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ALGEBRAIC PROPERTIES OF THE
LIAPUNOV AND PERIOD CONSTANTS

ANNA CIMA, ARMENGOL GASULL,
VICTOR MANOSA AND FRANCESC MANOSAS

ABSTRACT. We give several algebraic properties of the
Liapunov and period constants that simplify their effective
computation. We apply them to get the first Liapunov and
period constants and the second Liapunov constant for an
arbitrary analytic system. Finally we apply them to some
particular families of differential equations.

1. Introduction. Consider the differential equation:

:'v:fy—i—f(x,y),

o j—a+g(ey),

where f and g are analytic functions in a neighborhood of (0,0) and
begin, at least, with second order terms. It is well known that the
problem to determine if (1) has a center or a focus at the origin can
be reduced to the study of the Poincaré return map, or equivalently
to the computation of infinitely many real numbers, vo,,+1, m > 1,
called the Liapunov constants. In fact, we have that if for some k,
v3 = U5 = -+ = Vg1 = 0 and vegy1 # 0 the origin is a focus, while if
all vam41 are zero the origin is a center, see for instance [1].

A closely related problem is the following: Assume that (1) has a
center, and consider the period of all its periodic orbits. When is this
period independent of the orbit, or, in other words, when the center is
isochronous? It turns out that the solution to this problem follows by
computing infinitely many real numbers, T5,,, m > 1, called the period
constants and by imposing that all of them vanish.

In [5] the authors give a survey of different ways to compute the
Liapunov constants. From there it is clear that all the approaches
involve a lot of computations. This implies that even with powerful
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computers the problem cannot be solved in the general case. The
problem of determination of the period constants presents similar
difficulties.

The aims of this paper are the following:

(1) First show that the Liapunov and period constants are polyno-
mials in the coefficients with a rigid structure. In fact, we prove, by
studying the effect of rotations and homoteties in (1), that such poly-
nomials are quasi-homogeneous when we assign to each coefficient of
f and g some special weights (see Theorem 1 of Section 3 for more
details).

(2) Use the above properties and the study of special families of type
(1) with centers to determine the coefficients of the polynomials (see
Theorem 2 of Section 3).

Some quasi-homogeneity properties of the Liapunov constants were
also established by other authors (see [10, 13, 14]).

By using the above approach, the results that we obtain, without
using a computer, are:

Theorem A. Let 2 =iz + F(z,z) be the complezified expression of
(1). Denote by F;(z,z) the homogeneous part of F(z,Z) of degree i, and
set Fy(2,2) = A2+ B2z + C7Z%, F3(2,%) = D2® + E2?2+ Fz22? + G253,
Fy(z,2) = Hz* + 1232 + J2°2% + K223 + Lz*, F5 = M2° + N2*z +
02372 + P2%2% + Qzz* + Rz°. Then:

(i) v3 = 27[Re (E) — Im (AB)].

(ii) vs = (/3)[6Re (O) + Im (3E? — 6DF + 6AI — 12BI — 6BJ —
8CH — 2CK) + Re (—8CCE + 4ACF + 6ABF + 6BCF — 12B%D —
4ACD —6ABD +10BCD +4ACG +2BCG) + Im (6 AB>C + 34%2B* —
4A’BC +4B3C)).

(iii) 7 = (27/3)[—3Re (AB) + 3BB + 2CC — 3Im (E)].

The results (i) and (ii) have already been obtained by other authors
using different methods; see, for instance, [1, 5, 6]. The result (iii)
appears in [8] and in [4] (when F(z,Z) = Fa(z,%).) We also want to
comment that if we apply our method for the determination of vy it
allows us to ensure that this Liapunov constant is a polynomial in the
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coefficients of the differential equation with less than 700 monomials.
(This is not the sharpest bound.) On the other hand, if we only use the
property that v7 is a polynomial of degree 6, we get that it has more
than 1.5 - 10 monomials.

When we apply our method to particular cases of equation (1) we
can arrive further in the determination of the Liapunov and period
constants. The results that we get are the following:

Theorem B. Consider the Liénard equation

{fb =~y +p(z)

y==x

where p(x) = azz? + azz® + - .

(i) Assume that a3 = a5 = -+ = agm-1 = 0 and agmy1 # 0. Then
V3 =0U5 = - - = VUgm_1 = 0 and
(2m + 1!
U2m+1 2m + 2)1! Ta2m+1
(ii) Assume that the origin is a center, that is, agiy; = 0 for
i =1,2,3,.... Also assume that as = a4 = --+ = agy, = 0 and
that agmy2 #0. Then To =Ty = --- =Ty, =0 and
—2(4m +5)!! (4m+3)11\ 4
Thmsto = 2 ,
et ”((2m+3)(4m+6)!! (4m + )l ) “2m+2
for m = 1,2,3,..., where n!!l = n(n — 2)---1, (respectively n!l =

n(n —2)---2) when n is odd (respectively n even).

Result (i) of the above theorem is already well known, see [2, 16].
As far as we know, the second one is a new result. At this point we
want to stress that this result implies that all the period constants for
the Liénard equation are nonnegative. This fact makes one wonder if
the period of the periodic orbits of the Liénard equation increases with
the distance to the origin. This is the situation when ps(z) = 22 as it
is proved in [3]. Here we do not consider this problem.
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Proposition C. Consider the system

{a'c:—y+am2+ﬁm3
g=z+7y° +dy°

where a, B,y and § are real numbers. The following holds:

(i) vs = (7/4)(B +9), vs = (7/24)(e® — ¥*)(5B — b6ary), v7 =
(3m/16)(a® — ¥?)(a?® + v*)ay and vary1 = O for all k > 4. Therefore
the origin is a center if and only if 3+ = 0 and either o> — 2> =0
or B=ay=0.

(ii) Assume that the origin is a center. Then Ty = (7/3)(a? + 42),
Ty, = (3n/4)B% and Toy, = O for all k > 3. Therefore the origin is an
isochronous center if and only ifa =B =6 =~v=0.

The above family is studied in the last section. Obviously the
computation of vz, vs and T3 follow from Theorem A. We will see in its
proof that the computation of v; and T, can be reduced to the study
of concrete systems. In fact, this is the main advantage of the method
proposed in this paper, that is, to reduce the computation of the general
Liapunov and period constants to the study of some concrete systems.

2. Definitions and preliminary results. Consider the equation
(1) in complex coordinates, z = = + iy = Re(z) + iIm (z), that is,
z=1iz+ F(z,2).

By using the change of variables r? = 2% and = arctan(Im (2)/Re (2)),
equation (1) can be written as:

. . 1 .
fzﬂ[z'zjhzz], H:ﬁ[zz—zz],
or, equivalently,
dr . iz+z2z . Fz+zF
— = ir— T = ir— — =
) dé iZ -2z 2ir2 + Fz — zF
_ (FzZ4zF)/(2r)

1+ (Fz—2F)/(2ir2)
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Writing F(z,2) = 50 Fi(2,2) =350 T Fi(e?, e7%), we obtain

Fz4 zF
Z;irz =12Py(0) + 13P5(0) + - - + T Po(0) + -,
Fz—zF
oz rQ2(8) +7°Q3(0) + - + 7" 1 Qn(6) + -

where Py(6) = Re(e ““Fj(e?, e %)) and Qi(f) = Im (e " Fy(e'?,
e~)). Notice that P, and Q}, are homogeneous polynomials of degree
k+1in € e % and that P, and Qj have coefficients which are

homogeneous polynomials of degree one in the coefficients of F' and
F.

In a neighborhood of r = 0, equation (2) can be expressed as

@ _ 7‘2P2(9) + 7‘3P3(9) +
(3) o 1+7Q2(0) +12Qs(6) + -
=12Ry(0) + r*Rs(0) + r*Ra(6) + - -

Consider the solution of (3) such that it takes the value p when 6§ = 0
and call it (6, p). Then

(0, p) = u1(0)p +ua(0)p® +---  with uy(0) =1

and
up(0) =0 for k>2.

Let h(p) = r(2m,p) be the return function. Then it is clear that
system (1) has a center at (0,0) if and only if h(p) = p, which is
equivalent to uy(27) = 1 and ug(27) = 0 for £ > 2. It has a focus at
(0,0) if and only if there exists k& such that ¥ (0) # 0 or, equivalently,
if there exists k such that w,(27) # 0. It is well known that the first k&
with ug(27) # 0 (if it exists) is an odd number, [1, p. 243].

Assume that system (1) satisfies uy(27) =0 for k = 2,3,...,2m and
Uzm+1(2m) # 0. We define

V2m4+1 = U2m+1 (271'),

and we call it the mth-Liapunov constant.
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Now suppose that system (1) has a center at the origin. Then near it

2 de
0= [ 1 (Fz 2F)/(@i(r(0,)?)
_/2“ dé
=)o TF Saaalr(6.0) 10k ()

(4)

measures the time used to give a turn around the origin from the point
(p,0). We call T'(p) the period function.

We say that a center is isochronous if T'(p) is constant. By writing

(5) : 7 = 1+ L O r(6.0)

L4 3 ksa(r(6,0)F 1 Qr k1

we have the following expression for (4):

r6)= [ (14 moeen) ) w

k>1

(6) :27r+/0 ﬂZt;(a)pkde

k>1

=27+ Ztk(%’)pk.
k>1

It is clear that the center is isochronous if and only if ¢;(27) = 0 for
k > 1. We will prove (see Corollary 10) that the first k with ¢5(27) # 0
(if it exists) is an even number. This is a well known fact (see [4]), but
here we present a different proof.

Assume that system (1) has a center at the origin, that ¢x(27) = 0
for k=1,2,...,2m — 1 and tg,,(27) # 0. We define

T2m - t2m (271'),

and we call it the mth-period constant.

We begin with three preliminary lemmas. The first two follow easily
from [7, p. 14]. The third one can be proved by direct computations.
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Lemma 1. Let Ry(0) for k > 2 be defined by equation (3). Then:

Py 1 0 .- 0
Py Q, 1 e 0
Py Qs Q2 -
Ry = (—1)FDet . . :
P,y Qr2 Qrs -+ 1

Py Qr-1 Qr—2 - Q2
Particularly, for each k > 2, Ry is a polynomial of degree 3(k — 1) in

e e and has coefficients which are polynomials of degree k — 1 in
the coefficients of F and F'.

Lemma 2. Let Hy(0) be defined by equation (5). Then:

Q, 1 0 - 0
Qs Q- 1 0
L Q4 Qs Q2 -
Hk = (—1) Det : : : :
Qk Qr—1 Qr—2 -+ 1

Qr+1 Qr  Qr—1 -+ Q2

Particularly, for each k > 1, H(0) is a polynomial of degree 3k in
e e and has coefficients which are polynomials of degree k in the
coefficients of F' and F'.

Lemma 3. For n,m € N, let I, ,,(0) be defined by

0
I,m(8) = /0 sin™ 1 cos™ 9 di.

Then I, .,(0) = p(0) + kb where p(8) denotes a trigonometric polyno-
maal. Here

Inm(a+271) — I, () 1

k‘: = —
27 21

a+2m
/ sin” 1 cos™ ¥ di

for any o € R. Moreover, if n or m are odd, k = 0.
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We denote by Aj(6) the coefficient of p* in the development of
(Disq ui(0)p*)", ie.,

(j{jza<9>pi)n AL N O = Y A (0)

i>1 k>n

By using the development of the power series, we have that:
(7) X(0) =
n a a AR —
Z ( > uy?® (0)ug®(0) - - - w5 (0)

ayag - aQp—
aitaz+---tar_1=n 172 k-l
a1+2az+3az++(k—1)ar—_1=k

for £ > n and \(0) = u} () =1 for all 6.

Lemma 4. Let 7(6,p) = Yo7 un(8)p™ be the solution of (3) such
that it takes the value p when 8 = 0. Then:

(i) ue(8) = [) P(Ra(¥),- .., Ri(¥),ua(¥), ... ,up—1(4)) dob, where

P is a polynomial.

(ii) Given 6, u(0) is a polynomial of degree k — 1 with variables the
coefficients of Fy, F3, ..., F and their conjugates.

Proof. Since r(0, p) is the solution of (3) with r(0, p) = p, we have:

> Re(0)[r(6,0)]F = up(6)p".

k>2 k>2

By comparing the coefficient of p* for each k, we have that

k
u,(0) = Y Rm(0)A7(6).
m=2
The assertion (i) now follows from (7).

We prove (ii) inductively: if the degree of u;(f) is i — 1 for each
i = 1,2,...,k — 1, then, from the above formula, u}(#) has degree
(m—1)+az+2as+---+ (k—2)ar_1 = k— 1, and the same is true for
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ug(6). On the other hand, if u;(¢) is a polynomial with variables the
coefficients of Fy, F3,...,F; for each ¢ = 1,2,... ,k — 1, then, from
the above formula again, uj(f) is a polynomial with variables the
coefficients of Fy, F3,...,Fy_1 plus the coefficients which arise from
Ry (0). From Lemma 1 we see that Ry(0) depends on the coefficients of
F», Fs, ..., Fg. So u(8) is a polynomial with variables the coefficients
of Fy, Fs,..., Fy, and the same is true for ug(6). o

Remark 5. If vy = v3 = -+ = w1 = 0, by using induc-
tively Lemma 4 we obtain that usy(0) and u,  ,(f) are trigonomet-
ric polynomials. Hence, from Lemma 3, very1 can be computed as
Vok41 = Ukt1(a 4 2m) — ugey1(a) for any o € R.

Lemma 6. Let t(0) and Hy(6) be defined by equations (5) and (6).
Then:

(i) tx(6) = Jy P(Ha(€), .. , Hi(€),uz(€), ... , un(§)) d€, where P is
a polynomial.

(il) Given 0, t(0) is a polynomial of degree k with variables the
coefficients of Fa, F3, ..., Fi11 and their conjugates.

The proof of Lemma 6 is similar to the proof of Lemma 4. We only
want to put out that the formula used for the proof is:

k
(8) t(0) = Hi(0)ue(6) + Y Hin(9)A7(6).

m=2

From Lemmas 4 and 6 we see that the Liapunov constants vy,,+; and
the period constants T5,, of system (1) are polynomials with variables
the coefficients of F; for ¢ = 2,3,... ,2m + 1 and their conjugates. We
put F(z,2) = Y4150 Ariz"Z', and we will use the following notation

Vom41 = Vomt1(F) = Vo1 (Fay F3, ..oy Fopg1) = Va1 (Agt, Agr)

Tom = Tom(F) = Tom (F2, Fs, ..., Famy1) = Tom (Aki, Awt)-

Lemma 7. Let vop41 and 15, be the Liapunov constant and the
period constant associated with system (1). Then they can be written
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as

(9) ZO[ij +aij
j=1

where M; are monomials with variables the coefficients of Fy, F3, ...,
Foy1 and o € C or as

(10) > a;Re (M;) + b;Im (M;)

jz1

where aj,b; € R.

Proof. From Lemmas 4 and 6 we know that vg,,11 and Tb,, are
polynomials with variables the coefficients of Fbs, Fs,... , Fa,41 and
their conjugates. So we can write them as ZjZl B;M; where M; are
monomials. Since vy, 11 and T5, are real numbers, we have that

> B;M; = [Re(8;) + ilm (5;)][Re (M;) + ilm (M;)]

= > Re(B;)Re (M;) — Im (8;)Tm (M;).

jz1

Calling Re(8;) = a; and —Im(8;) = bj, we obtain (10). Now
substituting Re (M;) and Im (M;) by (M;+M;)/2 and (M; —M;)/(2i),
respectively, we have that

1 1. _
> BiM; = SPiM; + 5 BiM;,

jz1 jz21

and calling a; = (1/2)5;, the result follows. O

Lemma 8. Assume that system (1) has a center at the origin. Let
T(p) be the period function defined in (4), and let r(6, p) be the solution
of (3) such that it takes the value p when 8 = 0. Then:

(i) T(p) — 27 = O(p*) with k > 2.
(ii) T(p) = T(=r(m, p))-
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Proof. From (6) and (8) we see that

2T
T(p) =27 + ( H,(9) d9>p+0(p2).

0
So we have to prove that

2w

Tv= | Hy6)do=o0.
0

From Lemma 1 we know that Hy(f) = —Q2(0) where Q2(0) =

Im [e~ Fy(e', %)) and Fy(z,%) is homogeneous of degree two. So
Q2(0) is a linear combination of sin#, cosf, sin36 and cos36. Since
T, =— 027r Q2(¢¥) dy, result (i) follows.

In order to prove (ii), let Tp,(z) be the period function for the
solution of (3) with initial conditions 6 = 6y, r = x. We claim that
T(—z) = Tr(x).

Let s(1, z) be the solution of (3) with initial conditions § = 7, r = z.
Then 5
T.(x) = / .
D= T e 6 00a®)
Considering the change of variables ¢ = £ + 7, we obtain

B 2m df
Tnl@) = /0 L+ 3y sF(E+m2)Qpia (§+ )

Since Q41 is a trigonometric homogeneous polynomial of degree k+ 2,
Qrr1(E+7m) = (=1)*Qk41(€). On the other hand, from [1, p. 241],
s(€+m,x) = —r(¢ —x) and so s¥(& + m, z) = (—1)krk(¢, —z). Hence,
Sk (£ +, x)Qk-I—l(f + ﬂ-) = Tk (57 7w)Qk+1(§)a and therefore,

_ o ds
Tr(x) —/0 L4+ sy 8 (6, —2)Qrra ()

So the claim is proved.

=T (-x).

Now let « be such that r(m, p) = «. Since (0, p) and (7, z) are in the
same periodic orbit, it is clear that T'(p) = T (z), and consequently,
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Corollary 9. For each m € N,

) b (1) = 23 (1Y Mg ()12,

Proof. The equality >, <, tx(27)(—r(m, p))F = Y oq te(2m)p* ob-
tained in the above lemma, let us find some recurrent formulas for the
period constants. Writing

Sutmr| =3

i>1 k>n

and by comparing the coefficients of p* for all k > 2, we obtain

M@

1)7 X (n)t(2r).
J=2

Since Al}(m) =1 for all n, taking k = 2m + 1, we have that

tam+1(2m) = )‘gm—i—l( Jt2(2m) — A, 1 (m)t3(27)
+ A1 (M) tam (27) — tam 1 (27)

and the result follows. O

Corollary 10. Let T(p) = 27 + Y >, tk(2m)p" be the period
function associated to system (1). Assume that t2(27) = 0, t3(27) =
0,...,tk-1(2m) = 0 and tx(27) # 0. Then k is an even number and
the period constant is ty(27) = Ty.

Proof. Suppose that k& = 2m + 1. Since t;(2r) = 0 for all j =
2,3,...,2m, from the above result we obtain t2m+1(27r) = 0, which is
a contradiction. O

3. Algebraic Properties. The algebraic properties of the Liapunov
and period constants are established in Theorems 1 and 2. Their proofs
will appear at the end of this section.
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Theorem 1. Let vap41 and Topm be the m-Liapunov and the
m-period constants of system (1). Then they satisfy the following
properties:

(i) v2m+1(Al_kHAkll)\_(l_kH)Akz) = Vamy1(Aw, Ar) and
Tgm(AlikJrlAkl, A7(17k+l)Akl) = Tgm(Akl, Akl) fOT all \ € C, |)\‘ =1.
(i) vompr WL A NMHZL ALY = N2 Mg, 0 (A, Ak)  and

Tom ()\k+l_1Akl, )\k+l_11‘1kl) = )\Qmsz (Akl, Akl) for all A € R.

(iil) vomt1(F) = vams1(F + (iz + F)H) for all analytic functions
H(z,z) such that H(0,0) = 0.

Remark. Using (i) and (ii) of Theorem 1 there is a very easy way to
list which are the monomials that appear in vy,,+; and in T5,,. For

K e R, let M = K([Ti_; Api )(TT:22,, A ) be a monomial of vap,41,

respectively of T,,. Then property (i) implies

r4+s

(%) > migi(1— ki +1;) =0,
=1

and property (ii) implies

r+s
(%) Zmi(ki +1;—1) =2m,
i=1

where ¢; is 1, respectively —1, if 1 <+ < r, respectively r+1 < i < r+s.
The monomials satisfying () will be called monomials of weight zero.

Let M = ([Ti_; Ay )T, 1 A7) be a monomial of variables the

coefficients of F' and their conjugates. We denote by Unc (M) the

monomial N
Une (M) = (HAZZL)( I1 Az”z)

=1 1=r+1
and we call it the unconjugate of M.
Given two monomials M and N of the same degree, we say that M
is equivalent to N if and only if Unc (M) = Unc (N). It is obvious that

the above relation is an equivalence relation. The equivalence classes
will be called the unconjugacy classes.
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Using special types of centers for system (1), reversible, holomorphic
and Hamiltonian (see the next section for definitions), we obtain,
respectively, properties (i), (ii) and (iii) of the next theorem.

Theorem 2. For m > 1, let vay,41 be the Liapunov constants of
system (1). Then they satisfy the following properties:

(i) Set vamy1 = Ri + Ry + --- + R, where each R; is the
sum of the monomials in the same unconjugacy class. Set R; =
>0, aiRe (M;;)+bi;Im (M;;) and e;; = (—1)Pii where p;; is the num-
ber of variables of the monomial M;; that are conjugate. Then when
the degree of st'-is an even, respectively odd, number, ijzl a;jeij = 0,
respectively, » .7, b;je;; = 0.

B (ii) There are no monomials in vay,+1 that depend only on Ay, o and
Ay, for0<k; <2m+1,i=1,2.

(iii) If F is such that Re (0F/0z) =0, then vam41(F) = 0.

Remark. Assume that M is a monomial of ve,,4+1 such that M and
M are the only elements in its unconjugacy class. Then Theorem 2(i)
says in particular that in the expression of va,,41 only Im (M) appears,
respectively Re (M), if the degree of M is even, respectively odd.

Remark. 1If, instead of system (1), we consider the more general
system & = az — by + f(z,y), ¥ = bz + ay + g(z,y), with b # 0, that
in complex coordinates is 2 = az + F(z,%), where o = a + bi, its
first Liapunov constant is v; = €%/ — 1. Then, for m > 1, U2m41 are
defined if @ = 0. Hence, it is clear that their Liapunov constants can be
calculated using the Liapunov constants of system 2 = iz + F(z, Z)/b,
that is, as vom41(F/b).

To prove Theorems 1 and 2, we need the following propositions.

Proposition 11. The Liapunov constants v, and the period con-
stants Ty do not vary if we consider instead of system (1) the new
system obtained by a rotation of (1) with w = e*“z, a € R.
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Proof. Let r(0,p) = p+ Y. ,5,ui(0)p", respectively 7(6,p) = p +
350 @i(0)p", be the solution of dr/df = Y-, , Ry (0)r" for system (1),
respectively for the system obtained from (1) by a rotation through an
angle a.

This rotation can be interpreted in the following way: consider the
function, 7(6, -), defined on the line z = re’®; then, for each 6 € [0, 27]
we have r(a + 0, p) = 7(0,r(a, p)).

Taking 0 = 27 we have the following equality:

p+ Y wila+ 20t = rla,p) + 3 Gi(2m)(r(e, )’

i>2 i>2
Writing 7(a, p) = p+ 3,5, ui(a)p’, we obtain

(12) Z[ui(a +2m) — ui(a)]p’

= Zﬂi(Qﬂ)[P-i- us(@)p® + -+ up(@)p™ + -]

i>2

Now assume that va,,+1 # 0 is the first Liapunov constant for system
(1) different from 0. Remark 5 implies that u;(a + 2m) — u;(a) = 0
for i = 2,...,2m. Taking into account equality (12), we can deduce
inductively that @;(2r) = 0 for ¢ = 2,...,2m and that vg,11 =
’U,2m+1(a + 271') — UQm+1(01) = a2m+1(2ﬂ').

On the other hand, let 7(p) be the period function of system (1) after
doing a rotation through an angle o. From Lemmas 2 and 3, it is easy
to see that T(r(a, p)) = T(p) which implies that

S Eemlr(a o) = 3 t(2m)

k>2 k>2

Now assume that t;(27) = 0 for k = 2,3,... ,m — 1 and ¢,,(27) # 0.
By comparing the coefficients of p* we deduce that #(27) = 0 for
k=2,3,...,m—1and %,,(27) = t,,(27). So the two period constants
coincide. mi

Proposition 12. The Liapunov constants vem,y1 and the period
constants To,, are quasi-homogeneous polynomials of degree 2m with
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weights k — 1 for Fy, and Fy, that is, for each A # 0, A € R, we have

Vami1(AF, N2Fs, oo N ™ o 1) = AN ™ vy 1 (Fo,y Fay e vy Fomi1),
Tom(AF2, N2 Fs, o A2 Fopi1) = A2 T (Fo, Fa, ... Fapy1)-

Proof. Consider equation (1), 2 = iz + F(z,Z) and do the change
z = Aw. Then we obtain

(13) W =iw+ G(w,&) where AG(w,w)=F(z,Z2).

Let P,, Q,, and R,,, respectively P,,Q, and R, be defined as before
for system (1), respectively for system (5). A simple computation gives
P.(0) = X" 1P,(0), Qn(6) = A"'Q,(0) and R,(A) = A""'R,(6).
So system (13) is obtained from system (1) by taking the coeflicients
)\FQ, )\2F3, Ces ,A2nF2n+1, e

Let r(0,p), respectively 7(a,p), be the solution of dr/df =
koo TP Ri(0), respectively di/da = 3, -, 7 Ri(a), where z = rei?,
respectively w = 7e®, such that 7(0, p) = p, respectively 7(0, p) = p. It
is clear that the change z = Aw gives r = A7 and a = 6. We claim that
A7#(0,p/A) is the solution of dr/df = Y, ., TRy (6) such that it takes
the value p when 6 = 0: -

d% [Af <9, g)] =AY Ri(6)

k>2
= A FNTIR,(6)

k>2

= SR RA(0).

k>2

On the other hand, for # = 0, A\7#(0,p/\) = A(p/A\) = p. So the
claim is proved. From the uniqueness of solutions we obtain that

AT (0, p/A) = (0, p).

Writing 7(6, p) = Yo, uk(8)p", respectively #(8, p) = > oo | @k (6)p",
we have that A r2 1 (0)(p/N)F = Y pe; uk(6)p" and consequently
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ar(0) = A*~1uy(6). Applying the definition of the Liapunov constants,
we obtain:

Ugm+1(>\F2, >\2F3, e ,)\szQm+1) = a2m+1(2ﬂ') = Asz2m+1(2ﬂ')
= N9 i1 (Fa, Fs,y ..., Fami1).
Set DF, = {a = (a1,az,... ,ax_1) ENF"Liaytag+---+ap 1 =m,

a1 +2a2 +---+ (k—1)ag—1 = k}. Then, by using (7-8), we have that:

O] 5 (e )

a€ Dk,
e ) 0) i ()] 0
= )\ktk(zﬂ').

So Tj, = ATy, and the result follows. a

Proof of Theorem 1. (i) Consider equation (1) and do a rotation of
angle o, w = e*®2. This new equation is W = iw + G(w, ) where
G(w,w) = e F (e~ "*w, e'*w), i.e.,

G(w, @) = €™ Z Api(ew)k (et m)!
— ZAklei(l_k+l)awk’ll_Jl.

From Proposition 11 the Liapunov and the period constants are invari-
ant under the change. So (i) of Theorem 1 is proved.

(i) Let M = K([Ti_y A )(ITi22, 1 A'i.) be a monomial of vay 41

or of Ty,,, and recall that Ay, is the coefficient of z*z! in F(z, z). From
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Proposition 12, we know that:

r r+s
i—1 i=r+1
r r+s B
(T ) (11 az,).
i=1

i=r+1

Hence, (ii) of Theorem 1 is proved.

(iii) Consider an analytic function such that H(z,2) € R for each
z € C and H(0,0) = 0. Near (0,0) the orbits of (1) and Z =
[iz + F(z,2)][1 + H(z,Z)] are the same. Furthermore, both equations
have associated the same equation (2) in polar coordinates. Hence, (iii)
of Theorem 1 follows. o

As it has been mentioned in Section 1, the knowledge of special cases
of systems of type (1) with a center can be used to obtain properties
of the Liapunov constants.

Definitions. a) Following the notation of [14], if, for some real a,
system (1) is invariant under the change of variables w = ¢'*z, t' = —t,
we will say that it is reversible.

b) If the components of system (1) satisfy the Cauchy-Riemann
equations, we will say that it is holomorphic.

c) If the divergence of the vector field associated with system (1) is
zero, we will say that it is Hamiltonian.

Proposition 13. a) System (1) is reversible if and only if, for some
a, Ay = —Apett=k0e for all k and 1.

b) System (1) is holomorphic if and only if F(z,z) = F(z).
c) System (1) is Hamiltonian if and only if Re (0F/0z) = 0.

Furthermore, in the three cases the origin of system (1) is a center.
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Proof. a)
e
" dt
= €(-iz+ F(z,2))
—w— Z Aotk kgl

So system (1) is invariant if and only if Ay = —Ag e’ kD Let z(t)
and y(¢) be a solution of (1) such that, for ¢ = 0, the point (x(0),y(0))
lies on the line z = re(®/2?. Then, for r small enough, there exists o
such that (z(to), y(to)) also lies on z = re®/2)i. Tt is easy to prove that
the symmetric curve of (z(t), y(t)) with respect to the line z = re(®/?)?,
when t € [0, ¢] is also a solution of (1). Hence a) follows.

b) Cauchy-Riemann equations in complex coordinates are
0F(2,2)/0z = 0, so F(z,Z) = F(z). In order to prove that the ori-
gin is a center, write, for z # 0,

i 1 —F(2)

Z1FG) 26+ F(2)
and observe that —F(z)/[z(iz + F(z))] is a holomorphic function in
a neighborhood of z = 0. Hence, we can consider the function
H(z) = In|z| + Re(S(2)) with S'(2) = —F(z)/[z(iz + F(z))]. Let
z(t) be a solution of 2 =iz 4+ F(z). Then

w _ Re [(% + z@#ﬁz))) (iz + F(z))] — Re (i) = 0.

So the solutions of 2 = iz + F(z) are contained in the curves In |z(t)| +
Re(S(2)) = k. Since the system is analytic, the origin is either a
center or a focus. Assume that the origin is a focus. Then there
exists a path z(t) that tends to z = 0. Since, on the path, In|z(¢)| =
k —Re (S(z(t))), and S(z) is a continuous function near the origin, we
have a contradiction. So the origin must be a center, and b) follows.

c¢) Direct computations give that the divergence of the vector fields
associated to (1) is 2Re (0F/0z). Furthermore, it is well known that,
for planar Hamiltonian systems, the only critical points with positive
index are centers. Hence, c) is proved. u]

Lemma 14. Let M be a monomial of weight zero in variables the
coefficients of system (1). Let d be the degree of M. If d is an even,
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respectively odd, number, then the imaginary, respectively real, part of
M, restricted to reversible systems, is zero.

Proof. Set M = ([];_, AZ%)(H:;:H A} ). From Proposition 13 we
know that a system is reversible if and only if Ay, = — Ay eil—ktho

Hence,

r+s
7 7‘ mi(l1—k;+1l;)a Am;
M|Akl:*1‘iklei(17k+l)o‘ = (71)7‘6 Zl:l ( ) < H Aki;i)’

i=1

and

T+s
M|, = Ay ei—kta = (—1)%" > iy mil—hitla < H AZZL)

i=1

Since M has weight zero, we have that > ,m;(1 — ki + ;) =
iy mi(l —k; +1;). So, according to r + s is even or odd, the lemma
follows. O

Proof of Theorem 2. (i) Set vgmy1 = Ri + Rz + -+ + Ry where
each R; is the sum of the monomials in the same unconjugacy class.
Since vo;,41 = Zj>1aij + @ij and M; and Mj are in the same
unconjugacy class, it is clear that each R; is real and so it can be
written as Rj = ijzl aine (Mij) + bijIm (Mz) with aij,b,-j € R
for all = 1,2,...,s; and for all j = 1,2,...,g, and also as R; =
Z;;l(aijsz + @;;M;;) with a;; € C. Since all the monomials of R;
are in the same unconjugacy class, we define Unc (R;) = Unc (M;;) for
alli=1,2,...,t;. Notice that Unc (R;) for j = 1,2,... , g are linearly
independent.

Now consider a reversible center with a = 0. Then, if M is a mono-
mial which appears in vam,41, then from Proposition 13, Ay = —Aw

s T m; Titsj  Fm;
and so M = (=1)*Unc(M). Set My; = ([[;2 Akizi)(Hi:er At
Then

tj
Rj = E Ol,'jMij + dijMij
i=1
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i
= (1) Unc (M) + @i (—1)" Unc (M;;)
=1

= 31 1)asy + (1) Une ()
= ’}/jUHC (RJ),

and consequently, vopy, 11 = 2?21 v;Unc (R;). Since all the Liapunov
constants are zero on the centers and Unc (R;) for j = 1,2,...,g are
linearly independent, we get v; =0 for all j =1,2,...,g.

Assume that the degree of R; is an even, respectively odd, number.
From Lemma 14 we know that Im (M;;) = 0, respectively Re (M;;) = 0,
foralli=1,2,...,t;, and so

t; tj

v = aij€ij, respectively v; = E bijci;
i=1 i=1
where g;; = (—1)%. Hence, (i) is proved.

(ii) Consider the system z = iz + Agg2? + A3z + -+ Ap02™ +- - .
From Proposition 13 b), it has a center at the origin. Therefore, we
have that vgm, 1 = 0 restricted to the above systems. Then (ii) follows.

(iii) It is clear from Proposition 13. o

4. Proofs of the main results. Theorems A and B and Proposition
C are applications of the above results to the effective computation of
Liapunov constants. We also use the following well-known result about
quadratic systems.

Theorem 15 (Dulac, Kaptein, Zoladek, see [14]). The point z = 0
is a center for 7 = iz + Az* + Bzz + CZ% if and only if one of the
following conditions is satisfied:

(i) B=0.

(ii) 24+ B =0.

(iii) Im (AB) = Im (43C) = Im (B3C) = 0.
) A—2B=|C|-|B|=0.

(iv
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Proof of Theorem A. We know that vz has degree two on the coeffi-
cients of F», F3 and their conjugates. The linear part of v3 is composed
of monomials arising from Fj, with d = k + [ satisfying k +1—1 = 2
(see (#x) after Theorem 1) i.e., d = 3. Since the only monomials with
weight zero in F3 are E and E, from Theorem 2(i) we deduce that the
linear part of vs is aRe (E). The quadratic part of vs is composed of the
product of two monomials arising from Fy, and Fy, with di + ds = 4.
Since d; = 2 or d; = 3 for i = 1,2 we have that d; = do = 2. The
monomials of weight zero in Fy are AB, AB and AA, BB, CC. So we
have four unconjugacy classes for the monomials of degree two. Now,
from the remark after Theorem 2 we see that the quadratic part of v3
reduces to fIm (AB) and so

vs = aRe (E) + fIm (AB).

Now take, for instance, Hamiltonian quadratic system 2z = iz +
Az? + Bzz 4+ C7% with 2A + B = 0, and consider the system 3 =
(iz+ A2+ B22+CZ?)(1+ 2+ 2) =iz + (A+1i)2°> + (B+1i)z2+ CZ* +
Az + (A+ B)2%z + (B + C)2z? + CZz3. From (iii) of Theorem 1, we
know that v3 must be identically zero for each A, B,C with B = —2A.
So we have:

vs = aRe (A + B) + fIm ((A +i)(B + 1))
=(—a—pB)Re(4)=0
which implies that « = —f and, consequently, v3 = «a(Re(E) —
Im (AB)).
Now we are going to calculate v, taking into account that vz = 0,
that is, Re (F) = Im (AB).

The only monomials with weight zero satisfying (xx) after Theorem
1, with m = 2, are the following:

0]

AI,AJ,BI,BJ,CH,CK,DD,DF,E* EE,FF,GG

ABE,ABE,AAE,BBE,CCE, A>F, B’F, ACF, ABF,
BCF,A*D,B?D,ACD,ABD, BCD, ACG, BCG

A3C,A’B%* A’BC,B3*C,AB*C,AB*B, ABCC, A’AB,
A%?A? B?B? C%*C? ,AABB,AACC,BBCC.
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Taking into account (i) of Theorem 2, we can say that Re (O) is the
only monomial appearing in the linear part of vs. In the same way,
the quadratic part of vs is a linear combination of the imaginary part
of the monomials AI, AJ, BI, BJ,CH,CK,DF, E?, and the real part
of EE + E%. The part of vs of degree three is a linear combination of
the real part of ABE, ABE, AAE, BBE, CCE, A*F, B*F, ACF,
ABF, BCF, A2D, B2D, ACD, ABD, BCD, ACG, BCG, and the
imaginary part of ABE + ABE. The part of degree four of vs is a
linear combination of the imaginary part of A3C, A2B?, A2BC, B3C,
AB?C, AB?B, ABCC, A2AB, and the real part of AABB — ABAB.
Furthermore, by using (ii) of Theorem 2, we have that the monomial
A?D does not appear.

Using that v3 = 0, i.e., In(AB) = Re(E) we obtain the following
relations:

2Re (ABE) = Im (A?B?) — Im (E?)

2Re (ABE) = Im (A*B?) 4+ Im (E?)

Im (AB?B) = BBIm (AB) = Re (BBE)
BBIm (AB) = Re (BBE)

Im (ABCC) = Re (CCE)

Im (ABAA) = Re (AAE)

Re (AABB — ABAB) = Re (EE + E?)
=Im (ABE + ABE) = 2Im?(AB).

So, until now we know that vs = ayRe (O) + Im (a2 E? + a3DF +
asAJ + Oé5AI + agBI + a7BJ + agCH + OégCK) + Re (OéloAAE +
OéllBBE + O[lgcCE + O[lgAzF + 0[14B F + 0415ACF + O(lGABF +
a17BCF + OélgB D + a19ACD + agoABD + OlngCD + QQQACG +
aggBCG)+Im (a24ABZC+0625A232+0(26A230+0427A30+0628330)+
Oégglmz(AB).

In order to determine the above constants, we take quadratic and
cubic systems with a center and we multiply the vector fields associated
to them by different real factors. Using (iii) of Theorem 1 we know that
the new system also has vs = 0, and we obtain a lot of relations between
the ajs.

The cases that we consider are the following:
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_a) Quadratic system of type i) of Theorem 15 multiplied by 1+ kz +
kZ + \zZ, where A € R.

b) Quadratic system of type ii) and iv) of Theorem 15 multiplied by
1+ kz+kz.

c) The holomorphic cubic system iz + Az? + Dz® multiplied by
1+ (2+2).

d) The holomorphic cubic system iz + Dz3 multiplied by 1+ (z+ 2)?.

e) A Hamiltonian cubic system.

Just as an example of the method, we do the computations in the
first case with £ = 1 and A = 0. That is, we take the quadratic system
iz + Az%2 + CZ? that has a center at the origin. Multiplying it by
1+ 22 + 22, we obtain

t=iz4+ A2+ CP +i* +i2%24+ A+ (A+0)2z +Cz*
which satisfies v = 0 and

vs = aqIm (A(A + C)) + agIm (AC) + ay3Re (A%)
+ ag5Re (—ACH) + agRe (ACH) + agrIm (A%0)
= (a4 — a13)Im (Az) + (g + ag + a5 — a19)Im (AC)
+ ao7Im (A3C') + agglmz(AB).

Then, from (iii) of Theorem 1, v5 = 0. Hence ay = @13, g +ag+ais =
19, Q27 = 0 and Q29 = 0.

At the end, we obtain an overdetermined system with one degree of
freedom. By solving it we have that a; = ak; for i« = 1,2,...,29.
In order to determine the constant a (and the constant « for wvs)
we compute the Liapunov constants for the family of systems Zz =
iz + 2m+1zm These systems satisfy dr/df = r>™*!. The solution of
dr/df = r*™*! with (0, p) = p is

r(6,p) = p[1 — 2mp* 6]/ ™)

_, [( _1/((]2m)> N <—1/§2m)> (—2mp>™8) + -

:p+0p2m+1+
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Hence vomi1 = Ugme1(27) = 2m. For m = 1, 2 = iz + 222 satisfies
vy = a = 2r and (i) follows. For m = 2, # = iz + 2322 satisfies
vs = a[6Re (O)] = 2w. Therefore, a = w/3 and (i) is proved.

Now, from Theorem 1, we know that 75 is formed by a sum of
monomials of weight zero in the coefficients of F5 and Fj, satisfying
the relation (xx) after Theorem 1. From this we see that the only
monomials which can appear are: E,E, AB,AB,AA BB, and CC.
Since we assume that vs = a(Re (F) — Im (AB)) = 0, we have that

Ty = aRe (AB) + bRe (E) + clm (E) + dAA + eBB + fCC

with a,b,c,d, e, f € R.

In order to determine the coefficients a, b, ¢, d, e, f, g, we consider the
following systems:

(1) 2 =iz + (i/2)2z + (i/2) 2>

IS}
|
~
I
_|_
—
—_
~
>~
~—
I8
\
(@)
~
>~
~—
ISy)
[V

)
) 3
) 3
5) 2 =iz +i2%z.
6) 2 =iz + (1+14)2222 +izz + 23 + 222 + 222 + 23,

By computing the period constant 7> for the above systems, we
obtain, substituting the results obtained in the expression of 75, that
a=-2m,b=0,c=-2r,d=0,e=2r and f =4r/3.

We give an example of the procedure used in order to obtain the above
equations. Consider system (1) and write it in polar coordinates:

{7‘ =r2(2cos? Esin)
£ =14 r(cos® & — cos€sin? €)

Then we have that

Hy(€) = —(cos® & — cos€sin® €)
Hy(€) = (cos® &€ — cos € sin €)?
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and :
ux(€) = [ Ra(6)
0
13
:/ 2 cos 0 sin 0 db
0
2 2
=-3 cos® € + 3"
Hence,
27 51
T, = Hy(§ua(§) + Ha(§) d§ = 5
0

Therefore, e/4 + f/4 = 57/6. m

Remark 16. In the computation of vs, first we have obtained that
its only monomials are Re (E) and Im (AB), that is, v3 = aRe (E) +
BIm (AB). In order to relate o and 3, we would like to comment on a
different method than the one used in the proof of Theorem A. Note
that we already know w3 for the quadratic case Z = iz + F5, because
E = 0. Consider the real function H(z, Z) = kz+kZ and apply Theorem
1 (iii). Then

’U3(F2) = ’Ug(FQ + (ZZ + Fg)(kz + EE)),
or equivalently,
BIm (AB) = aRe (kB + kA) + BIm [(A + ki)(B + ki)].

Hence (a + B)Re (kB + kA) = 0 and then o = —f3. Of course, we have
obtained the same result as in Theorem A, but here we have used the
Liapunov constant vs for a simple case (the quadratic one) to compute
the general vz Liapunov constant, that is, we use a kind of recursive
procedure.

Proof of Theorem B. We begin by proving that ve,,+1 = Gom+102m+1-
The Liénard equation can be written in complex notation:

S 22, %2 o 322 @3 3
z—zz+4z+2zz+4z+8z
3 3
+ et e+ 2P
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By using Theorem A (i) we have that v = (3/4)mas. Now we proceed
by induction: assume that a3 = a5 =--- = agmym—1 = 0 and ag;,+1 # 0.
From (#x) after Theorem 1 we know that the monomials of ve,,; arise
from Fy, with >.773!(d; — 1) = 2m. By the induction hypothesis we
know that Fy = 0 for d = 3,5,...,2m — 1, and consequently vo,, 11
only depends on Fy for d = 2,4,... ,2m and d = 2m + 1.

By using Theorem 1 (ii) we can deduce that vom+1 = Qom+102m41 +
p(as,aq,... ,asm) for some polynomial p. Observe that if ag;11 = 0
for all 7+ > 1, the Liénard equation is reversible and by Proposition
13 it has a center at the origin. Therefore p(ag,ay,... ,a2,) = 0 and

V2m+1 = X2m+1A2m+1-
In order to determine the constants «; we consider the family of
systems & = —y + ™, y = x. These systems satisfy

d
U s 61 — ™ 'sinfcos™H] !

do
=7r™cos™ 1 O[1 +r™ sinfcos™ b + - -]

=7rmcos™ 0+ ™ Lsinfcos®™ O+ ...

Let r(8,p) = u1(0)p + u2(8)p? + --- be the solution of (6) with
r(0,p) = p. Then
dr
7
= [u1(8)p +u2(6)p? + -+ -]™ cos™ 1 9
+ [u1(0)p + uz(0)p® + -+ ]*™ Lsinfcos®™ O 4 .- ..

uy (0)p + uy(0)p® + - -

Hence u}(§) = 0 for each ¢ = 1,2,...,m — 1 and so u;(f) = k; for
i =1,2,...,m — 1. From u;(0,p) = p we deduce that u;(f) = 1
and u;(#) = 0 for ¢ = 2,3,...,m — 1. For i = m we have that
u!,(0) = cos™™ 6 and so u,,(27) = fOZTr cos™t1 §df. From Lemma 3,
for m even, this integral is zero and for m odd direct computations give
that

I
U = U (27) = me 2.

(m+1)
Hence the part (i) of the theorem is proved.

In order to see (ii), first we prove that Tyr o = a2k+2a§k+2. We
proceed by induction. Theorem A iii) implies that 7o = (7/3)a3.
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Assume that as = a4 = --» = agr = 0 and agg42 # 0. By induction
hypothesis, we know that Ty o = 0 and consequently Ty 1 = 0. We
claim that Ty, = 0.

Set M = ,u(Hflim€+2 a;") be a monomial of Ty, with ¢ # 0. From

(x%) after Theorem 1, we have that mog12(2k + 1) + mog+4(2k + 3) +
-+ -+myp(4k —1) = 4k. From this equality it is clear that m; <1 for all
j=2k+2,...,4k. On the other hand, if there exist s and t with s < ¢
and ms = m; = 1, then the above equality says that s — 14+t —1 < 4k
which is a contradiction with the fact s —1 > 2k and ¢ — 1 > 2k. Since
it is also not possible to have a unique j with m; = 1, we deduce that
m; = 0 for all 7 = 2k +2,...,4k. Hence M = p is a constant and

therefore M = 0.

Now we are going to see which monomials are in Tygio. Set M =
/,L(H?i;,?+2 a;"") with g # 0. Again, from (*x) after Theorem 1, we have
that m2k+2(2k + 1) + m2k+4(2k + 3) 4+ e+ m4k+2(4k =+ ]_) = 4k + 2.
We claim that maori2 = 2. If mogio # 2, then there exists at least s
and t such that 2k +2 < s <t <4k +2 and mgs = 1, m;y = 1. But
it implies that s — 1 + ¢ — 1 < 4k + 2, which is a contradiction with
s—1>2k+1landt—1>2k+1. So M does not contain linear terms
because magi2 = 2 and m; = 0 for all j > 2k +2; that is, M = pa3, .,
with p € R.

In order to determine the constant 1 we consider the equation
{ i = —y + I2k+2
Y=z
After some computations we obtain that

(2k + 3)(4k + 6)!! (4k:+4)n>' o

Typio=p= 27(

Proof of Proposition C. In complex coordinates, the system under
consideration can be written as:

Z=riz+ AZ% + 2427+ AZ% + d2® + 3e2?z + 3dz7? + €23,
where

A= (a—1iv)/4, d=(8—-06)/8eR and e=(B+4)/8€R.
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First of all, observe that from Proposition 13 the above system has a
reversible center at the origin if and only if either d = e = Im (4%) =0
or e = Re (4%) = 0.

On the other hand, from Theorem A we know that v = 6me and
assuming e = 0, v5 = (87/3)Re (A?)[5d + 12Im (A?%)]. So vs = 0 if and
only if either Re (4%) = 0 or d = (—12/5)Im (A?). Hence, from the
above observation the case Re (A?) = 0 is finished.

Consider now condition d = (—12/5)Im (A?). By using Theorems
1 and 2, the only monomials that can appear in wv; are: AAdZ,
Re (A3Ad), Im (A3Ad), A>A3, Re (A%A), and Im (A% A). Observe that
(AA)® = AA(Re?(A?) + Im2(A?)). Hence, when d = (—12/5)Im (A2?),
we have that

vr = a1 AARe 2(AZ) + as AAIm 2(A2) + a3 AARe (AZ)Im (AZ).

Note that when e = d = 0, A = a € R, the origin of our system is
a reversible center. Therefore v7|e:d:0’A:a€R = 0ya® = 0 and, as a
consequence, a; = 0. Arguing in the same way but using the family of
reversible centers d = e = 0 and A = a + ai, a € R (so Re (4%) = 0)
we get that ap = 0. Therefore, v; = az AARe (A?)Im (A?). Finally, to
obtain a3 we consider the particular case A = (1+5¢)/4,d = —3/2 and
e = 0, and we make all the tedious but straightforward computations
explained in Lemmas 1, 2 and 4. We get v; = 5857 and so ag = —384.
Hence we have proved that when v = v5 = v7; = 0 our system has a
reversible center at the origin. Therefore the proof ends by expressing
all the Liapunov constants in terms of the original parameters.

(ii) By using the notation of the proof of (i) and Theorem A, we get
that when e = 0, T> = (16/3)7AA. From Theorem 1, Ty = ad®. By
computing Ty for the system when A =0, e =0 and d =1 (in a similar
way to the one used in the proof of (i) for computing v7) we obtain
that a = 127 and so the proposition follows. a

Note that the final expression of v; depends only on its computation
for a particular system. We have chosen A = (1 + 5¢)/4, d = —3/2
and e = 0, and we have obtained v; = 5857. This result has also
been obtained by our colleague A. Guillamon by using the software
explained in [11]. On the other hand, observe that the system studied
in Proposition C when a =y = 4+ = 0 is a center with homogeneous
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nonlinearities of degree 3. By applying the results of [12] we can prove
that the condition to be isochronous is § = 0.
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