ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 27, Number 3, Summer 1997

SINGULAR POINTS OF ANALYTIC FUNCTIONS
EXPANDED IN SERIES OF FABER POLYNOMIALS

MAURICE HASSON AND BERTRAM WALSH

ABSTRACT. Let an, > 0, n = 0,1,..., be such that
limsup,, o, (an)/™ = 1. Then a theorem of Pringsheim
states that the point z = 1 is a singular point for f(z) =
ZZOZO anz™. It is the purpose of this note to extend Pring-
sheim’s theorem by replacing the unit disk |z| < 1 by a com-
pact simply connected set F (containing more than one point)
and whose boundary Br (E) is an analytic Jordan curve, and

by replacing the monomials 2™ by the Faber polynomials for
E.

1. Introduction. Let a, > 0,n =0,1,..., be such that
(1.1) lim sup(a,)*/™ = 1.

n—oo
Then a theorem of Pringsheim [8] states that the point z = 1 is a
singular point for

f(z) = Z anz".
n=0

It is the purpose of this note to extend Pringsheim’s theorem by
replacing the unit disk |z| < 1 by a compact simple connected set
E (containing more than one point) and whose boundary Br (E) is an
analytic Jordan curve, and by replacing the monomials z™ by the Faber
polynomials for F.

For the sake of notational simplicity we will assume that the capacity
of E, Cap (FE), is equal to 1. It will appear clearly, however, that our
results hold for any positive value of Cap (E).

The function w = ¢(z) which maps conformally the exterior of F,
Ext (E) onto |w| > 1 and such that ¢(c0) = 00, has a Laurent expansion
at infinity of the form

B(z) =z+ag+ =t 4o
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(Recall that Cap (E) = 1). The Faber polynomials for F, ¢,,(z), consist
of the terms with nonnegative powers of z in the Laurent expansion at
infinity of ¢(z)"™.

The behavior of the mapping function ¢(z) near the boundary Br (E)
of E will play an important role in the sequel. It is known that in the
case when Br(FE) is an analytic Jordan curve, the inverse function
z = P(w) of w = ¢(z) extends from |w| > 1 to |w| > ry, for some
ro < 1, in a conformal manner. We let ¢(w) continue to denote this
extension, and ¢(z) continue to denote its inverse. For r > rg, I'; is

the level curve
I ={z:]8(z)] =}
With this notation I'; = Br (E).

We are now in a position to state our main result.

Theorem 1. Let E be compact and simply connected with Br (E) an
analytic Jordan curve and Cap (E) = 1. Let a, > 0 satisfy (1.1), and

let zo € Br(E) be the unique point such that ¢(z9) = 1. Then zy is a
singular point for the function

(1.2) f(2) =) andu(2)-

Example. Let E5 be the ellipse with foci —1 and 1 and sum of
semi-axes 2, together with its interior. The function w = ¢(z) =
(1/2)(z + V22 — 1) maps Ext (E3) conformally into |w| > 1. It follows
that Cap (E2) = 1. The Faber polynomials for Ey are ¢,(z) =
(1/2" 1T, (2), n > 1, ¢o(2) = 1, where the T},(2) = cos(n arccos(z))
are the Chebyshev polynomials. Theorem 1 gives: For the function

the point z = 5/4 is a singular point.

Remark. Clearly the above conclusion could have been found more
directly from T,((1/2)(w + 1/w)) = (1/2)(w"™ + 1/w"), w # 0. The
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domain F is used because it is one of the few sets for which the Faber
polynomials are known explicitly.

II. Proof of Theorem 1. It is not evident from the outset that
the series (1.2) converges anywhere. Indeed, it is known [3] that
when Br(E) is a curve of bounded rotation, which is clearly the
case here, ||¢,(2)]] < M, where || - || denotes the supremum norm
on E. (The boundedness of the ¢,(z), in our setting, is also a
consequence of Lemma 2.1 below). This and condition (1.1) do not
guarantee the convergence of (1.2). However, we will show (Lemma
2.1) that in fact im,_e0 |¢n(2)]+/™ = 7, 7 > 1o, where || - ||, denotes
the supremum norm on I',. Recalling that ro < 1, relations (1.1)
and (2.1), in conjunction with the maximum principle, show that
f(z) = 30 ) an¢n(z) converges uniformly on the compact subsets of
Int (E) so that f(z) is analytic there.

Relation (2.1) also shows that > | a,,¢n(2), with a,, satisfying (1.1),
cannot converge for z € Ext (E) because such a z € I';. for some r > 1.

These are, of course, necessary conditions for points in Br (E) to be
singular points for f(z).

We first need preparatory results.

Lemma 2.1. Let E, Br(E) be as in Theorem 1. Let 19 < 1 be as

described in Section 1. Then, with || - ||, as above,
(2.) T 6 =, o
and

(2.2) $n(Y(w)) = w" + hy(w)

where hy,(w) has the following property:

Given € > 0 and K a compact set contained in |w| > 1o, there exists
a constant M such that, forn=0,1,...,

(2-3) [P (w)]| e < M(ro + €)™

where || - ||k denotes the supremum norm on K.
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Equations (2.1) and (2.2) are well known for rg = 1 (in which case
Br (E) need not satisfy smoothness conditions).

Proof. For the sake of completeness we first adapt to our setting
the standard formulae relating the Faber polynomials ¢,,(z) with the
mapping function ¢(z). Let r > rg, z € Int(I';). Then, because
#(CO)™ — ¢n(¢) has a zero at oo of order at least one,

P(O)" — én(C)
(—z

has a zero at oo of order at least two. Hence,

1 eQ" = n(Q)

27 Jp, (—z

Cr—

d¢ =0

so that

(2.4) pu(e) = = [ 2

27 r, ¢—=z

dc.

(See also [4]). Let now 7o <7’ <r, z € Int ('), z € Ext (I';+). Then

“2miJr, (-2 2mi)p, (-2
so that, in view of (2.4),

1 "

211 T, C —Z

(2.5) on(2) = ¢(2)" + dg.

(Again this is known for 1 < r’ < r. See [1, 4]). Relation (2.5) shows
that

1¢n(2)lr =™+ O("™)

from which (2.1) follows because ' < r. Now let g, (z) be the second
function on the right of (2.5). Then

lgn(2)| < M

(where M, depends on dist (z,T',)).
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Let now C be a compact set in 9 (|w| > 7o), let € > 0 be given, and
let " = rp + § where § = min(e,dist (¢(C), |w| = rp)/2). Note that
6 > 0 and that the level curve T',» does not intersect the compact set
C. The above argument shows that

(2.6) lgn(2)llc < M(ro +6)" < M(ro +€)".

Let now hy,(w) = g,(¢¥(w)). Then ¢, (¢ (w)) = w™ + h,(w). Let K be
a compact set in |w| > r¢ and consider C' = ¥ (K). Relation (2.3) now
follows from (2.6) because sup,, ¢ |hn(w)| = sup,cc |gn(2)]-

The proof of Lemma 2.1 is complete. ]

Lemma 2.2. With h,(w) defined as in Lemma 2.1 and (a,,) satisfy-
ing (1.1) (or more generally limsup,,_, . |a,|/™ = 1), 3°00  anhn(w)
is analytic in |w| > ry.

Proof. Let e = (1—7()/2. Then ro+¢& < 1 because ry < 1. With this
value of ¢, relations (1.1) and (2.3) show that the series Y- ; a,hy(w)
converges uniformly on the compact sets of |w| > 7g.

We now have built the necessary tools to prove Theorem 1. With
an > 0 satisfying (1.1), we have

Z an¢n(z) = Z anwn + Z anhn(w)7 w = ¢(z)
n=0 n=0 n=0

Now by Lemma 2.2, > ja,h,(w) is analytic in |w| > ry whereas
o2 o anw™ has w = 1 for a singular point in view of Pringsheim’s the-
orem. If we recall that ro < 1, we see that Y.~ anw™+> " o anhn(w)
has a singular point at w = 1. It follows that Y > j an¢n(z) has a sin-
gular point at zp = 9(1).

The proof of Theorem 1 is complete. u]

It is of interest to note the crucial role played by the analyticity of
Br (E), which allows us to extend the mapping function. Without the
possibility of this extension, the above argument does not hold.



822 M. HASSON AND B. WALSH

ITI. Lacunary series of Faber polynomials.

Theorem 3.1. Let E and Br (E) be as in Theorem 1. Let (a,) be a
sequence of complex numbers with the following properties:

i) limsup,,_, ., |an|"/" = 1.

ii) an, = 0 except when n belongs to a sequence (ny) such that
lim,,_, o (ng/k) = 0o. Then Br (E) is the natural boundary for

f(z) = Zan¢n(a).

The proof of Theorem 3.1 follows lines similar to those of Theorem 1,
replacing Pringsheim’s theorem by Fabry’s gap theorem [2] and is
therefore omitted.

Example. The function

1
1) = Y 55 Tan(2)
n=0
has the ellipse
2 2
T n y 1

(5/4)? ~ (3/4)?
for natural boundary.

See also Remark following the example of Part I.

It is well known that if 2 is a domain of the complex plane “most”
functions analytic on © have Br () for natural boundary. In the
case when Br () is an analytic Jordan curve, Theorem 3.1 provides
a formula for such a function.

In [5] an example is given of a power series whose natural boundary
is |z| = 1 and whose restriction to |z| = 1 is infinitely differentiable.
We now show that the same situation prevails for series of Faber
polynomials. We first need a preparatory result.
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Lemma 3.2. Let ' be an analytic Jordan curve, and let k > 1 be an
integer. Then there exists a constant M with the following property: If
P, (2) is a polynomial of degree at most n and zy € T, then

1P (20)] < Mn* | Pa(2)llp, n=1,2,....

Lemma 3.2 is a direct consequence of a theorem of Szegdo [6, 7] if one
remarks that the exterior angle at zp is 7, I' being analytic.

Lemma 3.3. Let E be as in Theorem 1, let k > 0 be an integer, and
let (an) be a sequence of complex numbers such that

(3.1) an|an| < 0.
n=0
Then the restriction of
f(Z) = Z an¢n(z)
n=0
to Br(E) is k-times continuously differentiable.

Proof. Recall that ||¢,(2)]] < M, Br(E) being analytic. Now
Lemma 3.2 and (3.1) yield

D lanl 165 (2)]] < o0
n=0
from which the conclusion follows. a
Theorem 3.1 and Lemma 3.3 yield

Proposition 3.4. Let E and Br (E) be as in Theorem 1. Let (a,)
satisfy conditions i) and ii) of Theorem 3.1 and

1
(3.2) |an|—0<ﬁ>, k=1,2,....
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Then, in addition to having Br (E) for a natural boundary, the function

F(2) =" andn(2)
n=0
is infinitely differentiable on Br (E).

Example. The function

(oo}

F) =Y s Tan(2)

n=0

has the ellipse
2 2
B A
(5/4)% = (3/4)?

for natural boundary and is infinitely differentiable on this ellipse.

See also Remark following the example of Part I.

IV. Two open problems. As noticed above, the proofs of The-
orem 1 (and of Theorem 3.1) do not hold without the condition of
analyticity of Br (F). If we assume that Br (E) is of bounded rotation,
so that ||¢,(2)]| < M, the series (1.2) need not converge if only (1.1) is
assumed. If, however, we replace (1.1) by

(4.1) i ap < 00,
n=0

then clearly f(z) defined by (1.2) is analytic in Int (E) (and continuous
on E).

We recall that if Br(E) is a Jordan curve, which is the case if it is
of bounded rotation, then the mapping function w = ¢(z) extends to
a homeomorphism between Ext (E) and |w| > 1. This is in the sense
that ¢(z9) = 1 must be understood in Conjecture 4.1 below.

We make the following

Conjecture 4.1. Let E be compact and simply connected with Br (E)
of bounded rotation and Cap (E) = 1. Let a,, > 0 satisfy (1.1) and



FABER POLYNOMIALS 825

(4.1), and let zg € Br (E) be such that ¢(z9) = 1. Then zq is a singular
point for the function f(z) = > " andn(2).

Conjecture 4.2. Let E and Br(E) be as in Conjecture 4.1, and let
an, satisfy conditions i) and ii) of Theorem 3.1 and Y-, |a,| < oo.
Then Br (E) is the natural boundary for f(z) = Y.0" , andn(z).

However our efforts to prove these conjectures have been unsuccessful.

REFERENCES

1. J.H. Curtiss, Faber polynomials and the Faber series, Amer. Math. Monthly
78 (1971), 577-596.

2. P. Dienes, The Taylor series, Clarendon Press, Oxford, 1931.

3. T. Kovari and C. Pommerenke, On the Faber polynomials and Faber erpan-
sions, Math. Z. 99 (1967), 193-206.

4. A.I. Markushevich, Theory of functions of a complez variable, Vol. III, Chelsea
Publishing Co., New York, 1977.

5. W. Rudin, Real and complex analysis, Second edition, McGraw-Hill, New York,
1974.

6. V.I. Smirnov and N.A. Lebedev, Functions of a complez variable, The MIT
Press, Cambridge, 1968.

7. G. Szegd, Uber einen Satz von A. Markoff, Math. Z. 23 (1925), 45-61.

8. E.C. Titchmarsh, The theory of functions, Second edition, Oxford University
Press, 1939.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEwW
JERSEY 08903
E-mail address: hasson@math.rutgers.edu

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW
JERSEY 08903
E-mail address: bwalsh@math.rutgers.edu



