
>3r/2—7r
>r/2.

For k£ < 0, we have

Ity — 2l > (1= 2%)r — 2%(r/4)
>r—r/2t —r/27% where l= -k >1
> — 5r/2M+2
>r—>5r/8=3r/8.

This proves that 7%(B.(x)) N Be(x) = ¢ for all k # 0. Thus, in this
example, C acts properly discontinuously at every z # 0 in R™ but the
action is nowhere discontinuous.

Any open set containing 0 in R™ will meet the orbit of any x # 0.
Hence, the only open set containing 7(0) in R"/C is the whole space
R"/C.

Definition 4. G is said to act properly discontinuously on X if G
acts properly discontinuously at all the points of X.

Let GG act properly discontinuously on X. The comments preceding
Remark 3 show that every orbit of G is discrete and that the isotropy
group G, at any € X is finite. Also, for any z and y lying on
distinct orbits we get an open set in X/G containing n(z) but not
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containing n(y). This means that X/G is a T} space, equivalently,
every orbit of G is closed in X. It follows that G acts discontinuously
at every point. In Section 2, we will see that the converse to this is
not true in general. However, when X is a metric space and G acts by
isometries on X, the converse is true (Proposition 4). Moreover, when
G is a discontinuous group of isometries of X, the quotient space X/G
is metrizable. Before dealing with isometric actions, we record another
fact concerning properly discontinuous actions.

Proposition 3. Let G act properly discontinuously at x € X. Then
there exists an open set V in X with x € V, gV =V for all g € G,
and VN gV = ¢ for all g € G\G,.

Proof. By the very definition of proper discontinuity at x, there exists
an open set U of X withz € U and E = {g € G | UNgU # ¢} finite.
Clearly, G, C E. Let A = E\G,. For any h € A we have hz # z.
There exist open sets Wj and Np, in X with x € W}, hz € N, and
Wi NNy = ¢. Then W = U N (NpeaWs) N (Nheah™ (V) is an open
set in X with x € W. Moreover, h(W) C Nj, hence W N h(W) C
Wi NNy = ¢ for any h € A. Let V = Ngeg,gW. Then V is open in
X,zeVand VNhV CWNh(W)=¢ forall h € A. From V C U we
see that VNgV = ¢ for g ¢ E. It follows that VN gV = ¢ for g ¢ G,.
Moreover, for any h € G, we have hV = h(Ngeq, gW) = Ngei, hgW.
For any h € G, the set {hg | g € G} is the same as {g | g € G}
Hence, hV = Ngeq, gW = V. O

Proposition 4. Let G be a group acting by isometries on a metric
space X. Suppose Gz is discrete and G, ts finite where xop is some
element of X. Then G acts properly discontinuously at xg.

Proof. Since Gz is discrete, there exists an ¢ > 0 with B (z9)NGzg =
{z0}. Let V = B, 2(x0). Suppose g € G satisfies V N gV # ¢. Let
v € V satisfy gv € V. Then

d(gzo, z0) < d(gzo, gv) + d(gv, o)
S d(an U) + d(gva IO)
<eg/2+¢e/2=c¢.
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Hence, gzg € GxgNB:(zg) = {xo}. Thus, VNgV # ¢ implies g € Gy, .
It follows that {g € G |V NgV # ¢} = G4, which is finite. o

Corollary 1. Let G be a group acting as a group of isometries on
a metric space X. If G acts discontinuously at vo € X, then it acts
properly discontinuously at xg.

In particular, G acts discontinuously on X if and only if it acts
properly discontinuously on X.

Observe that the quotient space X/G is Hausdorff if and only if for
any two elements z, y in X with GxNGy = ¢ we can find open sets U, V
in X withz e U,y € Vand UNGV = ¢. In this case automatically
GUNGV = ¢.

Proposition 5. Let G be a group acting by isometries on a metric
space X . Suppose every orbit is closed. Then X/G is metrizable.

Proof. Let n: X — X/G denote the canonical quotient map. Con-
sider infyegd(z, gy). When Gz = Gy we see that inf,cgd(z,gy) = 0
since z = gy for some g € G. If z ¢ Gy, since Gy is closed we see
that inf,egd(z, gy) > 0. Also infyegd(hz,gy) = infyeqd(z,h tgy) =
infycqd(z,g'y). Thus, infycgd(x,gy) depends only on n(z) and
n(y). We set D(n(x),n(y)) = infyecd(x, gy). From inf,cqd(y, gz) =
infyeqd(gy,z) = infyegd(z,g7'y) = infregd(z,hy) we see that
D(n(x),n(y)) = D(n(y),n(z)). The triangle inequality for D can easily
be checked. We will show that D is a metric on the quotient space
X/G. For any x € X it is clear that n=(B.(n(x))) D Be(x). Hence,
to show that D metrizes X/G, we have only to show that for any open
set U in X and z € U, there exists some § > 0 with Bs(n(z)) C n(U).
If this is not the case for each integer n > 1, we will have an element
v, € X\GU such that infycgd(v,,g2) < 1/n. This in turn yields a
gn € G with d(vy,, gnx) < 2/n or d(g;, *v,, ) < 2/n. From v, € X\GU
we see that g lv, ¢ U. Since U is open in X, there exists some
r > 0 with B,.(z) C U. Hence d(g;, 'v,,x) > r for all n, contradicting
d(gy ton, ) < 2/n. O

Corollary 2. Let G act on a metric space by isometries. If the
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action of G on X is discontinuous, then X/G is metrizable.
2. Strongly properly discontinuous group actions.

Definition 5. We say that G acts strongly properly discontinuously
on X if for any x,y in X there exist open sets U and V in X with
zeU,yeVand {ge G| gUNV # ¢} is finite.

In particular, when =z = y, by taking W = U NV we see that
{g € G| gWNW =# ¢} is finite. Hence, if G acts strongly properly
discontinuously on X, then its action is properly discontinuous. We
will see later in this section that the converse is not true in general.
However, when G acts by isometries on a metric space, the converse is
true.

Remark 4. Suppose G acts properly discontinuously at z € X and
y = hx is any other point of the orbit Gz of . Let V be an open set in X
with € V and satisfying the condition that E = {g € G | VNgV # ¢}
is finite. Let W = hV. Then W is open in X and y € W. Moreover,
theset {g € G| gVNW £¢} ={g€G|gVNhV £ ¢} ={g€ G|
(hgV)NV £ ¢} ={g€ G| h g e E} = hE is finite.

Proposition 6. Suppose G acts properly discontinuously on X.
Then X /G is Hausdorff if and only if the action of G on X is strongly
properly discontinuous.

Proof. Assume X/G is Hausdorff. To show that G acts strongly
properly discontinuously, because of Remark 4, we need only consider
the case when z and y are in different orbits. Since X/G is Hausdorft,
there exist open sets U,V in X withz € U, y € V and GUNGV = ¢.
For this choice of U and V, we have {g € G | gUNV # ¢} = ¢.
Conversely, assume that G acts strongly properly discontinuously on
X. Let x and y be any two elements of X with Gz N Gy = ¢. We
can find open sets S and 7' in X with z € S,y € T, SNT = ¢
and F ={g € G| SNgT # ¢} finite. Let E = {¢1,...,9-}. From
Gz N Gy = ¢, we see that = # gy for any g € Gj; in particular, x # g;y
for 1 <i <r. We can find open sets A; and B; in X withx € A; C S,
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y € B, CTand A;NgB, = ¢ for 1 < i < r. Then U = NI_, 4,
V =nNi_;B; are open sets in X withz € U, y € Vand UNgV = ¢ for
all g € G. This means U NGV = ¢. Hence, X/G is Hausdorff. o

Proposition 7. Let G act strongly properly discontinuously on X.
Then, for any compact subset K of X the set {g € G | gK N K # ¢} is
finite.

Proof. Let K be any compact subset of X. Let z be any element
of K. For any y € K, we can find open sets UY and V¥ in X with
zx €UY, y e VY¥and EY = {g € G| gUYNVY # ¢} finite. The
compactness of K yields a finite number of elements y,... ,y, with
Ur_,V¥% D K. Let Wy, =N;_,UY. Then W, is an open set in X with
xz € W,. Moreover, A, ={g € G| gW,NK # ¢} C U;_,E¥%. Hence
A, is finite. Thus, for any & € K, there exists an open set W, of X
with z € W, and A, = {g € G | W, N K # ¢} finite. The compactness
of K yields a finite number of elements =1, ...,z with U, W,, D K.
It follows that {g € G | gK N K # ¢} is a subset of U¥_;A,,. Hence
{g € G| gKNK # ¢} is finite. i

Remarks. 5. Let G act strongly properly discontinuously on X.
Then for any K C X, L C X with K and L compact, the set
{9 € G| gKkNL # ¢} is finite. This is because K U L is compact
and {g e G |gKNL#¢}C{9geG|g(KUL)N(KUL)# ¢}.

6. If X is locally compact, for any group G acting on X the orbit space
X/G will be locally compact, even though X/G need not be Hausdorff.
This is because for any x € X and any compact neighborhood N of z
in X, n(N) is a compact neighborhood of n(z) in X/G.

7. In case X is locally compact, G acts on X strongly properly
discontinuously on X if and only if {g € G | gK N K # ¢} is finite for
any compact set K of X.

If G acts strongly properly discontinuously on X, then {g € G |
gK N K # ¢} is finite by Proposition 7. For this part, we do not need
the local compactness of X. Now assume X locally compact. For any
z,y in X we find open sets U,V in X withz € U, y € V and U,V
compact. Then {g € G | gUNV #£ ¢} C{g | gUUV)N(UUV) # ¢}
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and this latter set is finite.

Definition 6. The action of G on X is said to be free if G, = {e}
for all x € X.

Definition 7. A continuous map p : A — B of topological spaces
A, B which are not necessarily Hausdorff will be called a covering map
if p is onto and for any b € B we can find an open set V in B with
b € V satisfying the condition that p=*(V) = U,csV, a disjoint union
of open sets V,, of A possessing the additional property that p | Vo, — V
is a homeomorphism for each « € J.

Proposition 8. Let G act freely and properly discontinuously on X .
Then the canonical quotient map n: X — X/G is a covering map.

Proof. Any element of X/G will be of the form n(z) for some z € X.
From Proposition 3, there exists an open set V of X with z € V
and VNgV = ¢ for any g # e in G. Then W = 5(V) is an open
set containing 7(z) in X/G. Moreover, n= (W) = UgeggV a disjoint
union and 7 | gV : gV — W is a homeomorphism for each g € G. O

Example 8.3 on pages 167, 168 and 169 of [9] describes a free,
properly discontinuous action of the infinite cyclic group C' on R?
(by means of C° diffeomorphisms) with the quotient space R?/C
not Hausdorff. Also, Example 8.4 on pages 169, 170 of [9] describes
a free discontinuous action of C' on the infinite Mébius strip which
is not properly discontinuous. This example is attributed to Joseph
Auslander in [9]. These examples are somewhat complicated. In this
section we will give easy examples to illustrate the same phenomena.

Example 4. Consider the action of C' on R?\(0,0) given by
% (x,y) = (2Fx,y/2F) for any k € Z, where 7 is a generator of C. This
action of C' on R?\(0,0) is properly discontinuous but not strongly
properly discontinuous.

Let (z,y) € R?\(0,0) with both z and y nonzero. As in Remark 3,
we can get open intervals B,B’ in R\{0} with z € B, y € B/,
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2*BNB = ¢ and 2B' N B' = ¢ for all 0 # k € Z. Then
B x B’ is an open set containing (z,y) in R?\(0,0) and satisfying
(B x B')N (B x B') = (2*BNB) x (2*B' N B') = ¢.

Let (z,0) € R?\(0,0). Then x # 0 in R. Let r = |z| > 0. The open
ball (B,/4)(z,0) of radius r/4 around (z,0) lies in R?\(0,0). The
translate 7((B,/4)(z,0)) is the region bounded by the ellipse with
(2Fz,0) as its center, a semi-axis of length 2¥r /4 parallel to the z-axis,
the other semi-axis of length r/ 2(k+2) parallel to the y-axis (for any
0+ k € Z). It is clear that 7%((B,/4)(z,0)) N (B,/4)(z,0) = ¢ for any
0#£keZ.

The proof for (0,y) with y # 0 is similar. If the action of C' on
R?\(0,0) is strongly properly discontinuous, then from Proposition 7,
for any compact set K of R%\(0,0) the set {rF € C | (T*K) N K # ¢}
should be finite. For any closed curve v in R?\(0,0) surrounding the
origin, it is easily seen that 78y N~ # ¢ for all k € Z. Thus the
action of C on R?\(0,0) is not strongly properly discontinuous. From
Proposition 6, we conclude that (R?\(0,0))/C is not Hausdorff. This
example is actually mentioned on page 256 of R.S. Kulkarni’s paper
[5]. However, his terminology is different. What we refer to as strongly
properly discontinuous, he calls properly discontinuous. Finally, it is
clear that this action of C' on R?\(0,0) is free.

Example 5. Consider the subspace P = {(z,y) € R?\(0,0) | z >
0,y > 0}. P is obtained from the quadrant {(z,y) € R* | z > 0,y > 0}
by deleting the origin. P is a C**° manifold with boundary; 0P is the
disjoint union {(a,0) € R? | a > 0} U{(0,b) € R? | b > 0}. Pis
invariant under the action of C' on R?\(0,0) described in Example
4. Writing X and Y respectively for {(a,0) € R? | a > 0} and
{(0,b) € R?® | b > 0} we see that X and Y are the connected
components of JP, they are invariant under the action of C' and the
map (a,0) — (0,1/a) is a diffeomorphism of X onto Y respecting the
action of C. Thus, if M? is obtained from P by identifying (a,0) in X
with (0,1/a) in Y for each a > 0, then M? is a connected differentiable
manifold without boundary, and the action of C' on P induces an action
of C on M?. For this action of C' on M? it is clear that each orbit is
closed and discrete in M?2. Moreover, the action is free. In particular,
it follows that C' acts discontinuously on M?2. It is not difficult to see
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that M? is an infinite Mdbius strip.

We claim that this action of C' on M? is not properly discontinuous.
Let 7 : P — M? denote the canonical quotient map. For any a > 0 let
us denote the element m(a,0) = 7(0,1/a) in M? by a. For any open
set U containing @ in M?, m—}(U) will necessarily contain the union
{(z,9) € P| (x—0a)’+y* <*}U{(z,y) € P| 2°+(y—1/a)* < €?} for
some £ > 0. Write B; for {(z,y) € P | (z — a)? + y* < &%} and B; for
{(z,y) € P| 22+ (y — 1/a)? < €%}. For any k > 1, the translate 7% B
is the intersection with P of the region bounded by the ellipse with
center (0,1/(2*a)), semi-major axis of length 2¥¢ parallel to the z-axis
and semi-minor axis of length ¢/2* parallel to the y-axis. It follows
that 78 B, N B, # ¢ for infinitely many values of k > 1. In particular,
*UNU D n(r¥By N By) # ¢, for infinitely many values of k. This
proves that the action of C on M? is not properly discontinuous.

Theorem 1. Let X be a metric space and G a group acting on X
by isometries. Then the following are equivalent:

1. G acts discontinuously on X.
2. G acts properly discontinuously on X.
3. G acts strongly properly discontinuously on X.

Proof. Immediate consequence of Corollary 1, Corollary 2 and
Proposition 6. u]

Corollary 3. In Ezample 4, (respectively Example 5) R?\(0,0)
(respectively M?) cannot carry a metric invariant under that action

of C.

If G is a group acting by isometries on a metric space with each
orbit closed, then we saw that D(n(z),n(y)) = infjeqd(z,gy) =
infreq gecd(he, gy) is a metric on the orbit space X/G. We will refer
to it as the metric on X/G derived from the metric d on X. In case
G is free and properly discontinuous, the quotient map n: X — X/G
will be a local isometry in the following sense. As in the proof of
Proposition 8, we can find an open ball B,.(z) around z for some r > 0
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such that B,.(z) N gB.(x) = ¢ for any ¢ # e in G. Thus, for any
y € B.(z) and g # e in G we have gy ¢ B,.(z). In particular, for y,y’
in B, 4(z) we have d(y,y’) < r/2 and d(y, gy’) > 3r/4 for any g # e in
G. Hence, D(n(y),n(y")) = infycqd(y,9y’) = d(y,y’). It follows that
n | Byja(xz) — n(By/4(x)) is an isometry and 7(B,/4(x)) is open in
X/G.

3. Proper and strongly proper actions. In this section G will
be a Hausdorff topological group acting as a topological transformation
group on a Hausdorff space X. Unlike in [6, 7 and 12], we do not make
any assumptions about local compactness either of X or of G. For
any two subsets A,B of X, let E(A,B) = {g € G| ANgB # ¢}.
For any hj,hs in G and subsets A, B of X, it is easy to see that
E(h1A,hyB) = hyE(A, B)hy! and E(A, B) = E(B, A)~".

Lemma 1. Let A and B be subsets of X with one of them compact
and the other closed in X. Then E(A, B) is closed in G.

Proof. Since E(A, B) = E(B, A)~1, for proving this lemma we may
assume that A is closed and that B is compact. Let g, be a net in
E(A, B) converging to g in G. We need to show that g € E(A4, B).
Since g, € E(A, B) there exist elements b, € B with g,b, € A. Since
B is compact, passing to a subset if necessary we may assume that b,
converges to b € B. Then g,b, converges to gb, and since A is closed,
we see that gb € A. Thus g € E(A, B). o

Definition 8. We say that G acts properly on X if for each z € X
there exists an open set U in X with z € U and E(U,U) relatively
compact in G.

When X is locally compact, the above definition is equivalent to
saying that G acts locally properly on X as defined on page 265 of
[7]. When G is locally compact and X is completely regular the above
is equivalent to saying that X is a Cartan G-space in the sense of
[12]. When G is discrete, then G acts properly on X if and only if G
acts properly discontinuously on X according to Definition 4. This is
precisely the motivation for our Definition 8.
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Remark 8. Let GG act properly on X. Let z € X and y be any point
on the orbit Gz, say y = hz with h € G. If U is an open set in X
with z € U and E(U, U) relatively compact in G, then hU is open in
X,y € hU and E(U,hU) = E(U,U)h~" is relatively compact in G.

Definition 9. We say that G acts strongly properly on X if for any
z,y in X we can find open sets U and V in X with z € U, y € V and
E(U, V) relatively compact in G.

When G is discrete, then G acts strongly properly on X if and
only if G acts strongly properly discontinuously on X according to
Definition 5. This is precisely the motivation for Definition 9.

The following lemma generalizes Proposition 7.

Lemma 2. Suppose G acts strongly properly on X. For any compact
subset K of X, the set E(K, K) is compact in G.

Proof. Choose any fixed z € K. For any y € K we can find open sets
UY,VYin X with z € UY, y € V¥ and E(UY,VV) relatively compact.
The compactness of K yields a finite number of elements y1, ... ,y, in K
with Uj_, V¥ D K. If U, = N;_,UY, then U, is openin X, x € U, and
E(Uy, K) is relatively compact (because E(U,, K) C Ui_,; E(UY:, V¥)).
Using the compactness of K we can find a finite number of elements
z1,...,os with Uj_,U;; D K and E(U,;, K) relatively compact. It
follows that F(K,K) C Uj_1E(U,;, K) is relatively compact in G.
From Lemma 1, E(K, K) is closed in G. Hence, E(K, K) is compact
in G. |

Corollary 4. Let G act strongly properly on X. Then for any two
compact subsets K, L of X, E(K, L) is compact in G.

The proof is similar to that of Lemma 2. We can also deduce this by
noting that E(K, L) is a closed subset of E(K UL, K UL).

Proposition 9. Let G act properly on X. Then X/G is Hausdorff
if and only if the G-action is strongly proper.
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Proof. Assume that X/G is Hausdorfl. Let z and y be any two
elements of X. Because of Remark 5, to show that the G-action is
strongly proper we may assume that Gz N Gy # ¢. Then the proof is
exactly the same as the first part of Proposition 6. Conversely, assume
that G acts strongly properly on X. Let x and y be elements of X
satisfying Gz N Gy = ¢. Hausdorffness of X together with strong
properness of the action of GG yield open sets S and 7" in X with z € S,
y€T,SNT = ¢ and E(S,T) relatively compact. Let K = E(S,T) in
G. Then g€ G, SNgT # ¢ = g € E(S,T) C K. From Gz NGy = ¢
we see that x # gy for any g € G. In particular, x # ky for any k € K.
We can find open sets Ay, By in X, Ni in G satisfying x € A, C S,
y € B, C T and A N NpBy, = ¢. The compactness of K yields a
finite number of elements ki,... ,k, in K with U]_; N, D K. Then
U=nN{_1Ag,, V =N;_; By, are open sets in X satisfyingz e U,yeV
and UNgV = ¢ for all g € G. Hence GU N GV = ¢. This shows that
X/G is Hausdorff. o

When G is discrete, Proposition 9 yields Proposition 6.

4. Discrete subgroups of isometry groups. In this section
X will denote a locally compact metric space and I(X) the group of
isometries of X. For any two subsets A and B of X, let ['(4, B) =
{g € I(X) | g(A) C B}. The compact open topology on I(X) is that
topology for which sets of the form I'(K,U) with K compact and U
open in X form a subbase. The pointwise convergence topology on I(X)
is the one for which sets of the form I'({z},U) with € X and U open
in X form a subbase. Since {z} is compact, one sees that the compact
open topology is finer than the topology of pointwise convergence.

Proposition 10. On I(X) the compact open topology and the
topology of pointwise convergence agree.

Proof. We need only to show that for any compact set K and
any open set U in X, the set I'(K,U) is open in the topology of
pointwise convergence. Let h € T'(K,U). Then h(K) is compact and
h(K) C U. Hence there exists an € > 0 such that V.(h(K)) C U
where Vo (h(K)) = {z € X | d(z,h(y)) < € for some y € K}. Since
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K is compact, we can find a finite number of elements y;,... ,y, in K
satisfying the condition that given any y € K there exists some j in
1< j < 7 with d(y, ;) < /2. Clearly, N = (7_,T({y;}, Bey(h(y;)))
is an open set of I(X) in the topology of pointwise convergence with
h € N. Let g be any element of N. Then

d(g(y), h(y;)) < d(g(y), g(y;)) + d(g(y;), h(y;))
< d(y,y;) + d(g(y;), h(y;))
<ef2+4+¢e/2=¢

for any y € K. Since y; € K we see that g(y) € V.(h(K)). Thus
g € T(K,U). This shows that h € N C I'(K,U). Hence, I'(K,U) is
open in the topology of pointwise convergence. m]

It is known that the map (g,h) — gh is a continuous map I(X) x
I(X) — I(X) in the compact open topology (this follows from [3,
Theorem 2.2]).

Proposition 11. The map v: I(X) — I(X) given by v(g) = g~ is
continuous in the topology of pointwise convergence.

Proof. Let T'({z},U) be any subbasic open set around g, *(z) where
go € I(X). This means U is open in X and g, '(z) € U. Choose an
e > 0 with B.(g; ' (z)) C U. We claim that go € T'({gy " ()}, Be())
and that v(T'({gy ' (z)}, Be(z)) C T'({z},U). Clearly, go(gy'(z)) =
z € B.(z). Also, if h € T'({gy'(z)}, Bo(z)), then d(h~ 'z, g5 " (z)) =
d(z,hgy *(z)) = d(hgy *(2),z) < e. Hence h~'x € B.(g, =) C U. This
means v(h) = h~! € I'({z},U). This proves the continuity of v in the
pointwise convergence topology. u]

It is straightforward to see that I(X) is Hausdorff in the pointwise
convergence topology. As an immediate consequence of Propositions
10 and 11 above and Theorem 5.3 in [10] or Theorem 2.4.2 of [3], we
get the following

Theorem 2. Let X be a locally compact metric space. Then I(X) is
a Hausdorff topological group in the compact open topology. The map
(g9,z) — gz is a continuous map I(X) x X — X.
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The following results are proved in [4, Section 2, Chapter 4] for con-
nected Riemannian manifolds. Their proofs are valid more generally.
We include their proofs in their greater generality. Observe that a
sequence {gn}n>1 in I(X) will converge to g in I(X) if and only if
lim,, 0 gn(z) = g(z) in X for each z € X.

Proposition 12. Let X be a locally compact metric space. Let
{gn}n>1 be a sequence of elements in I(X) converging pointwise at
every point of A C X. Then {gn}n>1 converges pointwise at all points

of A.

Proof. Let p € A. Choose © > 0 such that the open ball B,(p) =
{z € X | d(z,p) < r} is relatively compact. Let 0 < ¢ < r and choose
an a € A with d(a,p) < ¢/3. Since {g,(a)}n>1 converges in X, there
exists an integer N such that d(gm(a),gn(a)) < €/3 for all m > N,
n > N. Hence

5(gm (P); gn(p)) < d(gm(p), gm(a)) + d(gm(a), gn(a)) + d(gn(a), gn(p))
< d(p,q) + d(gm(a), gn(a)) + d(a,p)
<e/3+¢/3+¢/3 whenever m > N,n > N.

In particular, g,(p) € B:(gn(p)) for n > N. Since B.(gn(p)) =
gn(B:(p)) C gn(Br(p)), we see that B.(gn(p)) is relatively compact.
This means that we can choose a subsequence {gy, }x>1 of {g,} with
limg 00 gn, (P) existing in X. Let b = limg_,00 gn, (p)- From (1) we
have d(gm(p), gn, (p)) < € whenever m > N and ny > N. Allowing k
to tend to infinity, we get d(g,,(p),b) < € for all m > N. This implies
that lim,— 0o gm(p) = b.

Proposition 13. Let X be a connected locally compact separable
metric space and {fn}n>1 be a sequence of elements in I(X). Suppose
that there exists an element xo € X with {f,(z0)}n>1 convergent in
X. Then there exists a subsequence {fn,} of {fn} which converges
pointwise at all z € X.

Proof. Let S = {q € X | fu(q) | n > 1} is relatively compact. We
will first show that S is closed in X. Let {p;};>1 be any sequence
in S converging to p € X. Let E = {fn(p) | n > 1}. Let {e,}u>1



578 S. DEO AND K. VARADARAJAN

be any sequence of elements in . We will show that there exists
a subsequence {e,, } of {e,} with {e,,} convergent in X. This will
prove that F is relatively compact, hence p € S. Since p; € S the set
E; = {fn(pi) | n > 1} is relatively compact in X. Since e, € E we can
write e, as f,,(p) (though we cannot guarantee that n, will increase
with ). Let e,(i) = fn,(p:). Then {e,(i)},>1 is a sequence in E;. By
induction on %, we can find sequences ,ugi) < ugi) < ,uéi) < -+ with the
following properties:

(a) {,u%i“)}nzl is a subsequence of {ug)}nzl for each i > 1 and

(b) limy, 00 €, (7) exists in X.

Let vy = ,u,(;). Then limy_, o €y, (7) exists in X for each 7 > 1.
Equivalently, limg—, oo fn,, (p;) exists in X. Since p exists in the closure
of {p; | i > 1}, from Proposition 12 we see that limy_, fn, (p) exists
in X. This means that limy_,o €, exists in X. Hence, p € S,
showing that S is closed. Next we will show that S is open in X.
Let ¢ € S. Choose r > 0 such that B,.(q) = {z € X | d(z,q) < r}is
relatively compact. Consider U = B, /4(q) = {z € X | d(z,q) < r/4}.
We will show that U C S. Let u € U; ie., d(u,q) < r/4. Let
F = {fo(u) | n > 1}. We need to show that F is relatively
compact. Let {y,},>1 be any sequence in F. Then v, = f,,(u)
(we cannot assert that n, will increase with ). If 8, = fu,(q),
then {B,},>1 is a sequence in the set {f,(¢) | » > 1}. Since
q € S, the set {f,(¢q) | n > 1} is relatively compact. Hence {5,}
admits a subsequence {f,, }x>1 with limy_, 5, existing in X. Let
b= limg— o0 B, = liMi—o0 fn,, (¢). We may, without loss of generality,
assume B, € B,/4(b) for all k& > 1; ie, d(fs,, (9),b) < r/4. Since
fn € I(X), from d(u,q) < r/4, we get d(fn,, (v), fn,, (¢)) < r/4. It
follows that d(fy, (u),b) < 1/2or f, (v) € By2(b) or v, € Br/a(b).
Since B, (q) is relatively compact, we see that fr, (Br(q)) is relatively
compact. We claim that B, ,3(b) C fn, (Br(q)). Let ¢ € B, /a(b).
Then d(c, fn,, (9)) = d(c,b) + d(b, fn,, Eq)) < r/2 4+ r/4. Hence,

d(fit(¢),q) < ror f;:k (c) € By(q). This yields ¢ € fn, (Br(q)),

nﬂk
proving the claim.
Since fn, (B:r(q)) is relatively compact, we see that B, /5(b) is rela-
tively compact. From v,, € B,/3(b), we see that there exists a sub-
sequence of {v,},>1 which converges in X. This proves that F is
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relatively compact; hence, U C S. S is nonempty since zg € S. The
connectedness of X implies that S = X. This means for each z € X,
the set {f.(z) | n > 1} is relatively compact in X. In particular, there
exists a sequence ny < ng < ng, ... depending on x with limy_, o fn, ()
existing in X.

Next we show that there exists a sequence ny < ny < ng < ---
independent of z with limy_, o fr, (z) existing in X for all z € X. By
assumption, there exists a countable dense set A = {a; | j > 1}. Our
earlier argument shows that {f,(a;) | n > 1} is relatively compact
for each 7 > 1. Using a diagonal process, we can get a sequence
ny < ng < ng < --- with the property that limg_, o fn,(a;) exists
for all j > 1. Now Proposition 12 shows that limy_, fr, (z) exists for
each z € X. u]

Proposition 14. Let X be a locally compact, connected, separable
metric space. Let {fn}n>1 be a sequence in I(X), converging pointwise
to f: X = X. Then f € I(X). Moreover, lim,_,o, fn = [ in the
compact open topology.

Proof. For any z,y in X, we have d(f(z), f(y)) = limy, 00 d(fn(z),
faly)) = d(z,y). We clalm that f(X) = X. Let a € X and
b= f(a). Then lim,,_, d(b, fn(a)) = d(b, f(a)) = d(b,b) = 0. Hence,
lim,, oo d(f;1b,a) = 0 or lim,_, f,,;(b) = a. From Proposition 13,
there exists a subsequence {f;;!} of {f;'} such that limj_,o f;,,} (@ )
exists for each x € X.

Let p € X and ¢ = limy_, f,,, (p). Then

d(f(q),p) = lim d(f.(9),p)
= lim d(fn,(q),p)

= lim d(q, -,/ (p))

=d(q,q) =0.

Hence, p = f(g). This shows that f(X) = X, hence f € I(X).

Since f, converges to f pointwise, from Proposition 10 we see that
fn converges to f in the compact open topology. ]
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Proposition 15. Let G be a Hausdorff topological group and H a
discrete subgroup of G. Then H is closed in G.

Proof. For any h in H, the set {h} is closed in G and H = Upecg{h}.
We will show that {h}rcpm is locally finite. Since H is discrete,
there exists an open set U in G with U N H = {e}. Since G is
a topological group there exists an open set V in G with e € V
and V-V C U. For any g € G, the set gV is an open set in G
with ¢ € gV. We will show that gV N H can have at most one
element. Let h; € gV N H with j = 1,2. Then h; = gv; with
v; € V. Hence, hl_lhg = vl_lg’lgvz = U1_1U2 € V'V C U. Thus,
hy'hy € HNU = {e} implying h; = hy. This shows that the cardinality
|gVNH|of gV NH is at most 1. Hence {h}ncp is a locally finite family
of closed sets. Hence H = Upcg{h} is closed in G. O

Theorem 3. Let X be a connected, locally compact, separable metric
space. Let G be a discrete subgroup of I(X) in the compact open
topology. Then the action of G on X is strongly properly discontinuous.

Proof. Because of Theorem 1, we have only to show that the action
of G on X is discontinuous. Let {f,}n>1 be an infinite sequence of
distinct elements in G. Suppose, for some xzyg € X, the sequence
{fn(x0)}n>1 converges in X. Then Propositions 12 and 13 imply that
there exists a subsequence {fy, }x>1 of {fn}n>1 with f,, converging
to some f € I(X) in the compact open topology. Since G is discrete
in I(X), from Proposition 15, we see that G is closed in I(X). Hence,
f € G. For any neighborhood V of f in I(X), V NG will contain f,,
for k > a suitable ky. Since the f,,’s are distinct, this contradicts the
assumption that G is discrete in I(X). o

An immediate consequence of Theorem 3 is the following:

Corollary 5. In Ezample 3 there is no metric on R™ which is
invariant under the action of C.

Remark 9. In Example 1, under the usual (Riemannian) metric on
each copy of R", C x C is a discrete subgroup of the group I(M™)
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of isometries of M™. Here M™ is a locally compact separable metric
space. Still the action of C' x C' on M™ is nowhere discontinuous. This
example shows that the assumption that X be connected cannot be
dispensed with in Theorem 3.

5. Some miscellaneous results. When X is a locally compact
separable metric space, the isometry group I(X) will be locally compact
and second countable. If, further, X is connected, the isotropy group
I(X), at any z € X will be compact. Even though these results are
not directly related to the topic of discrete groups and discontinuous
actions, they follow from the techniques used earlier. We will include
proofs of these results.

Proposition 16. Let X be a locally compact, separable metric space.
Then I(X) is a Hausdorff topological group satisfying the second aziom
of countability. If X is further connected, then I(X) is locally compact.

Proof. A separable metric space satisfies the second axiom of count-
ability. Since X is also locally compact, there exists a countable base
{Un}n>1 for the topology of X with each U, compact. Let F be
the family of sets {I'(U,U;)} where k and [ vary over integers > 1,
and let B be the family constituted by finite intersections of set from
F. We will show that B is a base for the compact open topology on
I(X). Let f € I(X) and I'(K,V) with K compact, V open in X
be any subbasic open set containing f. Then f(K) C V. For any
x € K, we can find an integer I(z) > 1 with f(z) € U,y C V. Then
z € [ (Uy)) and f~1(Uy(y)) is open. We can find an integer k(z) > 1
with x € U C Uk(w) C f_l(Ul(z)). The compactness of K yields a fi-
nite number of elements x1,...,z, with U{_,Uy,,) O K. Writing k;
for k(x;) and I; for I(z;), we see that Ul_,Uy, D K, f(Uy,) CU, C V.
It follows that f € NI_,T'(Uy,,U;,) C T(K, V). The set N/_,T'(Ug,, U;,)
is in B. This shows that B is a base for the compact open topology on
I(X).

Now assume that X is further connected.

Given any f € I(X), the set I'({zp},V) is an open set containing
[ where zo is any chosen point in X and V any open set in X
containing f(xo). We may choose V to satisfy the condition that V'
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is compact in X. We claim that I'({zo}, V) is relatively compact in
I(X). Since I(X) is second countable, to prove that I'({z¢},V) is
relatively compact, we have only to show that any sequence {f,},>1 of
elements in I'({zo}, V) will admit a subsequence converging in I(X).
Since V is compact, the sequence {f,,(zo)},>1 of elements in V admits a
subsequence { fn, (o) }x>1 converging to some element in V C X. Now
Propositions 13 and 14 yield a subsequence of the sequence {fy, }x>1
converging to some f € I(X). O

Proposition 17. Let X be a connected, locally compact, separable
metric space. Then, for each x € X, the isotropy group I(X), is a
compact subgroup of I1(X).

Proof. Let V be any relatively compact open neighborhood of = in
X. Then, from the proof of Proposition 16, we see that I'({z}, V) is a
relatively compact subset of I(X). It is clear that I(X), is a subset of
[ ({z},V) and is closed in I(X). Hence, I(X), is a closed subset of the
compact set I'({z}, V) and as such is itself compact. u]
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