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TRANSITION VECTOR MEASURES AND
MULTIMEASURES AND PARAMETRIC
SET-VALUED INTEGRALS

NIKOLAOS S. PAPAGEORGIOU

ABSTRACT. In this paper we examine transition vec-
tor measures and multimeasures. First we prove a Radon-
Nikodym theorem for transition vector measures and then
we use it to establish the existence of a set-valued Radon-
Nikodym derivative for transition multimeasures. Subse-
quently, we examine parametric set-valued integrals and ob-
tain two results characterizing their measurable selectors (in-
tegral versions of Filippov’s implicit function lemma). We
conclude with a useful observation concerning transition mea-
sures.

1. Introduction. In a recent paper [10] we proved a Radon-
Nikodym theorem for transition multimeasures (set-valued measures).
The purpose of this paper is to extend the above mentioned results to
the case where the dominating (control) measure is a transition mea-
sure too and then establish some properties of parametric set-valued
integrals. Multimeasures and set-valued integrals are the natural gen-
eralization of classical single-valued measures and integrals and so it is
interesting to know to what extent we can duplicate the existing the-
ory on them. But, in addition, multimeasures and set-valued integrals
are the appropriate analytical tools in various applied areas, like math-
ematical economics, statistics, optimization and optimal control. We
refer to [10, 11] and [12] for a list of relevant references. We also men-
tion that transition multimeasures are useful in the study of Markov
temporary equilibrium processes in dynamic economies; see Blume [2].

In this paper, first we prove a Radon-Nikodym theorem for transition
vector valued measures and then we use that result to prove a Radon-
Nikodym theorem for transition multimeasures. Then, in Section 4,
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we turn our attention to parametric set-valued integrals and try to
characterize their measurable selectors. This leads us to two integral
versions of the implicit function lemma (Filippov’s lemma), used
in control theory and optimization, see Himmelberg [6, Section 7].
We close the paper with an observation concerning finite transition
measures.

2. Preliminaries. In this section we fix our notation and recall some
basic definitions and facts from the theory of measurable multifunctions
and set-valued measures (multimeasures).

Let (£2,X) be a measurable space and X a separable Banach space.
We define Py)(X) = {A C X: nonempty, closed, (convex)} and
Plwyi(e)(X) = {A € X: nonempty, (weakly-) compact, (convex)}. Also
if A C X is nonempty, we set |A| = sup{||z|| : © € A} (the norm of
the set A), o(z*, A) = sup{(z*,z) : v € A} for z* € X* (the support
function of the set A) and d(z,A) = inf{||z —z| : z € A} for z € X
(the distance function from the set A).

A multifunction (set-valued function), is said to be measurable if, for
all z € X, w — d(z, F(w)) is measurable. Other equivalent definitions
of measurability can be found in Himmelberg [6] (cf. Theorems 3.5 and
5.6). For a measurable multifunction, we have that Gr F' = {(w,z) €
OxX:2 € F(w)} € ¥ x B(X), with B(X) being the Borel o-field
X (graph measurability of F'(-)). The converse is true, if there is a
complete, o-finite measure p(-) on (£2, X) (see Himmelberg [6, Theorem
3.5(iii)]).

Let u(+) be a finite measure on (2,%), and let F : Q@ — 2X\{2}. We
define S = {f € L'(Q,X) : f(w) € F(w)u — a.e.}. This set may be
empty. It is easy to see using Theorem 5.7 of Himmelberg [6], that for
a graph measurable multifunction the set S} is nonempty if and only
if w — inf{||z|| : z € F(w)} € L*(Q). In particular, this is the case
for an integrably bounded multifunction F(-), i.e., w — |F(w)| € L*(Q).
Using the set SL we can define a set-valued integral for F(-) by setting
Jo F(@) daw) = {Jo, fw) du(e) : f € S},

Now let X be any Banach space. A set-valued set function M : 3 —
P;(X) is said to be a multimeasure (set-valued measure) if and only
if, for every z* € X*, A — o(z*, M(A)) is a signed measure. For a
multimeasure M(-) and A € ¥ we define |[M|(A) = sup, Xp| M (A)|,
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where the supremum is taken over all finite ¥-partitions 7 = {A;}7_,
of A. If |M|(Q) < oo, then M(-) is said to be a bounded variation.
By Sis we denote the set of all vector measures m : ¥ — X such that
m(A) € M(A) for all A € ¥ (measure selectors of M). Finally we
say that M < p if, for every A € ¥ with u(A) = 0, we have that
M(A) = {0}.

Next, let (,%X) and (I,7) be two measurable spaces and X a
separable Banach space. A set map m : 7 x Q@ — X is said to
be a transition vector measure if, (1) for all A € T, w — m(A4,w)
is measurable and (2) for all w € Q, A — m(A,w) is a measure.
Analogously a multivalued map M : 7 X Q@ — P¢(X) is a transition
multimeasure if (1) for all A € 7, w — M(A,w) is a measurable
multifunction and (2) for all w € Q, A - M(A,w) is a multimeasure.
A transition vector measure m(A,w) satisfying m(A4,w) € M(A,w) for
all (A,w) € T x Q is said to be a transition selector of M. The set of
all transition selectors of M(A,w) will be denoted by T'Syy.

Let T be a Polish space, i.e., T is metrizable by some metric d such
that (7,d) is complete and separable. By C,(T") we will denote the
space of all bounded, continuous, R-valued functions on 7. Also,
by M®(T) we will denote the space of bounded Borel measures on
T. Note that since T is a Polish space, every such measure is reg-
ular, hence a Radon measure. The narrow topology on M?®(T) is
the weakest topology on M?(T) for which the maps u — (u, f) =
[ F(t)u(dt), f € Cy(T), are continuous, i.e., the narrow topology is
the w(M?®(T), Cy(T))-topology, where the duality brackets for the pair
(M"(T),Cy(T)) are given by (u, f) = [, f(t)u(dt). We remark that
if T is compact, then Cy(T) = C(T) and C(T)* = M(T) (Riesz rep-
resentation theorem), and so the narrow topology coincides with the
weak*-topology. By MY (T) we will denote the cone of all positive
bounded (Radon) measures in M®(T'). It is well-known that the space
M? (T) furnished with the narrow topology becomes a Polish space
(see Dellacherie-Meyer [3, Theorem 60]). Given that every measure
p € M®(T) can be written uniquely as p = p* — p~,u*,p= € MY(T),
we see immediately that M®(T") equipped with the narrow topology is
a Souslin space, i.e., the continuous image of a Polish space.

3. Radon-Nikodym theorems. First we prove a Radon-Nikodym
theorem for transition vector measures. So our result extends the
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classical Radon-Nikodym theorem to transition vector measures.

Theorem 1. If (2,%,)) is a finite measure space, T is a Polish
space with its Borel o-field B(T'), X is a Banach space with the Radon-
Nikodym property (RNP), m : B(T) x Q — X is a transition vector
measure of bounded variation, p : B(T) x Q — Ry is a finite transition
measure, and for all w € Q\N, A(N) = 0, m(-,w) < pu(-,w), then
there exists a jointly measurable function f : T X Q — X such that
fw) € LNT,p(-w); X), w € Q, and m(A,w) = [, f(t,w)pu(dt,w)
for all (A,w) € B(T) x (QA\N).

Proof. Let w € Q\N. Then, since by hypothesis m(-,w) < u(-,w) and
by hypothesis X has the RNP, there exists f(-,w) € LY(T, pu(-,w); X)
such that, for all A € B(T),

m(A,w) = /A F(t, w)u(dt, w).

We remark that since T is Polish, B(T) is countably generated,
and let A = {C}m>1 be a countable field generating B(T), i.e.,
B(T) = o(A). Let {P,}n>1 be a sequence of finite Borel-measurable
partitions of 7" such that P,, n > 1, is the finest possible partition
involving elements from the field generated by the family {7, C,, }7,_;.
Let P, = {Enk :1 <k < N,}, n > 1. Note that P, < Pp41 in the
sense that every element in P,, is the union of some elements in P, 1,
and furthermore we have that B(T) = o(Up>1Py). Let m(A4,w) =
fA u(dt,w) for all (A,w) in B(T) x Q. Then m(A,w) =m(4,w)
for all (A w) B(T) x (Q\N). For every n > 1, define f, : TxQ — X
as follows:

2

- m(EnJm w)
1 /J’(En,kh (U)

with the usual convention that 0/0 = 0 (see Diestel-Uhl [4]).

fn(taw) = XEn,k (t)

>
Il

Clearly, for every n > 1, (t,w) — fn(t,w) is B(T) x X-measurable.
Also, from Proposition 48.1 and Remark 48.3, of Parthasarathy [13], we
know that for each w € Q, f,,(t,w) = f(t,w) in X for all t € T\D(w),
w(D(w),w) = 0 and fn(-,w) = f(-,w) in LY(T, u(-,w); X). We should
mention that the result of Parthasarathy [13] is for R-valued measures,
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but his proof extends verbatim to the vector-valued case, thanks
to the Neveu-Ionescu Tulcea convergence theorem for vector-valued
conditional expectations (see, for example, Metivier [8, Theorem 11.2]).

For each w € Q, on B(T') we define the pseudometric
d((U)(Al, Ag) = [L(AlAAZ, OJ).

Then, from Theorem B of Halmos [5], we know that

apc U { € (\N) x T': u(cm,w)g%teom}

n>1m>1
=T €¥ x B(T).

Now define f: T x 2 — X by

f(t,(U) = { f.(tvw) for (w,t) cIe

0 otherwise.

Clearly, since I' € ¥ x B(T) and f,,(t,w) = f(t,w) on (Gr D)¢ D I'¢,
we get that (t,w) — f(t,w) is jointly measurable on T x Q into X.
Also, for all A € B(T) We have m(A,w) = [, f(t,w)p(dt,w) for all
wEQ So m(A,w) = [, f( dtw)foralleQ\N o

Now we will use this result to establish the existence of set-valued
Radon-Nikodym derivatives for transition multimeasures with respect
to transition measures. Our result extends Theorem 4.3 of [10], where
the measure p was independent of w € 2 and the separable Banach
space X was assumed to be reflexive. In addition, the proof is different.

Theorem 2. If (Q,X,)\) is a finite, complete measure space, T is
a Polish space with its Borel o-field B(T), X 1is a separable Banach
space, u: B(T) x Q@ — Ry is a transition measure and M : B(T) x
Q — Puke(X) is a transition multimeasure such that for all (A,w) €
B(T) x (A\N), A(N) =0, M(A,w) C [, W(t,w)u(dt,w), with W :
T x Q — Pyrc(X) measurable and for all w € Q\N, W(-,w) is
p(-, w)-integrably bounded, then there exists F : T X Q — Pyr.(X) a
measurable multifunction such that F(-,w) is p(-,w)-integrably bounded
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and M(A,w) = [, F(t,w)u(dt,w) for all (A,w) € B(T) x (Q\N'),
p(N') = 0.

Proof. Let D* = {z}},>1 € X* be dense in X* for the Mackey
topology m(X*, X). The existence of such a sequence follows from the
separability of X, cf. Wilansky [14, page 144]). Let D = {3 p_, \xz} :
1 < n, (A, z) € @xD*}, ie., the set of all rational linear combinations
of elements in D*). Clearly, D* is countable and m(X*, X)-dense
in X*. Note that, for every z* € D*, (A,w) — o(z*, M(4,w)) is
an R-valued transition measure and o(z*, M(-,w)) < p(-,w) for all
w € Q\N,A(N) = 0. Apply Theorem 1 to get u(z*) : T x @ — R,
a jointly measurable function such that u(z*)(-,w) € LY (T, u(-,w); R)
and o(z*, M(A,w)) = [, u(z*)(t, w)u(dt,w) for all (A,w) € B(T) x
(Q\N).

Let W (t,w) = conv |W (t,w) U (=W (t,w))]. Then, from the Krein-
Smulian theorem, see, for example, Diestel-Uhl [4, Theorem 11], we
have that W (-,-) is Pyre(X)-valued, with symmetric values, is jointly
measurable, cf. Proposition 2.3 and Theorem 9.1 of Himmelberg [6])
and W(-,w) is p(-,w)-integrably bounded for all w € Q\N. Let
z*,2* € D*. We have, for all (4,w) € B(T) x (Q\N):

o(z*, M(A,w)) —o(2*, M(A,w))
- /A () (b w) — u(z) (b w) ()

< /Aa(x* — 25, W(t,w))p(dt,w)
= u(z")(t,w) — u(z*)(t,w)
<o(z* - 2", W(t,w))

for all t € T\D;(w), p(Di(w),w) = 0. Similarly, since W(,) has
symmetric values, we get that

u(z*)(t,w) — u(@®)(t,w) < o(e” — 2", W(t,w))
for all t € T\D3(w), u(D2(w),w) =0 and all w € Q\N. So we get

(1) [(u(z")(t,w) — u(=")(t,w)] < o (2" — 2", W(t,w))
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for all ¢ € T\D3(w), p(D3(w),w) = 0 and all w € Q\N. Finally, note

that if 2*, 2* € D* and 8 € Q, then for all (A,w) € B(T) x (A\N), we
have

o(z" + Bz", M(A,w)) < o(z*, M(A,w)) + Bo(z*, M(A,w))
/A w(z® + B2") (t, w)u(dt, w)

!

S
A
N

(u(@®)(t, w) + Bu(z") (¢, w))p(dt, w)
u(z® + Bz")(t,w)

u(z®)(t, w) + Bu(z")(t,w)

for all t € T\ D4(w), p(D4(w),w) = 0. Set D(w) = Ut D;(w) and, as

before, let I' = Gr D = {(w,t) € (QA\N) x T : ¢t € D(w)}. We already
know that I' € ¥ x B(T). Then define a(z*)(t,w) by

I/\ﬂ

u(z*)(t,w) for (w,t) el
0 otherwise.

i) (tw) = {

Clearly, @(z*)(-,-) is jointly measurable. Also, from inequality (1) we
see that, for all (¢t,w) € T x (Q\N)

|a(z*)(t,w) — a(z")(t,w)| < o(z* — 2%, W(t,w)).

Since W (-, -) is Pye(X)-valued, o (-, W (t,w)) is m(X*, X)-continuous.
So, from the above inequality, we deduce that z* — 4(z*)(¢,w) can
be extended uniquely to an m(X*, X)-continuous function defined on
all of X* and denoted by 4g(z*)(t,w). Furthermore, it is clear from
inequality (2) that z* — dg(z*)(t,w) is sublinear. So there exists
F:TxQ— P, r:(X) a measurable multifunction such that F(At,w) C
W(t,w), p(:,w)-almost everywhere and ao(z*)(t,w) = o(z*, F(t,w))
for all w € Q\N.

Since (t,w) — to(z*)(t,w) is measurable, (t,w) — o(z*, F(t,w)) is
measurable and so (t,w) — F(t,w) is B(T) X S-measurable, where
B(T) x X is the universal o-field corresponding to B(T) x X. Then,
from Theorem 5.6 of Himmelberg [6], we know that there exist f,, : T'x

Q — X, n >1, B(T) x X-measurable maps such that, for all (t,w) €
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T x Q, F(t,w) = L {fa(t,0) bns1. Let sum(t,w) = S0 Xpn (tw)vg,
with Bf € B(T)x ¥ and vy € X, be simple maps such that
Snm (t,w) = frn(t,w) as m — oo for all (¢, w) Let ~() be the bounded
measure on (T x Q, B(T) x X) defined by (D) = [, u(D(w),w)A(dw)
for all D € B(T) x X. Then, from Theorem 13 13 of Halmos [5], we
know that BE, = BX ANE_ with BX € B(T) x ¥ and NE,_ is y-null.
Let Ny = Uk 1N’C and Ny = Up,m>1Nnm. Clearly, Ny is a y-null
set. Let Ny € B(T) x X be such that y(N;) = 0 and Ny C N;. Define

{énm(t,w) if (t,w) ¢ Ny
0

S t,w) =
nm () otherwise.

Clearly, ppm(-,-) is B(T) x S-measurable and s, (t,w) = fn(t,w) as
m — oo for all (t,w) € Nf. So if, for every n > 1, we define

fultw) = {fn(t,w) if (t,w) ¢ Ny

0 otherwise,

then this function is B(T') x X-measurable. Set F'(t,w)=cl{f,(t,w)}n>1.
This multifunction is B(T) x Y-measurable, cf. Theorem 5.6 of Him-
melberg [6], and furthermore F(t,w) = F(t,w) y-almost everywhere on
T x Q. Thus, for all w € Q\N', A(N') =0 and all A € B(T) we have

/A (@, B(t,w))u(dt,w) = /A o (@, F(t, ) u(dt, w)
= o(z*, M(A4,w))
- /A o (@, F(t, ) u(dt, w)

—a<a:*,/AF(t,w)u(dt,w)>.

Since w(dt,w) € Pyko(X), we conclude that
Al

M(A,w) = /A Flt,0)u(dt,w). O

4. Parametric set-valued integrals. In this section we use
the Radon-Nikodym type theorems obtained above to characterize the
measurable selectors of parametric set-valued integrals.
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Our first result can be viewed as an integral version of the implicit
function theorems of Filippov type (see Himmelberg [6, Section 7]).
It is well known that such results are useful in the analysis of control
systems. Similarly, our integral version can be useful in the study of
systems with transition measures as controls (relaxed systems).

So our theorem says that any measurable selector of a parametric
set-valued integral can be expressed as the integral of a function which
is measurable with respect to the parameter and takes values in the
multivalued integrand.

Theorem 3. If (2,X,)\) is a finite, complete measure space, T is
a Polish space with its Borel o-field B(T), X is a separable reflezive
Banach space, 1 : B(T)xQ — R is a transition measure, F : T X —
Pyke(X) is a measurable multifunction such that, for all w € Q\N,
AN) = 0, F(,w) is u(-,w)-integrably bounded and z : Q@ — X
is a measurable function such that, for all w € Q\N, A(N) = 0,

r(w) € [, Ft,w)u(dt,w) for some A € B(T), then there exists
f:TxQ — X a measumble function such that for all w € Q\N,
AN) =0, f(-,w) € LY T, u(-,w); X), = [, f(t,w)u(dt,w) and

f(-w) € F(r,w), u(-,w)-almost everywhere

Proof. From Proposition 3 1 of [9], we know that, for all (4,w) €
B(T ) x Q, M(A,w) fA dt w) € Pykc(X). Furthermore, for
all z* € X*, (x M(A,w) fA z*, F(t,w))p(dt,w), which shows
that M : B( ) X Q — Pwkc(X) is a transwlon multimeasure. Apply
Proposition 4.2 of [10] to get m : B(T) X2 — X a transition selector of
M(-,-),i.e., m belongs in T'Sys, such that for allw € Q, m(4, w) = z(w).
Then apply Theorem 1 of this paper to get f : T'x 2 — X a measurable
map such that for all w € Q\N, A(N) =0 and all C € B(T), we have

ow) = m(C.w) = [ fltwmldt.e)
:>/ f(t, w)p(dt,w) E/CF(t,w)u(dt,w)
:>/ Yp(dt,w)

< / o(z*, F(t,w))p(dt,w) for all z* € D*
C
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= (2", f(t,w)) < o(a”, F(t,w))
for all (t,z*) € (I'\Z) x D* with pu(Z,w) =0.

Since both functions z* — (z*, f(¢,w)) and z* — o(a*, F(t,w)) are
m(X*, X)-continuous and D* is m(X*, X)-dense in X*, then we get
that

(z*, f(t,w)) < o(z*, F(t,w)) forall (¢,2%) € (T\Z) x X*
with u(Z,w) =0
= f(t,w) € F(t,w), p(,w)—ae. o

If X is finite dimensional, then we can weaken our hypothesis on the
multifunction F(¢,w) and allow it to have nonconvex values. So we
have the following result:

Theorem 4. If (Q,3, ) is a finite complete measure space, T is a
Polish with its Borel o-field B(T), X is a finite dimensional Banach
space, F' : T x Q — Py(X) is a measurable multifunction such that,
for allw € Q\N, A(N) =0, F(-,w) is p(-,w)-integrably bounded and
if t belongs in an atom of p(-,w), then F(t,w) is also convexr and
z : Q@ = X is a measurable function such that for all w € Q\N,
AN) =0, z(w) € M(A,w) for some A € B(T), then there exists
f:TxQ—Xa measumble functwn such that, for all w e Q\N*,
)‘(N*) =0, f('aw) € Ll(Ta,u('aw);X fA dt w) and
f(t,w) € F(t,w)pu(-,w) almost everywhere

Proof. Let M(A,w) = [, F(t,w)u(dt,w) for (A,w) € B(T) x Q.
From the properties of the set-valued integral, see, for example, Klein
Thompson [7, Chapter 18], we have that for all (A,w) € B(T) x
Q, M(A,w) e Pkc(X). Furthermore, for every z* € X* we have

(m M(A,w)) = [, o(x*, F(t,w))u(dt,w) which shows that (4,w) —

(A,w) is a transmon multlmeasure. Apply Proposition 4.2 of [10]
to get m : B(T) x @ — X a transition selector of M(-,-) such
that m(A,w) = z(w) for all w € Q\N, A(N) = 0. From the
deﬁnition of the set valued integral, see Section 2, we know that

= [, f(t,w)u(dt,w) for all w € Q\N', u(N') = 0. In fact,

f(-,w) = dmf(, )/d,u( ,w) (the Radon-Nikodym derivative of m(-,w)
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with respect to u(-,w)). Then, as in the proof of Theorem 1, we
can show that there exists f : T'x Q@ — X a B(T) x X-measurable
function such that, for w € Q\N’ (N’) = O f(t,w) € F(t,w), p(-,w)
almost everywhere and m(A,w) = [, f dt w) So for w € Q\N*,
N*=NUN', )\(N*)*Owehavew fA wp(dt,w). O

We conclude this paper with a useful observation concerning transi-
tion measures.

Proposition 5. Assume that (2,%, ) is a finite measure space and
T a Polish space.

(i) If p : @ — ME(T) is measurable (where M3 (T) is equipped
with the narrow topology), then i : B(T) x Q@ — R, defined by
(A, w) = p(w)(A) is a transition measure;

(ii) If T is compact and p : B(T) x Q — Ry is a finite transition
measure, then i : Q — ME(T) defined by p(w)(-) = p(,w) is
measurable when Mi (T') is equipped with the narrow topology.

Proof. (i) Let V. C T be open. We claim that ¢y : w —
A(V,w) = p(w)(V) is measurable. Indeed note that ¢y = 02 00; where
61 : Q — M (T) is defined by 6;(w) = pu(w) and 65 : M3 (T) — R, is
defined by 63(\) = A(V'). By hypothesis 6;(-) is measurable while from
the Portmanteau Theorem, see, for example, Ash [1, Theorem 4.5.1],
62(-) is lower semicontinuous on M9 (T') furnished with the narrow
topology. Therefore, 63 o 81 = ¢y is measurable. Then, exploiting
the regularity of u(w)(-) = f(,w), see Ash [1, Corollary 4.3.7], we
know that, given A € B(T), we can find V,, open, A C V,, such that
0 < fi(w, V) — fi(w, A) < 1/n. So fi(A,w) = lim i(V,,,w), which shows
that w — fi(A,w) is measurable for every A € B(T) = f(-,-) is a
transition measure.

(ii) Let f € C(T). Then w — [, f(¢)u(dt,w) is measurable implies
w = (f, fi(w)) is measurable, where <-, ) denotes the duality brackets
for the pair (C(T), M(T)) (Riesz representation theorem; see Ash [1,
Theorem 4.3.13]). Since f € C(T) was arbitrary, w — fi(w) is w*-
measurable, i.e., measurable from 2 into M, (T) with the narrow

topology (note that since 7' is compact the weak* and narrow topologies
coincide on M (T)). o
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