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AN EQUIVALENCE FOR CATEGORIES OF MODULES
OVER A COMPLETE DISCRETE VALUATION DOMAIN

PATRICK KEEF

ABSTRACT. An equivalence is presented between two cate-
gories closely related to the category of valuated vector spaces.
This equivalence is then recast in terms of short exact se-
quences of modules. A new class of mixed modules is intro-
duced, whose members we call A- Warfield, and, in particular,
it is shown that an isomorphism between the endomorphism
rings of two A-Warfield modules is induced by an isomorphism
of their underlying modules.

1. Introduction. Valuated vector spaces have proven to be of great
importance in the study of abelian groups, see [2]. For example, if
G is any abelian p-group, its socle G[p] inherits a valuation from the
height function on G. The main purpose of this note is to explore
two closely related constructions using other well-behaved classes of
algebraic objects. Let R be a fixed complete discrete valuation domain
with quotient ring Q and p € R prime.

Define a category A as follows. An object A € A is a reduced
torsion-free algebraically compact R-module, together with a smoothly
descending chain of summands Afc] indexed by the ordinals (where
we consider the symbol co to be an ordinal greater than all other
conventional ordinals), starting with A[0] = A. It follows that, for
every a, Ala] is also reduced, torsion-free and algebraically compact.
Notice that, if Aa] is defined only for isolated ordinals and for each
limit ordinal A we define A[A] = Ny<rA[a], then A[)] is pure (since A
is torsion-free) and p-adically closed, hence it is also a summand of A.

Define a second category D as follows. An object D € D is a
divisible torsion R-module, together with a smoothly descending chain
of submodules D[a] indexed by the ordinals, starting with D[0] = D,
such that D[«] is a summand of D whenever « is isolated. Once again,
to specify the chain of submodules, it is only necessary to describe
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them for isolated ordinals. As we shall see, D[A] is not necessarily a
summand of D when A is a limit ordinal.

The morphisms in A and D are the R-module homomorphisms
which preserve these distinguished chains of submodules. There is a
well-known equivalence between the category of reduced torsion-free
algebraically compact R-modules and the category of divisible torsion
R-modules, see, for example, [8, Theorem 6], and we extend this to
an equivalence between A and D (Proposition 1). This equivalence
can be approached from another viewpoint. For a torsion module
H, we set up a one-to-one correspondence between the sequences
0> A—-T —- H — 0, where A € A is a nice submodule of T
with the submodules A[a] determined by the height function on T,
and the sequences 0 - M — H — D — 0, where M is an isotype
submodule of H with the submodules D[ja] C D € D determined by
the height function on H (Theorem 1). In essence, this means that we
can represent objects in A as valuated modules and their corresponding
objects in D as c-valuated modules (see [4] for a discussion of the latter
term).

When 0 - A - T — H — 0 is one of these extensions and H
is totally projective, we say T is A-Warfield. We classify a couple of
collections of A-Warfield modules by cardinal invariants (Theorem 2).
In addition, we show that any isomorphism between the endomorphism
rings of A-Warfield modules is induced by an isomorphism of their
underlying modules (Theorem 3). It follows that any automorphism of
the endomorphism ring of an A-Warfield module is inner.

2. The equivalence. We begin with a quick review. Any terms not
explicitly defined can be found in [1] or [3].

Ifaec A€ A, let vg(a) = max{a : a € Ala]}; similar notation will
be employed in D. The rank of A € A is the dimension of A/pA as a
vector space over R/pR; similarly, the rank of D € D is the dimension

of D[p].

If G is a module and A is a limit ordinal, then the A-topology is the
linear topology utilizing {p?G : B < A} as a neighborhood base of
0. We will use without comment some standard facts regarding this
topology that are available in [10] and [11].
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Proposition 1. There is a categorical equivalence between A and D.

Proof. If A€ A, let FA=Q/R®pg A, where FA[a] = Q/R ®g Ala]
whenever « is isolated. If D € D, let GD = Hompg(Q/R, D), where
GD[a] = Hompg(Q/R, D[a]). As in Theorem 4 of [8], the evaluation
map FGD = Q/R ®g Homg(Q/R,D) — D is an isomorphism for
all D € D (since D is divisible, so that A(D) = D). In addition, as
in Theorem 5 of [8], the map A — Hompg(Q/R,Q/R ®g A) given by
a +— ¢4, where ¢o(z) =  ® a, is an isomorphism for all A € A (since
A is cotorsion, so Ext (Q, A) = 0). The result follows. O

If X CAe A let ((X)) denote the p-adic closure of the purification
of the submodule generated by X. Note that ((X)) will be a summand
of A, sothat A/({X)) will also be reduced, torsion-free and algebraically
compact.

Proposition 2. Both A and D have kernels and cokernels.

Proof. Suppose f: A — B is a morphism in A and K is the usual
module-theoretic kernel, so that A/K is isomorphic to a submodule of
B. Since B is reduced, so is A/K, so by 54(B) of [1], K is cotorsion,
and hence algebraically compact. In addition, since B is torsion-free,

so is A/K so that K is a summand of A. Similarly, for each ordinal «,

Kla] KN Ala] is a summand of A[a], hence a summand of A, and

finally a summand of K. It can be checked that this makes K into a
kernel of f in A. Turning to cokernels, let C = B/{{f(A))), and for
each isolated ordinal a let Cla] = ((Bla] + f(a)))/{({(f(A))). If X € A,
and g : C — X is a morphism in A, then (go f)(A) = 0 if and only if
g9({{f(A)))) = 0 if and only if g factors through C. It follows that C
forms a cokernel of f in A.

Even though our equivalence implies that it is only necessary to
verify the result for A, as an example we will also illustrate the
constructions in D. Suppose g : D — FE is a morphism in D. If J
is the divisible part of the kernel of g and for every isolated ordinal
a, J[a] is the divisible part of J N D[a], then J provides us with a
kernel for g in D. If G = E/g(D) and for every isolated ordinal «,
Gla] = (Ela] + 9(D))/g(D), then G is a cokernel of g in D. O
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Proposition 3. Both A and D have arbitrary products and coprod-
ucts.

Proof. Once again, though it is technically sufficient to consider
only one category, we include a discussion of both. If {4;};cr is
a collection of objects in A, then their usual direct product []; A4,
where for each o, (]]; 4i)[a] = [[;(Aila]) is also a product in A. To
construct their coproduct, consider ((®));A4;, by which we mean the
p-adic completion of the usual sum ®;A;, where for each ordinal a,
(((®))14)]a] = ((®))1(A;i]a]). Tt follows easily that ((D));A4; is in A.
Given any collection of morphisms A; —+ B € A, these first extend
uniquely to a module homomorphism ®;A; — B, and this extends
uniquely to a morphism ((®));A; — B.

If {D;}ics is a collection of objects in D, then [} D;, i.e., the torsion
submodule of their direct product, where for each o, ([]; D:)[a] =

[T,(Dila]), is their product, while the usual direct sum @;D;, where
for each a, (®D;)[a] = ®1(D;[a]), will provide a coproduct. u]

As mentioned above, these categories are closely related to the theory
of valuated vector spaces. In particular, many constructions from that
subject can be applied to our two categories. An object in A will be
called A-cyclic if it has rank 1, and A-free if it is the coproduct (in
A) of a collection of A-cyclics. On the other hand, we will say A is
A-injective if it is isomorphic in A to [ [, Aq, where A, is homogeneous
in the sense that v4(z) = «, for all nonzero x € A, (it can be seen that
each A, is A-free). As in the case of valuated vector spaces, the A-free
modules are precisely those which are projective with respect to the
class of sequences £ : 0 - X - Y — Z — 0 in A such that, for all «,
Ela]: 0 = X[a] = Y[a] — Z[a] — 0 is exact, and the A-injectives are
precisely those which are injective with respect to the class of sequences
E such that for all a, E|a] is left exact. It follows that both of these
classes are closed with respect to the formation of summands (in A4).
Of course, by our equivalence, we obtain corresponding concepts in D.

Proposition 4. The assignment A — A/pA is a surjective functor
from A to the category of valuated vector spaces, over R/pR. Similarly,



EQUIVALENCE FOR CATEGORIES OF MODULES 847

the assignment D — D[p| is a surjective functor from D to the category
of valuated vector spaces.

Proof. 1t is obvious that these assignments are functors. To show they
are surjective, suppose V is a valuated vector space. There is a free
valuated vector space W = @®;(v;), and a homomorphism f: W — V
with f(W]a]) = V[a] for every ordinal a. Let B C W be a basis for
the kernel of f. Now, for each i € I, let (a;) be A-cyclic in A such that
va(a;) = v(v;). Each element of B is a linear combination of various
v’s, and we let B’ be the set of corresponding linear combinations
of the a’s. If P = ((®))r{a;), @ = ((B")) C P, A = P/Q and for
every isolated a, Ala] = ((Pla] + @))/Q, then there are isomorphisms
A/pA=(P/Q)/((pP+Q)/Q) = P/(pP+ Q) = W/(B) = V which are
readily seen to preserve values. In addition, if D = Q/R ®g A, then
Dp] is also isomorphic to V as a valuated vector space. O

Although from a superficial viewpoint these categories may seem
straightforward (since both the reduced torsion-free algebraically com-
pact modules and the divisible torsion modules are classified by their
ranks), the following shows that their structure is at least as compli-
cated as that of the category of torsion R-modules.

Proposition 5. The assignment D — Dlw] is a surjective functor
from D to the category of torsion modules.

Proof. Suppose G is an arbitrary torsion module and for each
i < w, X; is a copy of a divisible hull for G. Let D = (®;<,X;)/L,
where L = {(zo,21,22,...) : @ € G, and g + x; + 2 + --- = 0}.
For each n < w, let D[n] = (Bn<icwXi + L)/L. It follows that
D[w] = Np<wDn] = (®i<,G)/L = G. o

We now show that not every result which is valid for valuated vector
spaces translates directly into a result for our two new categories.

Proposition 6. There is an object A € A of countable rank which
is not A-free.
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Proof. 1f, in the notation of the last proof, G = R/pR, then the
object D € D has countable rank. It follows that A = Homg(Q/R, D)
also has countable rank. However, if A were A-free, then it would
follow that D 2 Q/R ®g A is D-free, which contradicts the fact that
D[w] = R/pR. o

The next result presents the equivalence of A and D from another
perspective; it points out a correspondence between representations of
objects in A using valuations and representations of elements of D using
c-valuations.

Recall that a submodule X C G is full-rank if G/X is torsion.

Theorem 1. Suppose that H is a torsion module. There is a one-
to-one correspondence between exact sequences of the form

(1) 0—A—T—H—D0,

where A € A is a nice submodule of T, A[l] = A, and for every ordinal

B8 =wa+n, ANpT def A(B) = p"Ala]+ Ala+1], and ezact sequences
of the form
(2) 0—M-—H-"5D—0,

where M is an isotype submodule of H, D € D satisfies D[1] = D and,
for every B = wa +n, 1(pPH) = D[a + 1].

Proof. If (1) is given, apply —®r Ato 0 - R —» Q — Q/R — 0.
Letting Q/R®g A = D; then, since A is torsion-free, we obtain an exact
sequence 0 - A — QA 2> D — 0. Let M be the torsion submodule
of T so that T'/M is torsion-free. Now A(w) = A[l] = A, so that every
element of A has infinite height in 7. Since A is a full-rank submodule
of T, it follows that T//M is divisible. Therefore, the identity A — A
extends to a homomorphism T/M — QA. Letting H = T /A, we can,
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therefore, construct a commutative diagram, as follows:

0 0
A A
(3) 0 M T QA 0
0 M H—™ 5D 0
0 0

For an ordinal «, there is a decomposition A[a] = B ® A[a+ 1] so that,
for every j < w, we have A(wa+j) = p! Ala]+ Ala+1] = p? B& Ala+1].
In other words, B is a pure submodule of p**T, and hence p¥*T =
BaT', where Ala+1] = p*T" is full-rank. It follows that if 3 = wa+n,
then the image of p°T in QA is p" B&QA[a+1], which therefore implies
that 7(pPH) = 7({p?T + A}/A) = v(p"B © QA[a + 1]) = Do + 1].
We now show that M is isotype in H. If this failed, by niceness there
would be an z € M such that htr(z) = hty(x) < htg(z+ A). By the
niceness of A in T, this implies that for some a € A, htr(x) = hitr(a) <
htr(x + a). If p"z = 0, we would then have htr(p"a) = htr(a) +n <
htr(x + a) + n < htr(p™(z + a)) = htr(p™a), which cannot happen.

Conversely, if (2) is given, apply Homg(—,D) to 0 — R —
Q@ — Q/R — 0 to obtain a sequence 0 — Hompg(Q/R,D) —
Hompg(Q,D) — D — 0. Using our categorical equivalence, we let
A = Hompg(Q/R,D) € A. Since D is torsion divisible, it follows that
QA can be identified with Hompg(Q, D) and there is a short exact se-
quence 0 - A — QA — D — 0. Construct (3) using a pull-back of =
along v so that ' = {(z,y) : ¢ € H,y € QA,w(x) = vy(y)}. Our aim
is to derive an explicit formula for the height function on 7. Define a
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function o on QA as follows: ¢(0) = oo,

(4) o((QAla] — pAla]) + QA[a + 1)) = wa
(5) o((p"Ala] — p" Tt Ala]) + QA[a + 1]) = wa + n.

Claim. hp(z,y) = p(z,y) Lef min{htg(z),o(y)}.

Proof. We first show that p(pz,py) > p(z,y). To begin, note that
htg(pz) > htg(xz). If o(py) > o(y), then the inequality is clear. If
a(py) = o(y), it follows that y € (QA[a] — Ala]) + QA[a + 1] for some
a. Since w(p**H) = Dja+1] = v(QA[a+1]), it follows that htg(z) <
wa = o(y), and hence p(z,y) = htg(z) < htg(pz) < p(pz, py).

We next show that if § < p(z,y), there exists (z',y') € T such that
(pz',py’) = (z,y) and 6§ < pu(z’,y"). We must let y' = p~ly, and clearly
d < o(y'). Since § < htg(x), there is an zy such that pxy = = and
0 < htg(zg). Now assume 6 = wv + m. Since o(y) > 4, it follows that
y € pA[v] + QA[v + 1], and hence that ¢ € A[v] + QA[v + 1]. This
means that v(y') € D[v + 1] = m(p° H), so that y(y') = 7(x1), for some
1 € p’H. Next, 7(p(xo — z1)) = m(pzo) —pr(z1) = 7(z) —py(y') = 0,
so that p(zg — z1) € M. Since M is an isotype in H, there is an
zy € pP’M such that pry = p(zo — x1). Let ' = x; + 2, so that
htg(z') > 6. Tt follows that px’ = pz; + pry = prg = z and
m(2') = w(z1) + 7(z2) = v(y') + 0 = v(y'), and these facts indicate
that (z',y") € T has the desired properties.

It follows from the last two paragraphs that u(z,y) = min{u(z’,y’) :
p(z',y") = (z,y)}, but as this agrees with the inductive definition of
htr, the claim follows.

Identifying A with the ordered pairs for the form (0, y), then A(8) =
p?T N A follows from (4). In addition, if z € H has height 3, then there
isan (z,y) € T with 8 < o(y). It follows that htr(z,y) = 3, so that A
is a nice submodule of T O

The situation in Theorem 1(1) will be summarized by saying that T
is a nice extension of A € A. We also apply this terminology when
A[1] # A and, in this case, if A = B @ A[l], then B is pure in T so
that T = B @ T, where T” is a nice extension of A[l] € A. We point
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out another consequence of the last result: every a € A will have no
gaps in its height sequence, i.e., for each k, htr(p*a) = htr(a)+k. The
terminology in the next result is due to Harrison (for a discussion, see
[6] and [7]).

Corollary 1. The sequence 0 - M — H — D — 0 satisfies
Theorem 1(2) if and only if M is an immediate submodule of H, in the
sense that for every a, the natural map p*M /p*T*M — p*H/p**'H
is an isomorphism.

Proof. By [6, 1.1], M is an immediate submodule of H if and only
if it is isotype and for every limit ordinal wa, p“®H/p**M is divisible,
but since this is isomorphic to D[« + 1], the result follows. O

The modules G;, i = 1,2, are WARF-isomorphic if and only if there
is a height preserving isomorphism X; — X5, where X; is a full-rank
submodule of G;. In other words, X; and X are isomorphic as valuated
groups, see [12]. If A € A and « is an ordinal, then A[a]/Ala 4 1] will
be homogeneous, and we let g(A, a) denote its rank.

Lemma 1. Suppose for i = 1,2, T; is a nice extension of A;. If
T, and Ty are WARF-isomorphic, then g(Ay,a) = g(Az,a) for every
ordinal o.

Proof. We borrow a construction from [5, Section 5]. If u is an ordinal
and G is a valuated module, let

G(p)* ={g€Gu):v(®*g) > u+k for some k < w}.

Multiplication by p induces injective homomorphisms,

G(w) Glp+1) G(p+2)
G Glu+1) Gt

and we denote the direct limit of these by wg(u). By Lemma 4 of [5],
if Z C G is an embedding of valuated modules and Z is full-rank, then

wa(p) =wz(p).
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Suppose X; C T; are height isomorphic full-rank submodules. So A;
and X; are valuated modules when given the valuation induced by the
height function on 7;. For each j < w,

Aj(wa+j) ! Aila] + Aja + 1]
Aj(wa+j5)*  pitlAa] + Aila +1]
~ Ai[a] + A; [a + ].]

= pAifa] + Aija+ 1]

It follows that w4, (wa) = (A;[a]/Ai[a+1])/p(Aila]/Ai[e+1]), so that

g9(A1, @) = rank{wy, (wa)}

rank {w, (wa)}
(wa)}
rank {wx, (wa)}
rank {wp, (wa)}
rank {wa, (wa)}
= g(Az, a). O

= rank {wx,

One direct consequence of this result is that g(A, ) is independent
of how T is represented as a nice extension of some A € A. As such,
we denote this by gr(a), and we let fr denote the Ulm function of T

3. A-Warfield modules. We say T is an A- Warfield if it is a
nice extension of some A € A such that T'/A is totally projective. In
addition, we say T is A-free or A-injective if A can be chosen to be A-
free or A-injective, respectively. Though we will not do so, it is possible
to characterize the Ulm functions of A-Warfield modules.

Theorem 2. Suppose for i = 1,2, T; is A-Warfield. if each T; is
A-free, or each T; is A-injective, then Ty = Ty if and only if fr, = fr,
and g1, = gr,-

Proof. Necessity being transparent, suppose 1; is a nice extension of
A; € A and these functions agree for ¢ = 1,2. Now A; and A,y are
both either the product or coproduct of a collection of homogeneous
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objects in A, and since g(Aj,a) = g(Asz,a) for each ordinal «, these
homogeneous terms are isomorphic in A. It follows that there is a
height preserving isomorphism k : A; — As. For any ordinal (3, since
the height sequences of elements of A; have no gaps, it follows that

p°T;[p] p°T;[p]

(PP + Ai) NpPTilp] — pPHT[p)

so that the Bth relative Ulm invariant of A; in T; is given by fr.(8).
Since fr, = fr,, it follows that k can be extended to an isomorphism
T1 = T2. O

Corollary 2. In Theorem 2, the condition that g, = gr, can be
replaced by the requirement that Ty and Ty are WARF-isomorphic.

It is logical to wonder whether we can use some broader classes of
modules in the last result. However, we have the following:

Proposition 7. There are nonisomorphic A-Warfield modules T;,
i = 1,2, which are WARF-isomorphic and have identical Ulm func-
tions.

Proof. We assume that R is the p-adic integers, though this could be
avoided if desired. The main property we use is that for an infinite,
reduced torsion module, rank agrees with cardinality.

Let S;, i = 1,2, be copies of the coproduct (in A) of (z;), j < w,
where v4(z;) = j, and let P; be their corresponding products. We
let Ay = P; and Ay = pP, + S2 € A. By a result of [12], there
are totally projective modules H; of length ww and nice extensions

T; of A; with T;/A; = H;. Adding on totally projective direct

summands, we may assume H; = Hy 4f I, There is clearly a height

preserving isomorphism between the full-rank submodules pP; of T;
and fr, = fg = fr,. If T1 = T3, we can identify these, calling the
result 7', and then identify the A; with two nice submodules of T.
Note that Ay /pP, is a countable nice submodule of 7'/pPs, and the
corresponding quotient is isomorphic to T/As = H. It follows that
T/pP, is totally projective of length ww. We claim that there is a
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j < w such that A;[j] C pP,. If this failed, then we could construct
elements y; € A;[j] such that the heights of y; + pP, in T'/pP, form a
strictly increasing sequence. Let N be a countable nice submodule of
T /pP, containing each y;. Note that NV is a closed submodule of T'/pP»
in the ww-topology. For any sequence o = {k, }, where each k € {0,1},
Yo = kiy1 + -+ + kjy; + -+ + pP, is a well-defined element of T'/pP;
in the closure of N, so y, € N. But since o1 # o3 implies Yo, # Yo, , it
follows that N has uncountable cardinality, which is a contradiction.

Fixing a j such that A;[j] C pP,, A; has elements of height exactly
wj, but pP» does not, and this contradiction proves the result. a

Recall that M is an IT-module if it can be embedded as an isotype
submodule of a totally projective module. This class is quite general,
and in a certain sense, the structure of this class is just as complicated
as the structure of the class of all torsion modules, see [4]. For a module
G and an ordinal «, let U, (G) = p*G|[p]/p*T1G[p| denote the ath Ulm
invariant of G.

Proposition 8. If M is any IT-module, then there is an A-Warfield
module T whose torsion submodule is isomorphic to M.

Proof. We need to show that there is a totally projective module H
containing M as an immediate submodule. Let G be a totally projective
module containing M as an isotype submodule. A standard property
of totally projective modules is that they are fully starred, i.e., if X
is any submodule of GG, then X has the same rank as one of its basic
submodules (this can be seen, for example, by considering an axiom
three family of nice submodules of G). It follows easily that the Ulm
function of M is admissible, see [1], so that there is a totally projective
module H such that fy; = fg. For each «, let k, : Uy (M) — Uy(H)
be an isomorphism. In the obvious way we can identify U, (M) with
a submodule of U, (G), and so we can extend k, to a homomorphism
Uus(G) — U, (H). By [15], there is a homomorphism &k : G — H which
induces k, on Uy (G) for every a. If z is a nonzero element of M|[p] of
height «, then [z] is a nonzero element of U, (M). So [k(z)] is a nonzero
element of Uy(H) and k(z) has height « in H also. This implies that
the kernel of k is zero, and hence that k is injective. We can now use
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k to view M as a submodule of H, and we may assume that the maps
k. are induced by the inclusion. Therefore, by [1], M is an isotype
submodule of H. Finally, since the maps k, are all isomorphisms, the
relative Ulm invariants of M in H are all zero, so that by [6], M is an
immediate submodule of H.

If A is a limit ordinal, then G is a A-elementary KT-module if
p G = R and G/p*G is totally projective, see [14]. A KT-module
is, then, a sum of A-elementary KT-modules, for various limit ordinals
A (sometimes these modules are referred to as the balanced projectives).
An S-module is a torsion-submodule of a KT-module.

Proposition 9. The torsion submodule of an A-free A-Warfield
module is an S-module.

Proof. Suppose T is a nice extension of A € A and A is A-free. In
addition, suppose that for each limit ordinal A we fix a A-elementary
KT-module Ty. We let W = ®x(Dg(r)Tr). Notice also that, for
each A\, p*T\ = R can be considered an A-cyclic object in A. Let
A" = (@)A(((@)gr)p*Th) and Z = &(Dg(r)p*Th). Finally, let
T' be the amalgamation of W and A’ along Z (so T = W + A’,
Z = WnA"). It can be checked that A’ € A is a nice submodule
of T" which is A-isomorphic to A. In addition, T"/A" = W/Z is
totally projective, so that 7" is A-Warfield. Choosing totally projective
modules X and X’ with sufficiently large Ulm functions, T & X and
T' @ X' will have the same Ulm functions. This means that our
isomorphism A — A’ extends to an isomorphism T X — T"®X'. If M
and M’ are the torsion submodules of T'and 7", then M®X = M'® X',
and since M’ is an S-module, M @ X is an S-module, and hence M is
an S-module. o

On the other hand, the structure of the torsion submodules of A-
injective A-Warfield modules is not as clear.

When considering a class of modules, it is usually important to
consider how the class behaves with respect to extensions of the form
0 — pPT — T — T/pPT — 0. We address this in the following.
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Proposition 10. If T is an A-Warfield module and B is an ordinal,
then pPT and T/pPT are A-Warfield modules. The converse fails.

Proof. Suppose T is a nice extension of A € A with T/A totally

projective and 8 = wa +n. If A def A(B) C pPT, where for any
ordinal v > 0, A'[y] = Ao + 7], then it can be verified that pAT is
a nice extension of A’ with a totally-projective quotient, so that it is
A-Warfield. Next, if A = A—1@ Ala], then T/p”T can be shown to be
a nice extension of (A; + pPT)/p?T with a totally-projective quotient,
so that it too is A-Warfield.

To observe that the converse is not valid, we begin with a short exact
sequence 0 - B — C — L — 0 where B is Y -cyclic, i.e., a direct
sum of cyclic torsion modules, L is a reduced torsion-free algebraically
compact module of infinite rank and C' contains no copies of L. To
construct such a sequence, let X be a reduced module whose torsion
submodule, Y, is Y -cyclic, satisfying X/Y = Q. If the index set I is
chosen large enough, there is an embedding L C &;X/Y. Let B = &Y
and C C @rX satisfy C/B = L. Since every torsion-free submodule
of X is cyclic, by [3], every torsion-free submodule of @Y is free, and
hence C' has no infinite rank algebraically compact submodules.

Let K be a module containing B = p* K such that K/B is ) -cyclic,
and let 7" be the amalgamation of C and K,so T = K+C, B= KNC.
Since B=p*K C p*T and T/B = K/B®(C/B = K/B & L, it follows
that B = p*T and T/p“T are A-Warfield. If T were A-Warfield, there
would be a reduced, torsion-free, algebraically compact submodule
L' C T of infinite rank such that T'/L' is totally projective. Since
T/C = K/B is torsion, there is an integer n such that p”L’ C C, but
this latter module was selected specifically to make this fail. o

For a module G, let G® denote Ext (Q/R,G) so there is a natural
homomorphism G — G° whose kernel is the maximal divisible sub-
module of G, and whose cokernel is torsion-free divisible. The next
result, and the structure of its proof, owes much to [9].

Theorem 3. Suppose Ty and Ty are reduced A-Warfield modules
with endomorphism rings E1 and Eo. Then any ring tsomorphism
¢ : E1 — E5 is induced by a module isomorphism f : Ty — Ts.
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Proof. If T had a summand isomorphic to R with a corresponding
idempotent p, it would follows that ¢(p) would be an idempotent onto
an isomorphic summand of 75. Suppose x; and zg are generators of
these summands. If a € T, then there is a unique homomorphism
04 : (x1) — T such that o4(z1) = a. The assignment a — ¢(o, 0 p)
can be seen to produce an isomorphism 77 — 75. We may assuine,
therefore, that A; = A;[1].

Let M; be the torsion submodule of T;. The usual proof of the Baer-
Kaplansky theorem, see [1], shows that the ring isomorphism ¢ implies
the existence of a module isomorphism M; — Ms. If we identify these
modules and denote the result by M, then T; embeds in Ti<> =~ M
(since T; is reduced and T;/M is divisible).

The endomorphism rings of M and M< can be identified, the result
contains F; and Fs as subrings, and our hypothesis can be restated as

the condition that F; = Ey def E. In other words, if g : MO = M° is
a homomorphism, g € F if and only if g(T3) C T — 1 if and only
if g(Ty) C To. We show that 7o C T; by proving that, for any
r € MY — T there is a ¢ € E such that g(z) ¢ Tb. By symmetry,
we will be able to conclude that 77 C T3, so that 77 = T3, as desired.

Let T; be a nice extension of A; € A with totally projective quotient
H; =T;/A;. Since A; is reduced and algebraically compact, A? = A,
so that M /A; = TP JAY = (T1/A;)® = HP. Let Z be the image of
z under the composite w : M — M /A, = H{. Its purification (Z),
has torsion-free rank 1 and a totally projective torsion submodule, H;.

Claim. There is a y € M — Ty such that, for all k, htyo (pFy) >
htH1<> (pki).

Suppose that we have constructed such a y. The assignment Z — y
determines a nonheight decreasing homomorphism (z) — M. As
in [13] or [1], (Z) is a nice submodule of (Z), and (Z)./(Z) totally
projective, so that we can extend this to a homomorphism (z), — M<.
Since H{’ /(). is torsion-free and M is cotorsion, we may extend this
to a homomorphism h : H1<> — M?. We then let g = hom. Since
g9(T1) = h(H1) C M C Ty, g € E, and since g(x) = h(Z) = y ¢ T», the
result follows. We now turn to the problem of producing such a y.
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Let 0 = sup{htHlo (p*z)}, which is a limit ordinal of countable

cofinality, and A be the length of M. Since M can be thought of as an
immediate submodule of H;, H; also has length A.

Case 1. X > 0. We begin by showing that there is a p-bounded
sequence in M/p°M which is Cauchy in the o-topology, but does
not converge in Hy/p”Hy. If {a;}icw is a strictly ascending chain
of ordinals with limit o, then Hy/p° Hy & @, B;, where p* B; = 0.
Inductively choose a strictly ascending sequence ¢; < w and nonzero
elements

zj € (®aij <i<ai;y g Bl) N paij (M/pUM) [P]

Ifw; = z14+---+2; € M/p° M, then w; is p-bounded and Cauchy in the
o-topology. If w; converged to w € Hy/p? H», then an easy argument
would show that w has an infinite number of nonzero coordinates in
the decomposition ®;,B;.

Let L, M be the completion of M in the o-topology. Since ¢ has
countable cofinality, E,M = (L,M)/(M/p°M) is divisible. We have
just shown that there is an element of w € L,M of order p such
that, under the map L,M — L,Hy — E,Hs, w does not go to
zero. Hence, there is a summand of F,M isomorphic to Q/R which
maps injectively under the natural homomorphism E,M — E,H>.
By the R-module version of [1, 56.7], there is a summand J = R of
Homg(Q/R, E,M) ® (p° M)¢ = p°(M?) which maps isomorphically
to a summand J' of Homp(Q/R, E,H,) ® (p” Hy)® = p° (HY). Since
J'0(p? Hy)® = 0, it follows that J'NHy = 0, so that in M¥, JNT, = 0.
Any y € J can be seen to satisfy the claim.

Case 2. XA < o. If A = 8+ n, where 8 is a limit ordinal, then
pBHl<> >~ Hompg(Q/R,EsH;) @ (pPH;)®, and in this decomposition
the first term is torsion-free and the second is bounded. If § has
uncountable cofinality, by a result of [10], H;/p’H; is complete in
the S-topology, so that EgH; = and p)‘Hl<> = 0, which contradicts the
definition of 0. So we may assume that 8 has countable cofinality and
o = B+ w. This also implies that there are integers m > n, j > 0, such
that htyo (p’Z) = B+ m. By the argument in Case 1 (replacing o by

), there is an element o € p® M such that (yo) N T, = 0. It is easily
checked that, setting y = p™yo finishes Case 2, hence the claim, and
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hence the result. m]

Corollary 3. Any automorphism of the endomorphism rings of an
A-Warfield module is inner.

We close with a couple of questions. The equivalence between the
category of divisible torsion modules and the category of reduced
torsion-free algebraically compact modules can be extended to an
equivalence between the category of torsion modules and the category of
cotorsion modules. We have shown that there is an equivalence between
the members of D, thought of as c-valuated modules, and the members
of A, thought of as valuated modules. Is there a natural equivalence
between c-valuated torsion modules and valuated cotorsion modules?
Finally, is the class of .A-Warfield modules closed under summands?
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