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PHASE PORTRAITS OF QUADRATIC SYSTEMS
WITH FINITE MULTIPLICITY THREE
AND A DEGENERATE CRITICAL POINT AT INFINITY

J.W. REYN AND X. HUANG

ABSTRACT. In this paper a quadratic system is meant to
be the autonomous system of ordinary differential equations

& = ago + ar0z + a1y + az0r® + a117y + ao2y’
= P(z,y),

= boo + broz + bory + b2oz? + bi1zy + bo2y?
= Q(z,y),

where - is defined to be d/dt and a;5,b;; € R, and P(z,y)
and Q(z,y) are relatively prime real polynomials, of degree
at most two, which are not both linear. We study the class
of quadratic systems with finite multiplicity three, consisting
of systems with three elementary critical points, possibly
complex or coinciding, and a degenerate type of critical point
at infinity, being a point, which upon bifurcation such that
only elementary critical points result, leaves one critical point
in the finite part of the plane and two or three critical points
at infinity. The notation for such a degenerate infinite critical
point is M{',Q and M{"S, respectively.

A system with an M{ 3 point can be represented by the
system
&= \z+ py + 2y + 7,
g=z+y°
where A\, u € R, and 22 topologically different phase portraits
are obtained.

A system with an M{ 5 point can be represented by the
system

& = Az + py + oy + 6(z + v°),
y=z+v°,

where p1,7,0 € R whereas A € {0,1} and v ¢ {0,1}. As a
result of the classification, 119 topologically different phase
portraits are obtained.
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In all systems discussed in this paper, there exists at most
one limit cycle and, if it exists, it is hyperbolic.

1. Introduction. In this paper by a quadratic system is meant the
autonomous system of ordinary differential equations

& = ago + a107 + ap1y + a20r” + a117y + an2y® = P(z,y),
= boo + bio® + bo1y + baox® + bi1xy + booy® = Q(w, ),

where - is defined to be d/dt, a;;,b;; € R, and P(z,y),Q(z,y) are
relatively prime real polynomials, of degree at most two, which are
not both linear. In a way, quadratic systems may be considered
to be the first class of systems, which presents itself if a step away
from linear systems into the field of nonlinearity is desired. In fact,
in the qualitative theory of ordinary differential equations, quadratic
systems were given ample attention, which led to an increasing flow
of papers on the subject [15]. Apart from the value of developing a
theoretical body of knowledge as a means in itself, great importance
should also be attached to the impact the acquired knowledge has
in various fields of application. In a survey of the present situation,
it may be observed that the search for periodic solutions—it being
important and difficult to trace elements of such portraits—has had
a profound influence on the structure of what is known about the
phase portraits of quadratic systems. As a result, the phase portraits
with an infinite number of periodic solutions around center points are
known in a highly ordered way [20], and the corresponding conditions
on the coefficients in (1) are given in affine invariant form [4]. Many
results are also known about existence, uniqueness and simultaneous
occurrence of limit cycles in systems either characterized by giving a
system in its analytical form as, for instance, given in the classification
of Ye Yangian, or by having certain properties, such as containing weak
or multiple critical points [21]. Nevertheless, various other classes, not
necessarily containing periodic solutions, such as homogeneous systems,
systems with algebraic solution curves and various systems encountered
in applications, were also investigated, leading to information on phase
portraits.

In classifying all possible phase portraits of quadratic systems, with
the additional aim of obtaining a quick reference for those working in
applications, it seems natural to start, as is usually done in the analysis
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of a particular phase portrait, by investigating the possible number,
relative location and character of (finite and infinite) critical points
in such systems and use their various possible combinations to define
classes of quadratic systems. This was done by Reyn [16, 17], who
defined 170 subclasses grouped together in five classes of equal finite
multiplicity. Here the finite multiplicity my of a quadratic system is
defined to be the sum of the multiplicities of the (real and complex)
finite critical points of the system. The multiplicity of a critical point
is understood in the usual sense as the number of common zeros of
P(z,y) =0 and Q(z,y) = 0 in that critical point (see, e.g., [2, p. 65]).
If the number of critical points of a quadratic system is finite, it has
at most four critical points, which then are elementary and m; = 4.
This remains to be the case also if, by changing the coefficients in
the differential equations the critical points are made to coincide or
to become complex, as long as the critical points remain in the finite
part of the plane. Lowering the finite multiplicity may be obtained
by changing the coefficients such that one or more finite critical points
have moved to infinity. Then, for a quadratic system 0 < m; < 4.
Since there are up to three possible locations of infinite critical points,
lowering the finite multiplicity m of a quadratic system will increase
the complexity and multiplicity (up to seven) of these points and at
the same time decrease the number of parameters in the system as well
as the number of phase portraits. In fact, the classification of phase
portraits for my = 0 was made by Reyn [18] and 27 topologically
different phase portraits were found; trivially, none of them containing
a limit cycle. The classification for m; = 1 was also given by Reyn [19],
leading to 38 phase portraits, and it was shown that a phase portrait
in this class contains at most one limit cycle. Work is in progress on
the classification my = 2. For it appears that in this class a phase
portrait can have at most two limit cycles. In fact, proofs are available
to show this phenomenon, except for one case, wherein there is a strong
numerical evidence of this property. Further evidence through known
cases for my = 3 suggests that there are at most three limit cycles
for this class, whereas all known examples of quadratic systems with
(at least but possibly at most) four limit cycles have two real and two
complex critical points and thus belong to my = 4. This led to the
conjecture (Reyn [19]), that the number of limit cycles in a quadratic
system is at most equal to its finite multiplicity my. Apart from trying
to prove this conjecture for m; = 3, this class is also interesting in itself,
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and some subclasses have already been studied from other aspects. For
instance, most of the bounded quadratic systems, as introduced by
Dickson and Perko in 1970 [9] and subsequently given attention by
various authors [6, 5], belong to m; = 3. An interesting new class
of quadratic systems, also belonging to ms = 3, was recently studied
by Coppel [7] in response to a problem encountered in the study of
the shear flow between parallel plates of a non-Newtonian fluid [13].
Another application, resulting in an equation in the class my = 3, was
given by Hulshof [12], who studied similarity solutions of the porous
medium equation with sign changes.

In a systematic approach to investigate the phase portraits of my =3
we start with the simplest case, being characterized by the most
complicated infinite critical point that can occur in my = 3. A multiple
infinite critical point will be indicated by M;,q, where ¢ indicates the
index of the point, p the maximum number of finite critical points and ¢
the maximum number of infinite critical points that can bifurcate from
it upon arbitrary changes in the coefficients of the differential equation.
If p # 0, the point is transversally (with respect to the Poincaré circle)
nonhyperbolic, and for m; = 3 there is one such point and p = 1. The
most complicated infinite critical point is then an Mli)?), being, in fact,
a fourth order saddle node with index 0, and the only critical point at
infinity possible in the systems that will first be studied. Thereafter,
systems with an M}, type of infinite critical point will be studied.
It follows that these systems also have an elementary saddle point at
infinity. Letting this point coincide with Mli)Q again yields the class
with an M{"S point. The remaining class to be studied has an Mﬂl
critical point at infinity. This is a far more elaborate class, containing
in fact also the bounded quadratic systems in my = 3. The limit cycle
problem for this class appears to be more involved [11].

2. Quadratic systems with finite multiplicity 3 and an M{"S
type of critical point at infinity. Critical points of (1) are located
at the intersection points of P(z,y) = 0 and Q(z,y) = 0, being the co
and 0 isoclines, respectively, and sending such a point to infinity in a
certain direction makes this direction a common asymptotic direction
of the conics P(z,y) = 0 and Q(z,y) = 0, so that the quadratic terms
in (1) have a common linear factor. Without loss of generality, this
factor may be taken to be y, so that asg = bog = 0 can be taken,
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yet, since my = 3 is obtained from the class my = 4 by sending only
one critical point to infinity, there is only one common linear factor so
cs6 = a11bo2 — agebi; # 0. Since, moreover, an infinite critical point
of (1) is in the same direction, given by y = wuz, as the flow on the
solution curves approaching it, u should be a solution of

f(u) = a02u3 + (a11 — bog)’u2 —+ (a20 — b11)u — bgo = 0,

with agg = byg = 0. For u = 0 to be a point of third order tangent to
the Poincaré circle, then by; = 0, bog = aj; # 0, since cs6 = a3, # 0,
whereas, further, there should be ags # 0. Also, it may be seen that
for my = 3 there exists at least one real critical point in the finite part
of the plane, which then may be thought to be located at the origin,
thus we may put agg = bpg = 0. For (1) we may then write

&= ajor + agy + anwy + agey® = P(z,y),

(2) . 2 _
¥ = biox + bory + any” = Q(z,y),

with a11 # 0, age # 0, and we may take a;; = age = 1 if needed by
replacing by age, y by a11y and a?,t by t. Furthermore, if byg = 0,
there are at most two roots of Q(z,y) = 0 and, correspondingly, at
most two roots of P(x,y) = 0, thus my < 2. Thus, b1y # 0, and we
may take b1g = 1 if needed by replacing x by bigx, y by bioy and bigt
by t. Finally, by replacing x 4+ by1y by x, the system takes the form

3) &= Az + py + xy + 37,
j=x+y°

with A, pE R, which is of the class m¢ = 3 and has an infinite critical
point Mj 5 “at the ends of the z-axis.”

The conditions on the coefficients of (1) such that a system belongs
to the class studied in this section are given in the Appendix.

3. Phase portraits of quadratic systems in the class m; = 3
having an Mfg type of critical point at infinity. According to
Theorem C in Coppell [8], the system (3) has at most one limit cycle
since the highest degree terms of P and () are both divisible by the
highest degree terms of the divergence P, + @), and, if this limit cycle
exists, it is hyperbolic.



934 J.W. REYN AND X. HUANG

FIGURE 1. The fourth order saddle node Mﬁ3 at infinity.
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In order to analyze M? 5, we use the Poincaré transformation z = 271,
.

u = yx~ !, then (3) becomes after a scaling of time

5= —z(Az 4 u+ pru +u?),

U=z — Azu — pzu’® —ud,

(4)
and M 4 is located in z = u = 0. For the blow up we use the
transformation z = u2a(t) to obtain

. & = au(—1 — 2a + u + dau + pau?),
(5) 0 =u?(a —u — dau — pou?).

By putting udt = dr, system (5) is replaced by a system which on
u = 0 has critical points at « = 0 and a« = —1/2; they can be shown to
be a second order saddle node and a saddle, respectively. The solution
curves near v = 0 can now be easily determined and are shown in
Figure 1la. Returning to the z,u plane yields Figure 1b, which shows a
fourth order saddle node Mﬁ3, having hyperbolic sectors with opening
angles 0 and 7 in the half plane z < 0 and a parabolic sector with
opening angle 7 for z > 0, partly extending into z < 0. It should
be remarked that the only orbits approaching the critical point with a
curvature different from zero are the separatrices in z < 0. This fact
will be explored later since their curvature at z = u = 0 equals that of
the parabolic orbits of (3) for those values of A and p for which they
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exist, these orbits being given by the expressions

o=ty gL

A=-1, —oco<pu<oo,

x = l()\—Q)y—lyQ7 —00 < A < 00,
3 2
7 )
W= —5()\4— (A= 2).

The significance of these orbits for the phase portraits of (3) will be
discussed later.

We will now investigate the finite part of the phase plane. Apart
from the critical point Py in (0,0), there exist the critical points Py
with coordinates z; = —y%, y1 = (1/2)(1 — A+ /(1 — A\)? 4+ 4p), and
P_ with coordinates v = —y%, y_ = (1/2)(1 = XA — /(1 — X\)2 + 4p).
Obviously, for u < —(1/4)(1 — \)?, P. and P_ are complex points;
for p = (=1/4)(1 — A\)2, P, and P_ coincide; for u = 0, A < 1, Py
and P_ coincide; for 4 = 0, A > 1, Py and Py coincide; and for all
other values of (X, u1), there exist three real (elementary) critical points.
Correspondingly, as is indicated in Figure 2, we distinguish in the A, i
plane the regions Ry : > 0; Ry : A < 1, (—=1/4)(1 — \)? < p < 0;
Ry :A>1, (-1/4)(1 = N)? < u < 0; and Ry : pu < (—1/4)(1 — N)2.
In determining the phase portraits, not all values of (A, u) need be
considered, since all portraits with three elementary critical points
occur for values of (A, ) in either Ry, Ry or R3. This may be seen
as follows. Let (x,,y.) represent either P, or P_ and replace in (3) z
by —z. — 2y? + z + 2yy. and y by —y. +y then the origin is shifted to
(x4, yx) and (3) takes the form

&= (A+3y)z + [0+ 20 (1 = A —yo) + 2]y + 2y + ¢,
y=x+y>

which is of the same form as (3) with different values for the parameters.
The mapping A < XA+ 3ys, p < p+ 2y.(1 — A — y,) + z, then
determines the mapping Ry < Ry if (z4,y«) = (z_,y_) and Ry « Rj
if (x4,y%) = (4,y4+). As a result, we may restrict our attention to
p>0and u < (—1/4)(1 — \)2. We begin the analysis with p = 0.
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<Y

$<0 >0

FIGURE 3. Relative location of the unbounded separatrix cycle for A = A\j; =
—1, p = 0 and regions of rotated vector fields.

We may summarize the statements above in

Property 1. System (3) has the following properties:

(i) the only infinite critical point of (3) is a fourth order saddle
node M? 4, the separatrices of which extend into the finite part of the
plane having the same curvature as the parabolic orbits of (3), for those
values of A and p where these orbits exist,

(ii) there exist parabolic orbits of (3); they are given by (6) and (7),

(iii) the phase portraits with one real critical point and two complex
critical points can be determined by taking pu < (—1/4)(1 — \)?; those
with two real critical points by taking p = 0 and those with three real
critical points by taking pu > 0,

(iv) system (3) has at most one limit cycle and, if it exists, it is
hyperbolic.
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3.1. Phase portraits for y = 0. The phase portraits for p = 0
are given in Figure 4 I-XII, and the corresponding values for \ are
indicated in Figure 2. For A < 1, P_ coincides with Py, for A = 1, both
P_ and P, coincide with Py, and for A > 1, P, coincides with Fy. So,
for A # 1, Py is a second order critical point with eigenvalues 0 and A,
as a result of which, Py is a second order saddle node for A # 0(# 1)
and a second order cusp point for A = 0, both with index 0, so that the
remaining elementary point is an antisaddle. For A = 1, Py is a third
order node, having index 1. Further details on these types of critical
points may be obtained using Theorems 65 and 67 in [1]. For either the
antisaddle Py or P_ it may be found that div (P,Q) = 3 — 2\. So Py,
occurring for A < 1, is unstable, whereas P_ is unstable for 1 < A < 3/2
and stable for A > 3/2. As a result of the change of stability, a limit
cycle is bifurcated at A = 3/2, persisting on the interval 3/2 < A\ < A\rx
for some A;x yet to be discussed.

Knowing enough properties of the critical points and using continuity
arguments possible phase portraits may now be drawn, except that
the relative location of separatrices still have to be determined. With
the help of numerical calculations and the theory of rotated vector
fields, for which the reader is referred to [21, 10, 14], it may be
shown, however, that the separatrix structure is as shown in Figure 4.
Numerical calculations show that, for A = —2 the structure is, as in
Figure 4 I, whereas for A = —0.5 that in Figure 4 III is obtained. For
A < 0, replacing © by —A3z, y by A2y and ¢ by —A\71¢, (3) with =0
takes the following form

i =—z— vy +y° = R(z,y),
j=z—X?=S(z,y),

so that R(0S/0N) — S(OR/ON) = —y¢(z,y) where ¢(x,y) = —x2 —
xy + y3. The curve ¢(z,y) = 0 is illustrated in Figure 3, enclosing
in the fourth quadrant an oval region, wherein ¢ > 0. In the case
that in the lower half plane the separatrix from the infinite critical
point and the saddle node coincide, as illustrated in Figure 4 II, this
separatrix approaches the origin along y = —2 — 22/2 + o(2?), so that
along it ¢ = 2%/2 4 o(z®) > 0 and ¢ < 0 on it, since $(0,0) = 0
and the separatrix cannot cross ¢ = 0 in the lower half plane, since
bo=0 = y*(x — M\y?) > 0. This separatrix is therefore in the region,
wherein —y¢(x,y) < 0, so that changing A breaks it up in a unique
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way, which shows that it is unique, and occurs at some value A = Ay,
where —2 < A\;; < —0.5. In fact, it can be shown, using the parabolic
solutions (6) and (7) with g = 0 that A\;; = —1. This may be seen as
follows. According to property 1(ii), for © = 0 there exists a parabolic
solution if A = —1, which then coincides with the separatrices of the
infinite critical point, since they are the only orbits approaching this
point with the same curvature as the parabola. Since the parabola
has a continuously changing tangent, the phase portrait in Figure 411
is then the only candidate for A = —1, since in Figure 4I there is
discontinuity at x =y = 0. We may check that Py is on the parabola,
since Py = (—4,2) is located on z = —y — 32 /2.

In a similar way, the theory of rotated vector fields may be used to
show the uniqueness of a homoclinic cycle at some value A = A\;x ~ 1.65
as illustrated in Figure 4 IX. For this we use the substitutions x — A3z,
y — M2y and t — A~!t. The limit cycle generated at A\ = 3/2 will be
absorbed in this homoclinic cycle. There is also a unique unbounded
separatrix cycle, as illustrated in Figure 4 XI. Using similar arguments
as for Figure 4 I1, it can be shown that Ax; = 2 and that the unbounded
separatrix cycle is given by z = —(1/2)y%.

3.2. Phase portraits for g > 0. The phase portraits for y > 0
are given in Figure 5 XIII-XVIII, and the corresponding regions in the
A, i plane are indicated in Figure 2. As for u = 0, P4 is located in the
upper half plane and P_ in the lower half plane; however, they now
occur simultaneously. They are both antisaddles, since the sum of the
indices of all critical points is equal to 1, and Py is a saddle, as the
product of the eigenvalues in Py equals —p < 0. The antisaddle Py is
unstable, since in it

div (P, Q) = A + 3y, :%[3—A+3\/(1—A)2+4u} > 0.

The antisaddle P_ changes its stability at 0 < A < 3/2, p =
A/3 = (2/9)A%, being unstable for 0 < A < 3/2, 0 < pp < \/3 — (2/9)\?
and stable for all other values of A and p > 0. As a result, an
unstable limit cycle is generated in a Hopf bifurcation, when crossing
the fine focus curve for P_ from the unstable to the stable region in
the A, plane. The phase portrait corresponding to 0 < A < 3/2,
0 < p<1/3—(2/9)A? is given in Figure 5 XVIII and that with the
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XVI XV XV

FIGURE 5. Phase portraits for p > 0.

(unique) limit cycle in Figure 5 XVII. For x4 > 0, the region in the
A, it plane corresponding to the existence of a limit cycle is bounded
above by a curve representing a homoclinic cycle; the phase portrait
for the latter case being given in Figure 5 XVI. The uniqueness of
this homoclinic cycle may again be shown using the theory of rotated
vector fields. The curve in Figure 2 for the homoclinic cycle was found
by numerical calculations. Just above the curve for the homoclinic
bifurcation and also adjacent to the part of the axis indicated by III
and X, the phase portrait is as given in Figure 5 XV, whereas for large
enough values of p and also adjacent to the part of the A axis indicated
by I and XII the phase portrait is as given in Figure 5 XIII. It can be
shown, using the theory of rotated vector fields, that there is a unique
curve in the A, u plane, separating regions XIIT and XV, representing
Figure 5 XIV, wherein in the lower half plane the separatrix of the
infinite critical point coincides with a separatrix of the saddle point.
This curve is given by u = (—2/9)(A + 1)(A — 2) and the separatrices,
connecting Py, Py and M7 3 by z = (1/3)(A — 2)y — (1/2)y*. This
may be seen using property 1(ii) similarly as for Figures 4 II and XI.
The parabolic orbit z = —u/2 —y — y?/2 for A = —1, p > 0, so in
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region XIII, coincides with the separatrices through Mﬂg and an orbit
connecting P_ and P; to the left of F.

Since for A = p = 0 (3) has a cusp at the origin, for small values of
A and p the bifurcation diagram of Figure 2 should be obtainable from
the values of the Bogdanov-Takens bifurcation. Replacing 3\ + 9y by
z, 27(z + y?) by vy, and t/3 by t, (3) is obtained in the form, used by
Bogdanov [3]

© o
§=a+pz+a° +xy — vz’

where a = 3(3A% — 9\ — 2X3), B = 3(3u — 2\ + A\?), v = 1/9.
From [3], it follows that a weak focus occurs for & = 0 and, in
particular, that Py is a weak focus for u < 0, A = 0, P_ is a weak
focus for p = (1/3)\ — (2/9)A2, where A and p should be small. The
homoclinic bifurcation curve enters (0, 0) according to a ~ (—6/25)32,
corresponding to p = (7/3)A for A < 0 and p = (7/18)A for A > 0.

The mapping R; — Rj yields that the curve corresponding to Figure
5 XIV is mapped onto A = —1, —1 < u < 0, whereas the mapping
R; — Rg gives that this curve is mapped onto p = (—2/9)(A+1)(A—2),
2<A<D.

3.3. Phase portraits for p < (—1/4)(1—\)2. For p < (—=1/4)(1 -
A2, P, and P_ are complex critical points and Py is the only real
critical point, which then must be an antisaddle, unstable for A > 0,
stable for A < 0. For A > 0 the phase portrait is given in Figure
6 XXII; there is no limit cycle. Lowering the value of A\ leads to
the bifurcation of an unstable limit cycle at A = 0 as illustrated in
Figure 6 XXI, which at some value of A = A(u), is absorbed in an
unbounded separatrix cycle as illustrated in Figure 6 XX. Further
lowering of A\ leads to the separatrix structure as given in Figure 6
XIX. The unbounded separatrix cycle may be shown to be unique,
again, by using the theory of rotated vector fields. Moreover, using
the lemma again, the unbounded separatrix cycle may be seen to be
given by x = —pu/2 —y — y?/2, A = -1, —c0 < u < —1. Because of
the possibility of the mappings R; < R, R1 < Rg3, the A axis can
be mapped onto the curve y = —(1 — A?)/4 and the phase portraits in
Figure 6 may be obtained by bifurcating the phase portraits in Figure 4.
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XXI XX

FIGURE 6. Phase portraits for u < —(1/4)(1 — A)2.

3.4. Conclusion. As a result of the analysis in Section 3, we now
may state

Theorem 1. For the class of quadratic systems with finite multi-
plicity my = 3 and an Mf,3 type of infinite critical point, this point is
a nilpotent fourth order saddle node M10)3, and the conditions on the
coefficients in the system such that it belongs to this class are given in
the Appendix. Moreover, the class may be represented by the system

&= Ar+ py + zy + 47,

y=z+y°
where A\, i € R. The 22 topologically different phase portraits are given
in Figures 4, 5 and 6, corresponding to =0, 1 > 0 and u < (1-X)?/4,
respectively, and the points in the A, u parameter plane corresponding

to these phase portraits are indicated in Figure 2. System (3) has at
most one limit cycle and, if it exists, it is hyperbolic.
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4. Quadratic systems with finite multiplicity 3 and an M{‘72
type of critical point at infinity. The consideration given in
Section 2 to show that equation (3) represents the quadratic systems
of class my = 3 with an infinite critical point of type M{ 5 at the ends
of the = axis may be repeated to obtain a similar result for the class
my = 3 with an infinite critical point of type M{}Q at the ends of the z
axis. Starting again with equation (1), imposing the same conditions,
with the difference that now at u = 0 there is a point of second order
tangent to the Poincaré circle, thus b1; = 0, a11 # bz, leads to

&= ai10T + amy + anry + ag2y’,
y=z+y>

with a10, 001,011, a02 € ].:{7 and a1l ¢ {0, 1}.

For convenience of further discussion, we rewrite this system as

o) &=\ +py + vy + 6(z + y?),
9

g=z+y’

with A\, p,v,0 € R and v ¢ {0,1}. Also, we may take A > 0; if
necessary, we can replace x,y and t by x, —y and —t, respectively. In
addition, without loss of generality, we can set A € {0, 1}.

The conditions on the coefficients in (1) such that a system belongs
to the class studied in this section are also given in the appendix.

As a consequence of Theorem C in Coppel [8], the system (9) has at
most one limit cycle, since the highest degree terms of P and @ are
both divisible by the highest degree terms of the divergence P, 4+ Q,,
and, if this limit cycle exists, it is hyperbolic.

In summary, we have the following result:

Property 2. (i) Quadratic systems of class my = 3 with an M{,
type of infinite critical point can be represented by (9), where p,v,5 € R
and v ¢ {0,1}, A € {0,1};

(ii) Quadratic system (9) has at most one limit cycle, and, if it exists,
it is hyperbolic.
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Z

(d) y=>2: elliptic saddle M1 2

r u

o n 2n 6 z

1

(c) 1<y<2: elliptic saddle node M1 2
(b) 0<y<I: third order nilpotent saddle Mﬂz

r

L J u
o n  2n 6 z

(a) y<0: elliptic saddle M},g

FIGURE 7. Local structure of critical point M{_Q at the “ends of the x-axis”
of system (9).
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5. Critical points of system (9).

5.1. Critical points at infinity. We first study the critical points

at infinity. By using the Poincaré transformation z = 271, u = yo !

after a scaling of time (9) becomes

)

2= —2(AN+8)z 4+ yu + puz + 0u?) = R(z,u),

10
B0 e (L) = (A4 8o — s — 6 = (2, ),

so if § # 0, the critical points at infinity are located at z = 0, u = 0
and z =0, u = (1 —+)/d. If 6 = 0, the first critical point at infinity
still appears at the origin of (10), but the second one moves to ‘the
end of the y-axis,” which can be transformed by using another Poincaré
transformation w =y~ !, v = zy~!, into the origin of

w' = —w(vw + 1),

11
(1) v = (y = D)v+ pw + dvw — wo?.

In order to investigate the critical point Mj, of (10) at (0,0), we
make use of the results of the analysis given in [2]. In order to obtain
some further details, we use polar coordinates z = rcosf, u = rsin#,
0 <60 < 27, then we get
(12)

7 =7rcosfsinf 4+ r*[—(\ +6) cos® @ + (1 — ) sin® 6 — cos® fsin 6

— (A +6) cos@sin® 0] + r3[—pcos O sin @ — §sin? 4],
0" = cos? 6 + rsin?  cos 0.

It is clear that, for = 0, there are only critical points in (0, 7/2) and
(0,37/2). Near (0,7/2) we write, with £ = 6 — /2, approximately,
T
5/ = —7"§ + 527
and, similarly, near (0,37 /2) with £ = 8 — 37/2, approximately,

7’/ = _T§ - (1 - ’Y)'l"27
¢ = —re+

(13)

(14)

If 0 < v < 1, we may apply Theorem 66 of [2] with k = 3, m = 1,
and it follows that M{Q is a third order nilpotent saddle M , with
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three hyperbolic sectors in z < 0. See Figure 7b. If v < 0 or v > 1,
according to Theorem 66 of [2], the critical point Mny is a nilpotent
point with an elliptic and a hyperbolic sector. To determine the location
of the separatrices of the hyperbolic sector, as compared with z = 0,
we will make use of (13) and (14). It may be seen that there are three
directions r = k¢ in which orbits enter the critical points (0,7/2) and
(0,37/2) in the (r,0) plane. These are k = 0, k = oo for both points
and k = —2/(y—2) for (0,7/2) and k = 2/(y —2) for (0,37/2). Then,
putting ¢ = r — k€ with fixed k, for the variation of ¢ along a solution
curve of (13) can be written ¢ = £2k[—2 + (2 — )k and similarly for
(14), ¢’ = €2k[-2 — (2 — v)k]. Near r = 0, § = 7/2 then follows for
r>0,&>0, that if v > 2, ¢’ < 0 on k € (0,00) which indicates that
r > 0, & > 0 is a hyperbolic sector. Combined with a similar result
near = 37/2, this shows that in the u, z plane z = 0 is the separatrix
of the hyperbolic sector in z < 0. The nilpotent elliptic saddle M,
for v > 2 is given in Figure 7d. For 1 < v < 2, Mli’Q is a nilpotent
elliptic saddle node M, with an elliptic sector in the half plane z > 0
and a hyperbolic sector in the half plane z < 0, which also contains the
separatrices. See Figure 7c. For v < 0, Mlig is a third order nilpotent
elliptic saddle M1172 with an elliptic sector in the half plane z < 0 and
a hyperbolic sector coinciding with the half plane z > 0, ie., 2 =0
coincides with the separatrices of the hyperbolic sector. See Figure 7a.

As for the other critical point at infinity, it is easy to show that it
is an elementary critical point. In fact, the product of the eigenval-
ues of the coefficient matrix of the locally linearized system in this
infinite critical point equals (0, (1 —v)/d) = (1/6%)(1 — ~)3, where
Qz,u) = (OR/0z)(z,u)(0S5/0u)(z,u) — (OR/Ou)(z,u)(0S/0z)(z,u).
Hence, when 1 — v < 0, this point is a saddle, and when 1 — v > 0, a
node. This result may also be obtained using (11). The character of
the critical points at infinity is listed in Table 1.

5.2. Finite critical points: A\ = 0. For A = 0, system (9) reads

&= py+ vy + 6(z +y?),
(15) . )
g=1x+y°

with u,8,7v € R, v ¢ {0,1}. For this case, the critical points in the
finite part of the plane are Py = (zo,y0) = (0,0), Py = (z4+,y4) =

(=p/vs /), and P = (z_,y-) = (—=p/v, =/ 1t/7)-
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TABLE 1. Character of the critical points at infinity.

Mi, Fig. E i

v <0 | M{, elliptic saddle 7a | node | 2
0<vy<1| M4 saddle 7b | node | O
1 <7y <2| M{, elliptic saddle node | 7c | saddle | 0
v > 2 M3, elliptic saddle 7d | saddle | O

If uy <0, P_ and Py are complex leaving Py = (0,0) to be the only
real point.

If 4 = 0 (recall that v # 0), Py, P— and P, merge into a third order
critical point, which can be analyzed in a similar way as is done for the
third order point at infinity, and for which the results are summarized
in Figure 8.

It appears that if § # 0, for v < 0, (0,0) is a third order saddle and
for v > 0 a third order node both with center manifolds tangent to the
y axis. For 6 =0, v < 0, (0,0) is a third order saddle, for 0 <y < 2 an
elliptic saddle and for v > 2 and elliptic saddle node, all points being
nilpotent.

If py > 0, Py, P— and Py are distinct real elementary critical points.
The character of the elementary critical points may be obtained using
standard arguments. For the product of the eigenvalues of the locally
linearized system is found in Py : Q2 = —p and in P_ and Py: Q = 2pu.
As a result, for 4 < 0, Py is an antisaddle and P_ and Py are saddles
or complex. In case the critical point is an antisaddle it can be a node a
(weak) focus or a center. It is important to notify when such a point is a
weak focus or a center. For u < 0 follows, Py then being an antisaddle,
that for § = 0, P, is a center upon linearization and also for the full
nonlinear system since solutions are symmetric around the z-axis. For
6 < 0, Py is stable, and for 6 > 0 unstable. For y > 0, v > 0, P_
and P, are antisaddles and upon local linearization they are a center
for 6_ = (y+2)\/p/y > 0 and §4 = —(y + 2)\/p/v < 0, respectively.
Upon calculating the focal values, however, they appear to be first
order weak foci, being unstable and stable, respectively. Moreover, P_
is unstable for 6 > d_ and stable for § < d_, whereas Py is unstable
for § > 64 and stable for § < ;. The properties of the critical points



950 J.W. REYN AND X. HUANG

y
J y
X X X
(e) g>0, d<0; (f) 9>2, &=0; ] (9) g>0, d>0;
node m3 elliptic saddle node m3 node m3
y
X

(d) 0<g*® 2, d=01;
elliptic saddle m3

y y y
S J
X ;: > X X
4 >
(a) g<0, d<0; (b) g<0, d=0; (c) g<0, d>0;
saddle m'g,1 saddle m'g,1 saddle m'g,1

FIGURE 8. Local structure of the critical point in (0,0) of system (9):
A=p=0.
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in the finite part of the plane for A = 0 are collected in Table 2.

5.3. Finite critical points: A = 1. For A\ = 1, system (9) reads:

&=z + py 4+ yry + 6(z + ),

16
1o y=z+y°

with p1,7,6 € R and v ¢ {0, 1}.

In this case, the critical points in the finite part of the plane
are Py = (zo,50) = (0,0), P+ = (z4,y4) = ((I/(¥?)[-1 -
2py + T+ 4py ], (1/(29)[=1 + vI+4py]), and P = (z_,y-) =
((1/(292)[1 — 241y — VI + 07, (1/(27))[1 — T F 7). As in the
case A = 0 but now for 1 +4yu < 0, P_ and P are complex crit-
ical points, leaving Py = (0,0) to be the only real critical point. If
1+ 4~y = 0 the points P_ and Py merge to form a second order crit-
ical point. If 1 +4yu > 0, Py, P— and P, are real elementary points,
except if p = 0; then Py and P} merge to form another second order
critical point. The situation is indicated in Figure 9 where the param-
eter plane p,vy is given. It should be remarked that not all values
of 1,y need be considered, since linear transformations can be used
to transform the system into one of the same form, yet with different

TABLE 2. Finite critical points: A = 0; d+ = F(y + 2)/ /7, 0+ <0< d_.

Py Py | P
§ <0 stable antisaddle
©n<0 | 6=0 center saddle
v<0 6 >0 unstable antisaddle
pn=0 | Po, P~ and P4 merge into a third order point; see Figure 8
pn>0 | saddle
6 <0 stable antisaddle
n<0 | 6=0 center complex

>0 unstable antisaddle

>0 | u=0 | Pp, P— and P4 merge into a third order point; see Figure 8

0<d4 stable antisaddle

w>0 saddle 04 <6<J_ | unst. antisaddle | st. antisaddle

6>6_ unstable antisaddle
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values for the coefficients. In order to see this, in the u,y plane the
following regions are distinguished:

Ri:p>0, >0, (v#1),

Ro:p<0, >0, 1+4puy>0, (v#1),
R3:pu<0, v >0, 1+4uy <0 (y#1),
Ry: <0, v <0,

Rs:p>0, v <0, 1+4py >0,

Rg: >0, v <0, 1+4py <O.

Now from Table 1 it follows that the sum of the indices of the critical
points at infinity equals 0 for v > 0 and 2 for v < 0. From it follows
that the sum of the indices of the finite critical points equals 1 for v > 0
and —1 for v < 0. As a result, regions in v > 0 and 7 < 0 cannot be
mapped onto each other. Also, neither region Ry nor Rs (R4 nor Rj)
can be mapped onto R3(Rg), since only the latter contains complex
critical points. However, Ry (R4) and R2(R5) can be mapped onto each
other as follows. Consider a point in Ry and shift P, to the origin of a
new coordinate system (x1,y1) by the shift © = 21 + x4, y = y1 + y+
and apply further the transformation zo = z1 + 2y y1,y2 = y1, then
(16) becomes, using again the notation x,y instead of s, yo,

&= Mz + iy +yzy + 61 (z +y?),

17
1 y=z+y’

where Ay = 14+3yy4, i1 = y4—2p = (1/(27))A—v1 +4py) VI +4py =
0 and 61 = 0 +2(1 — v)y+. Now if py = —2/9, there follows \; = 0,
and we may refer to the previous Section 5.2. If \; # 0, replace = by
Nz, y by Ay and t by (1/A;)t, then (17) becomes

&=z + poy + 2y + 52(z + ),
(18) . 2
y=z+y,

where p1o = p1/M3, 82 = 61/A1, and Ry and Ry are mapped onto each
other. Similarly, this can be shown for R4 and R5. As a result, we may
restrict our attention to the regions R1, R3, R4 and Rg in the parameter
space (f,7.9).

For the character of the elementary critical points, we consider the
product of the eigenvalues of the coefficient matrix of the locally
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R3 > Po

P-,P, complex

=Y

P-,P, complex

1+4yu=0

FIGURE 9. Location of the finite critical points for the various regions in
parameter plane pu, 7.

linearized system §2(0,0) = —pu. Thus, for p < 0, the origin P, is an
antisaddle and, since for 7 < 0 the sum of the indices of the finite critical
points equals —1, the points P_ and P, are both saddles whereas for
v > 0 they are complex if 1 +4uy < 0. For p > 0, Fy is a saddle
and since, for v > 0, the sum of the indices of the finite critical points
equals +1, the points P_ and P, are both antisaddles, whereas for
v < 0 they are complex if 1+4puvy < 0. If the elementary critical points
are antisaddles, calculation of the focal values in case they are weak
foci yields whether they are centers, first order weak foci and what
their stability is. Mergence of elementary critical points into second
order critical points at 4 = 0 or 1 + 4y = 0 can be studied using the
classification in [2]. The properties of the critical points in the finite
part of the plane for A = 1 are collected in Table 3.

5.4. Conclusions. In summary, Section 5 leads to the following
result:

Property 3. (i) System (9) has a nilpotent third order critical point
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at the ends of the x axis; it is either an elliptic saddle (saddle node)
M1172 or a saddle Mf21, and its local structure is given in Figure 7. The
other critical point at infinity is elementary and either a saddle or a
node. The character of the critical points at infinity is listed in Table 1.

(ii) System (9) has three finite critical points, possibly pairwise com-
plex or coinciding in a second order (A = 1) or third order critical point
(A =10). For A = 0 these points are listed in Table 2 and the third order
point is illustrated in Figure 8. For A = 1, they are given in Table 3.

(iii) The phase portraits of system (9) can be determined by consid-
ering the parameter values in the following regions: Ry :p >0, v >0
(v#1), Rs:pp<0,7v>0(y#0), 1+4py <0, Ry : p <0, 7 <0 and
Rg:p>0,v<0,1+4py <0, whereas § € R.

6. Phase portraits of system (9): A = 0. Recall that system (9)
reads

&= Ar + py + yey + 6(z +y°) = Pla,y),

19
(19) g=z+y>=Q(z,y),

where A\, u,y,0 € R, v ¢ {0,1}.

The phase portraits of (9) will be studied using standard arguments
in the theory of quadratic systems and the known properties of (9),
as listed in the previous section. One of the reasons that the class of
systems to be studied is represented in the form given by (9) is that
now J is a parameter rotating the field. This may be seen by calculating

PQs — QPs = —(z + y°)?,

which is negative outside the parabola z+y? = 0. This fact will be used
in the search for bifurcation phenomena in parameter space. Since the
parameter space is R*, the ordering of the phase portraits in this space
is difficult to visualize. If possible, it helps to use scaling of the variables
in order to restrict the values of certain parameters to 0 or 1. This was
done, for example, in the previous section, when the character of the
critical points was investigated restricting the values of A to 0 and 1.
For A\ = 0 this procedure can be continued and leads to the restriction
@ ={-1,0,1}, and so on for u = 0. A disadvantage of this procedure
is that a better view on the relation between the phase portraits for a
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k=0

Hopf bifurcation
K=1¥Kg
LC K=Ky
K = Ky
K== K= oo
n—
N—

n=x 8
LC = Limit cycle

on —

Phase portraits are shown for § >0

y=2 Y>2
u=6=0

K< K <o

FIGURE 10.2. Bifurcation diagram and phase portraits of system (9): A =0,
vz2

discrete set of values of certain parameters goes at the cost of losing
the information obtainable when these parameters are allowed to vary
continuously. Bifurcation phenomena are then less explicitly showed.
In the following, we intend to find a balance between trying to lower
the number of parameters and showing the bifurcation phenomena as
much as possible.
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K3< K<Ky

Hopf bifurcation @
K= K4
K =Kg K=K,
K=Ky
= @
K=o

H—
o Ko< K< Ky

n=x &8
LC = Limit cycle
Phase portraits are shown for 6 >0
K=Ky

n=38=0 K< K< oo

FIGURE 10.3. Bifurcation diagram and phase portraits of system (9): A =0,
1<y <2

6.1. Phase portraits of system (9) for A = 0, § = 0. For this
case (9) reads

T = py +yry,
(20) S
y=zr+y,
where p,v € R, v ¢ {0,1}. This system may easily be analyzed; it
may in fact be integrated as a linear differential equation in 32 and the
solution curves are symmetric about the z-axis. There is one integral
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k=0 0 <x<Kg Kg< K<Kp

Hopf bifurcation
K= K'3
K= K'2

KZK.I

-o< k< 0

%

K=-=-00 K=o
u—
N—

u =k &2
LC = Limit cycle

Phase portraits are shown for § >0

u=38=0

K< K< oo

FIGURE 10.4. Bifurcation diagram and phase portraits of system (9): A = 0,
0<y<1

straight line, which is given by x = —puy~!, whereas the infinite critical
points are situated at the ends of the x and y axes. From the properties
of the critical points the phase portraits can readily be constructed and
are shown in Figure 10.1. Bifurcations take place at =0, v =10,1 or
2 in the u,y parameter plane.

6.2. Phase portraits of system (9) for A =0, § #0: v > 2. For
6 # 0 we will break up the = axis into several intervals and consider
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what happens in each interval as a function of the remaining parameters
u and §. This makes it more difficult to follow the bifurcations
resulting from changes in 7. As pointed out before, we could also
restrict ourselves to the values of y in the set {—1,0,1}; however, we
will keep 1 as a running parameter. The possibility of using linear
transformations to simplify the presentation can, however, be applied
to obtain information on the structure of the bifurcation curves in the
i, 6 plane. First of all, it can easily be seen, by replacing in (9) z by —z,
y by —y and ¢t by —t, that the coefficient § changes into —) showing
the symmetry around the p axis of curves and regions of the same
phase portraits. Moreover, it can, in fact, be shown that x = pudé 2,
—00 < K < 00, is the governing parameter in the p,d plane since
replacing x by 62z, y by dy, t by 61t transforms (9) into

&= (u/0%)y + oy +x + 07,

(21) .
y=z+y’
so that, for fixed v the phase portraits on p = 62 are affine equivalent

for fixed k.

The phase portraits and the bifurcation diagram in the u, d plane for
~v > 2 are shown in Figure 10.2. Only the phase portraits for § > 0 are
shown; those for § < 0 may be obtained through reflection around the
x axis and time reversal. For p < 0, 6 > 0, the phase portrait may be
obtained from that for § = 0 by considering how the vector field rotates
as a result of increasing §. For u = 0, increasing § from ¢ = 0 makes the
elliptic saddle for v = 2 and the elliptic saddle node for v > 2 change
into an unstable third order node; the phase portrait may further be
constructed using the rotation of the vector field. For g > 0 the phase
portrait for § = 0 persists over some interval of k=1 = 6%~ > 0
until for some value kK = k1 a connection between the finite and infinite
saddle occurs, which upon increasing & breaks in the direction given
by the rotation of the vector field. This leads to the phase portrait for
Ko < K < K1. At K = Ko, a homoclinic loop occurs, for § > 0 unstable
from the inside since div {P(0,0),Q(0,0)} = §. It bifurcates a unique
unstable limit cycle upon increasing ¢, which contracts into P_ for
k = k3 = v/(v + 2)? as a Hopf bifurcation leading to a phase portrait
which persists for 0 < k < k3. It is possible to determine the functions
k1 = k1(y) and Ko = ka(7y) numerically; it would be interesting to
determine them analytically from a global bifurcation analysis of (9)
for A =0, taking p and § as bifurcation parameters.
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FIGURE 10.5. Bifurcation diagram and phase portraits of system (9): A =0,
v < 0.

6.3. Phase portraits of system (9) for A=0, § #0: 1 <~ <2.
The phase portraits and the bifurcation diagram in the p,d plane
for 1 < 7 < 2 are shown in Figure 10.3. The same arguments and
similar conclusions may be obtained as in the previous Section 6.2. It
appears that there are more connections possible between the finite
saddle and points at infinity than in the previous case. Note that the
Hopf bifurcation value is again v/(y + 2)?(= K4).

6.4. Phase portraits of system (9) for A=0, 6 #0: 0 <y < 1.
The phase portraits and the bifurcation diagram in the u,d plane for
0 < v < 1 are shown in Figure 10.4. The same arguments and similar
conclusions may be obtained as before. Also, K3 = v/(y + 2)%.

6.5. Phase portraits of system for A =0, § # 0: v < 0. The
phase portraits and the bifurcation diagram in the y, § plane for v < 0
are shown in Figure 10.5. The same arguments and similar conclusions
may be obtained as before.
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R, |Rs|Rg

FIGURE 11.1. Bifurcation diagram and phase portraits of system (9): A =1,
§=0.

6.6. Conclusion.

Property 4. A classification of the phase portraits of system (9)
for A =0 leads to the 39 topologically different phase portraits given in
Figure 10.1-10.5; they are related to the cases § =0 and § # 0, 2 < 7,
1<vy<2,0<y<1,v<0, respectively.

7. Phase portraits of system (9): A = 1. It was stated in the
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2.0

1.6 1

1.4+

1.2

1.0 T
0 0.05 0.1 0.15 0.2

FIGURE 11.1a The unbounded separatrix cycle for A =1, 6 = 0.

previous section that for A\ = 0 bifurcation curves in the u,d plane
for fixed v can be represented by p = k&2, where x might possibly
be determined from a global bifurcation analysis, taking p and § as
bifurcation parameters. As long as this analysis is not done, numerical
calculation of these curves remains an alternative to be used. As
appears from the results in the rest of this section, bifurcation surfaces
in the w,d, A\ space are more complicated than for A = 0 and more
numerical calculations are needed to construct the intersections of these
surfaces with the plane A = 1.

7.1. Phase portraits of system (9) for A = 1, 6 = 0. These
phase portraits are given in Figure 11.1. As pointed out in Section 5.3,
only those in region Ry, R3, R4 and Rg need be considered. The phase
portraits for 4 > 0, v > 0 (# 1) are topologically the same as those
for A = 0, § = 0 in the corresponding region of the p,7 plane as
are given in Figure 10.1. This can be seen by observing that these
phase portraits are structurally stable with respect to small changes in
A, and A\ may be scaled to 1. For u = 0, v > 0, the critical points
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' 2(0; g)<d<ﬂ <o g)
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FIGURE 11.2. Bifurcation diagram and phase portraits of system (9): A =1,

§#0,v2>2
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S
8=0_(u;y)
8=84(1L:7) Y Sebam
//_ - bl
1 8=081(1;7)
4y
) I 3T W
8=35(11;7) 8=85(1;Y)
_/ - ’
d=06(1;Y) *
G e d=063(1;Y)
-1 LC
/ d=8,(1;7)
8=87(1;y)

FIGURE 11.3a. Qualitative bifurcation diagram.

P, and Py coincide to form a second order saddle node in the origin,
leaving a stable antisaddle in the critical point P_. Since, moreover,
x = 0 is an invariant line, the phase portraits for 4 = 0 and v > 0
are now readily determined. In region R3 the phase portraits may be
derived starting from the known properties of the critical points given
in Section 5. Considering the flow across the y axis leads to the phase
portrait for v > 2. For 1 < + < 2 numerical evidence shows that
all three separatrix structures allowed by the properties of the critical
points are realized. The values of p and v for which the unbounded
separatrix cycle occurs are given in Figure 11.1a. The phase portrait
for 0 < v < 1 may directly be determined from the properties of the
critical points. The phase portraits for p < 0, v < 0 (region Ry4) follow
directly from the properties of the critical points. The phase portrait
for 4 =0, v < 0 may be derived using similar arguments as for p = 0,
v > 0. In region Rg the phase portrait is as for g > 0, v < 0 in
Figure 10.1, this being structurally stable under small changes of .
(Note that the curve 1+ 4py = 0 is the intersection curve with A = 1
of the bifurcation surface A+4u~y = 0, which intersects the plane A = 0
along the coordinate axes.) There are no limit cycles.
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Hopf bifurcation

8=87(1;Y)
1.4
1.6-
-1.8 \ \ \ \
0 0.5 1 1.5 2 2.5

FIGURE 11.3b. Numerical results for p < —1/(4v); v = 1.5.

7.2. Phase portraits of system (9) for A =1, § # 0: v > 2.
These portraits are given in Figure 11.2. Region p < —(1/(47))
corresponds to region Rs in the u, v plane. For p < —1/(4v), § = 0,
the phase portrait is as given for v > 2 in Figure 11.1 and, as follows
from the direction in which the vector field is rotating, the phase
portrait remains topologically the same if § is made positive. If §
is made negative, the vector field rotates such that for some value of
0 = 01(p;y) an unbounded sepratrix cycle is formed, which generates a
unique stable limit cycle if § is decreased further. Subsequent decrease
of § makes the limit cycle shrink into a first order weak focus for § = —1,
whereas the phase portrait for this value of § prevails for § < —1. No
numerical calculations were made to determine 6 = d;(u;y). The region
—1/(4v) < u < 0 corresponds to the region Ry in the p,~y plane, and
we do need to consider it.

For =0, 6 = 0, the phase portrait is given in Figure 11.1 (y > 2).
Increasing  makes the vector field rotate in clockwise direction. As
a result, first the separatrix connecting the saddle at infinity with the
saddle node in the origin is broken, whereas, subsequently, a saddle
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8>84(u3Y) 3=84(1L;y) 35(1;Y)<8<B4(W;Y) 8=85(1;Y)

B6(iy)<B<Bs(1sy)  8=B6(LL:y) 8'<B<Be(lsy)  S7(uy)<d< —1

d=87(1;y)<-1 3=37(w;1>-1 —1<3<87(1;Y)

&"=max (—1, 87(u;y)) , 8= min(—l, 57(H;Y))
FIGURE 11.3c. Phase portraits for p < —1/(47).

node loop is formed surrounding P_. Upon further increase of §, an
unstable limit cycle is bifurcated which for 6 = 2/~ disappears through
a Hopf bifurcation in P_, which is then an unstable first order weak
focus. Further increase of § does not change the topological character
of the phase portrait. For all values 6 > 0 the origin is a second order
saddle node with one positive eigenvalue. If § is made negative the
separatrix connecting the saddle at infinity with the saddle node in the
origin breaks in the opposite direction leading to a separatrix structure
shown in Figure 11.2 for 67(0;+) < § < 0. Further decrease of § leads
to the separatrix structures as shown for —1 < ¢ < 67(0;7), and the
origin is still a second order saddle node with one positive eigenvalue.
For 6 = —1 the origin is a second order cusp, and for § < —1 a second
order saddle node with one negative eigenvalue.

For p > 0, 6 = 0 the phase portrait is as in Figure 11.1 (y > 2)
and also as in Figure 10.2 (y > 2, K = oo) and, in fact, the
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85(0;7)<8<81(057)  §=85(0:y)

FIGURE 11.3d. Phase portraits for p = 0.

bifurcation diagram and phase portraits of Figures 10.2 and 11.2 are
qualitatively the same for p > 0. It should be noted, however, that
in Figure 10.2 only the phase portraits for 6 > 0 are shown, and limit
cycle formation takes place around P_. In Figure 11.2 the same occurs
for § > 0, the critical point P_ being a first order unstable weak focus
for 6 =6_ =(1/(27))[2—~v+ (2+7)v1+4p]. For § < 0 the phase
portraits are topologically equivalent to that for § > 0; the limit cycle
formation now taking place around P,, which is a first order stable

weak focus for § =04 = (1/(29))[2— v — (2+ 7)1 + 4]

7.3. Phase portraits of system (9) for A\=1, 6 #0: 1 <y <2.
These phase portraits are given in Figure 11.3. As when going from
Figure 10.2 to Figure 10.3, the bifurcation diagram becomes more
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6=0_(W;

LC

L — 3=%wv)
82(057)

8=82(0;y

81(0;7)<8<8,(0;Y) / 8=81(1;7)

8>51(1:7) 5100:7)
} o i
_ _ 8=81(0:7)

81(057)<8<81(0:y)
/ 8=81(137)

81(05y)

8=01(;y)

—1<8<81(w;y)

8=85(11;Y)
C

3=8.4(1;y)

FIGURE 11.4. Bifurcation diagram and phase portraits of system (9) for
A=1,0#00<y< 1.

complicated and more phase portraits occur as a result of the presence
of two more separatrices from the critical point M1172 at infinity. For
i > 0 the same remarks apply as for the case v > 2, including the
expressions for d_ and ;. No numerical calculations of bifurcation
curves for p > 0 were made because the qualitative structure of the
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Ra Rs

8=81(1;y) — 0
103y

8=82(1;y)
LC
0=-1 -1

83(0y)
8=83(uy) ————— | 1

d=81(13Y) —;
1(0;7)

6=-1 -1

8=33(1;7) H=—-_=

8=81(1;7) —
31(05y)

o=-1 -1
LC

d=82(17) / 33(0;7) o
8=83(1:y) H=—7y

y<-2 4y

FIGURE 11.5a. Qualitative bifurcation diagrams.
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8=081(1;y)

3=8(1;Y)

8=81(1sY) - -0,5

8=082(1;7)

8=83(u37)

FIGURE 11.5b. Numerical results for the bifurcation curves for p < 0.
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@ & &)@
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6>063(0;y)
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8>061(0;y)

FIGURE 11.5¢c. Phase portraits.
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bifurcation diagram is clear.

For u < —1/(47) there exists but one finite critical point. In order
to find the separatrix structure, numerical calculations are needed, and
bifurcation curves obtained in this way are given in Figure 11.3b.

7.4. Phase portraits of system (9) for A\=1, 6 #0: 0 <y < 1.
These phase portraits are given in Figure 11.4. Bifurcation diagram
and phase portraits should be compared with those of Figure 10.4.
Since no new arguments are used, no further explanation is given.

7.5. Phase portraits of system (9) for A =1, § # 0: v < 0.
These phase portraits are given in Figure 11.5. As appears from
Table 3, apart from weak foci of the first order, also a centerpoint
can occur. In fact, for p < 0, § = —1, the origin (P) is a first order
weak focus if v # —2 and a centerpoint if v = —2. This may be seen by
replacing x by —ux, y by /—py and t by (1/y/—p)t, then (11) becomes,
with 6 = —1:

. 1 2
(22) T=—y+yry \/__Ny )

g=z+y’
The result follows by noting that the first focal value W7 = —(y +
2)//—p # 0 for v # —2, whereas for v = —2 it follows that

Wi =W, =W;s =0 [21].

The numerical calculations confirm the qualitative behavior of the
bifurcation diagrams and also show that the limit cycle occurs in a
very tiny § interval.

7.6. Conclusion.

Property 5. A classification of phase portraits of system (9) for
A =1 leads to 80 topologically different phase portraits not yet contained
in the classification for X = 0. They are given in Figures 11.1-11.5 and
correspond to 6 = 0, v > 2, 1 < v <2, 0<v<1andvy <0,
respectively.

Theorem 2. Any quadratic system of finite multiplicity my = 3 and
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an M{72 type of infinite critical point can be transformed by a linear
transformation into system (9):

&= \x+ py +yxy + 6(x + y?),
j=x+y°,
with A € {0,1} and v ¢ {0,1}.

There are 119 topologically different phase portraits; they are given
in Figures 10 and 11, together with the corresponding bifurcation dia-
grams.

System (9) has at most one limit cycle and, if it exists, it is hyperbolic.
APPENDIX

In this appendix the conditions on the coefficients in the general
quadratic system (1) are derived, such that the system belongs to the
classes studied in this paper.

It may be seen that Py(x,y) = agoz? + a2y + agey? and Qa(x,y) =
baoz? + biixy + booy? have a common linear factor if and only if
A= 04216 — C45C56 = 0, 025 + 04216 + C§6 # O, where Cq5 = (lgobll — allbgo,
Cha6 = a20b02 — aogbgo, Cs6 = a11b02 — (l()gbu, so that C45 75 0 and/or
cs6 7 0. It may be further deduced that for c45 # 0 this common linear
factor is c45x + cq6y, and for csg # 0 it is equal to cigx + C56Y.-

If ¢45 # 0, apply to (1) the transformation

T = —C46T — C45Y,

Y = €457 — C46Y,

to obtain, with D = ¢35 + ¢35 # 0,

~

Dz = Qoo + @107 + G017 + Go0T? + A11TY + G2y’

-z
(ay SPER
Dy =1y = boo + b1oT + b1y + baoZT” + b11ZY + bo2y
= Q(z,7),
where

Qoo = —Ca6a00 + Ca5b00,
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aio
ao1

G20

bo2

2 2
= C46010 — C45C46001 — C45C46b10 + c45b01,

2 2
—C45C46010 — Cy001 + Ci5bo1 + cascasbor,
3 2 2 2
—Ci@20 + C45C5011 — Ci5Ca6002 + Ca5C46b20
2 3
— cy5C46b11 + Ci5b02,
Venr 2 2 2 Venr 2
C45C46020 — (045 - 046)0466111 — 4C45C5002
2 2 2 2
— 2645646b20 =+ (645 — 646)645b11 + 2045646b02,
2 2 3 3
—C15C46020 — C45C4011 — Ci6002 + Cy5b20

2 2
+ ci5ca6b11 + cascigboz,

45000 + C46boo,
2 2 b b
—C45C46a10 + C45001 — Cig010 + C45C46001
2 2
C15010 + C45C46001 + Ca5ca6bo1 + Cigbot,
2 2 3 3
—C45C46020 + C45C46011 — Ci5002 — Cigb2o
2 2
+ ca5¢i6b11 — ci5ca6boz,
902 2 2 902
—2¢j5ca6a20 + (Cis — Cig)Casa11 + 2C35Ca6002
2 2 2 2
— 2¢45¢45b2o + (cis — Cig)casbin + 2cascigboz,
3 2 2 2
C15020 + C35C46011 + Ca5C46002 + C45Ca6b20

2 3
=+ C45C46b11 =+ C46b02.

975

If ¢56 # 0, by a similar transformation, (A1) may again be obtained,

where now
aoo
aio
ao1
G20

ail

Qo2

BOO

56000 — 4600,

2510 — C46C56001 — C46C56D10 + Cagbot s
C16C56a10 + Coga01 — Cigbor — Ca6Cs6bot s
Caa20 — Ca6Ca6a11 + Ci6C56002 — C16CGb2o

+ c3ecs6b11 — Cigbozs

264(;56%60420 + (Cgﬁ — 64216)056‘111 — 204gc§6a02
— 2656656b20 — (Cgﬁ — 64216)(3461)11 + 20421665617027
ci6c56a20 + 646626a11 + Cgﬁaog — CiGbQO

2 2
— 3656011 — Ca6C56b02,

4600 + c56boo,
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bio = Ca6C56a10 — Cigao1 + Cagbio — CasCs6bot,
bo1 = 1610 + Ca6C56a01 + Ca6Cs6bio + Cagbot,
bao = 0460266120 - 042160560611 + 026%2 + 026520
— ca6C26b11 + CigCseboz,
bi1 = 2cigCs6a20 + (€36 — Cig)casarr — 2C36C56a02
+ 2ca6¢26b20 + (c2g — cig)csebil — 2ca6C2gboa,
boz = C?}ﬁa20 + 042166566111 + 0460266102 + 012160561720

2 3
—+ 0460561711 —+ C56b02.

It may be seen that the common factor of Py(Z, %) = GooZ? + G127 +
~ 2 Al o — T 22 T e L T 2 i
an2y” and Q2(Z, ) = baoZ? + b11ZY + bo2y” is ¥.

In fact, if c¢45 # 0, we may write

_ 2 2
az0 = —046(046G20 — C45C46011 + 045CL02)
2 2
+ cu45(cigb2o — cascagbi1 + cis5bo2) =0,
7 2 2
bag = —ca5(Ciga20 — CasCagar1 + Ci5a02)

2 2
— cag(cighao — cascasbin + cisbo2) =0,

since c452 + c46y is a factor of Po(x,y) and Qa(x,y), and the same
follows if ¢56 # 0.

The critical points at infinity of (A1) are in the directions § = uZ,
where u satisfies

f(@) = aoau® + (@11 — boz)u? + (@ — b11) — bag = 0.

The transversally nonhyperbolic point at @ = 0 is third order in the
direction of the Poincaré circle if b1; = 0, @11 = boa # 0, ag2 # 0. In
order that (A1) is of class my = 3, there should be bio # 0 since byg = 0
yields m; < 2. Elimination of Z between P(z,7) = 0 and Q(Z,9) = 0
yields an equation for the coordinate g of a finite critical point of third
degree if byy # 0, thus this condition is also sufficient.

In summary, a quadratic system is of the class m; = 3 with an infinite
critical point of type Mj 3, if the following conditions are satisfied:

A =iy — casese = 0, cis + o + 36 # 0,
b1 =0, a1 = boz (#0), bio # 0, apz 7 0.
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Similarly, it can be derived that if a quadratic system is of the class
my = 3 with an infinite critical point of type M{')Q that the following
conditions should be satisfied: A = ¢35 — ca5cs6 = 0, ¢35+ 36 + 26 # 0,
bi1 =0, @11 # boz(@11bo2 # 0), bio # 0.
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