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A HIERARCHY OF INTEGRAL OPERATORS
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1. Introduction. The complex form of the Gauss theorem leads
to a representation formula for complex functions w in WP (D) for
bounded domains D with smooth boundary. This formula generalizing
the Cauchy formula for analytic functions was proved by Pompeiu [12]
and is called the Cauchy-Pompeiu formula. The area integral appearing
in this formula defines a weakly singular integral operator T which plays
an important role in the theory of generalized analytic functions as well
as in the study of Beltrami and generalized Beltrami equations. Its
properties were extensively studied by I.N. Vekua [15]. If the density
p of this integral belongs to L,(D) with 2 < p, then the integral Tp
has first order weak derivatives 0(Tp)/0z = p and O(Tp)/0z =: Ip,
where Ilp is a singular integral understood as a Cauchy principal value.
Integrals of this type even in higher dimensions were investigated by
Calderon and Zygmund [6, 7]. Because the IT operator for the whole
complex plane C turns out to be unitary in Ly(C), the Riesz theorem
[13] describes some important properties of this operator.

Many papers dealing with complex first order partial differential
equations are based on properties of the T and II operators; see,
for example, [3, 4, 5, 10, 16, 17]. Recently second order complex
equations have been investigated by means of integral operators which
originate from the T" operator by integration; see [2, 8, 9, 10]. In the
paper [18] a complex fourth order equation is handled with an integral
operator which can be connected with the T operator by repeated
integrations of the latter.

In this paper these ideas are carried further to produce a hierarchy
of integral operators T, n, defined for pairs of integers (m,n) with
0 < m + n, acting on certain L,(D) function spaces; the operator Ty ;
is the mentioned T operator while T__; ; is the II operator and Tp ¢ the
identity operator. Whenever 0 < m 4+ n the operators Ty, ,, are regular
or weakly singular, but for m + n = 0 they are singular operators
with properties analogous to those of the II operator. Dzhuraev [8]
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has studied certain special cases of these T}, , operators for bounded
domains. (See in particular Chapters 2 and 3 of [8].) For example,
the operator Sp o, of Dzhuraev is a constant multiple of our 1}, _n p
operator, while his Tp ,, and Tp’n operators are multiples of our Tp . p
and T}, o p operators, respectively.

By an induction argument beginning with the classical Pompeiu for-
mula, a higher order counterpart to the Pompeiu formula is developed.
This higher order formula provides a representation of functions w in
C™*"(D) in terms of an area integral T}, , (0™ "w/02™8z"), and some
boundary integrals involving lower order derivatives.

Properties of the integrals T, ,w, such as integrability, Holder con-
tinuity, and differentiability, are investigated. For example, under cer-
tain conditions on w one has the useful formulas 9, (T, nw) = Trp—1,,W
and 0z(Ty, nw) = Ty p—1w. The singular operators T_,,,, and ), _,
for 0 < n are shown to be unitary operators in Ls(C).

The classical Riemann problem asks for an analytic function satisfy-
ing a “jump condition,” wt —w™ = f, across the boundary of a domain
in the plane; as is well known, the Cauchy integral of f supplies a solu-
tion w whenever f is Holder continuous and the domain is sufficiently
regular. An analogous problem, involving jumps also of higher order
derivatives, is solved for so-called polyanalytic functions—solutions of
0™w/0z™ = 0-by means of boundary integrals appearing in the higher
order Pompeiu formula.

For the unit disk the Cauchy-Schwarz-Poisson-Pompeiu formula fur-
nishes a solution to the Dirichlet problem for the inhomogeneous
Cauchy-Riemann equation Ow/0z = v. A generalization of this for-
mula is given which directly provides a solution to the higher order
Dirichlet problem for the inhomogeneous equation ™w/9z™ = v.

As the operators T" and II have been widely used to study various
boundary value problems, both linear and nonlinear, for first and
second order complex partial differential equations, the operators 17, »,
should prove useful in the study of similar problems for higher order
equations.

2. Definitions of kernels and operators. Let m and n be
integers, with m +n > 0 but (m,n) # (0,0); we introduce kernels
K., » as specified in three mutually exclusive cases:
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m <0
K (Z) _ (7m)!(71)m2m71—n71,
mn (n—=1)lx ’
n <0
(_n)l(_l)’n m—1-n—1,
Komn(2) (m—Dn i ’
m,n > 1:
R ]' m—1-n—1
Kna(@) = i = 2
m—1 n—1
1 1
- | 1 2 _ - — —1.
[ og 2| ’ l]
k=1 =1

(When m = 1 or n = 1, the summations in the last formula are taken
as 0.)

Obviously each kernel K, ,, is of class C*° in all the complex plane
C, except at the origin where in some cases there is a singularity. It is
easy to verify the identities

(2.1) Kpn(2) = Kym(2),

(22) Km,n = asz—i-l,n - aiKm,n—i-l;

moreover, simple calculations confirm that, for positive radii R,

(2.3) / Kpn(2)dz=0, ifm-—n#-1,
|z|=R
(2.4) / Kpn(2)dz2=0, ifm-n#l,
|z|=R
(2.5) // | Kpmn(2)dedy < oo, ifm+n>0,
=1<R
(2.6) lim |Kn(2)]|dz| =0, ifm+n>1.

R—0 |Z‘=R
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For D a domain in the plane we formally define operators T}, » p, acting
on suitable complex valued functions w defined in D, according to

(2.7) T pw(2 // Kpmn(z — Qw(() d€ dn.

Observe that Tp 1, p and T3 ,p are the familiar “T" and T operators”
analyzed in Vekua’s well-known book [15],

T0717D’w( ) TDw

:——//D ¢) de dn,

¢) d€ dn,

while T_1 1 p and T7,_; p are the so-called “II and II operators,”
defined as Cauchy principal value integrals,

T_11pw(z) = Hpw(z

——//
iy S

We find it useful also to denote the identity operator as Tp o p; thus

To,0,pw(z) := w(z).
Then the operators 1), , p are defined for all integers m and n with
m+n > 0.

In order to unify our formulas we find it convenient to introduce some
novel notation. For integers m and n and complex numbers z we define

Zmn) = yman
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For f an analytic function in an open set, with derivative f’, the
formulas

3zf(m,n) — mf(mflan)f',

95 f(mn) = p flmon—1)77
are easily verified.

For nonnegative integers m and n we may form the bi-index o :=
(m,n); then we define the differential operator 9, = O(m, ), acting on
complex valued functions w according to

8m+n

8aw = 8(m’n)w = WU}

(This derivative might be taken in the classical or the Sobolev sense,
depending on the situation.) For o = (m,n) we define also

Ty :=Tpon, K, = Ky, p, & := (n,m).

As is customary, we define the magnitude of the bi-index o = (m,n)
as |a| := m + n, and if 8 = (s,t) is another bi-index, we say a < g if
and only if m < s and n < ¢, and that o < B if and only if @ < 8 and

|l < [B].

3. Higher order Pompeiu formulas. For the purposes of this
paper, we say that a domain D in the plane is regular if and only if it
is bounded, with boundary I" consisting of a finite disjoint collection of
simple and piecewise smooth Jordan curves

{PJOSJSJ}a

where I'g is assumed to border the unbounded component of the
complement of D, with the remaining boundary curves, I'y,...,IT;,
lying in the interior of I'y.

For D a regular domain and w a complex valued function in C1(D),
we recall (see [15, Chapter I|) the well-known Gauss formulas

// wgd:vdy:fi/wdz,

D 2 Jr

// w, dx dy = /wdi,
D r

(3.1)

N | =,
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as well as the Pompeiu formulas, valid for z € D,

we) =~ [[ el dean
1 1

(3.2)
o F(fzw(f)dfa
w(z) = = [[ o) dean
(3.3)
1 1
S ROk

Lemma 3.1. Let D be a regular domain in the plane, with boundary
T, and let w € C*(D). Then, form+n >0 and 2 € C—T,

Tm,n,Dw(z) = Tm,n+1,Dw5(z)

3.4 i
( ) + 5 /F Km7n+1(2 — C)w(() d<7

Tm,n,Dw(z) =Tm+1,n,DW; (Z)

=5 [ Knirale = Ou(Odc

Proof. We prove only (3.4), the proof of (3.5) being similar. By virtue
of (2.5), and the boundedness of D and regularity of w, the integrals
T pw(2) and T, ny1,pw(z) are absolutely convergent for all z € C.
Fix z € C—T and for £ > 0 let D, be the domain D —{¢ : |( —z| < €}
For ¢ sufficiently small the domain D, is regular, with corresponding
boundary I'., and we may apply the first formula of (3.1) to the product
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Komn1(z — -)w(-) in the domain D, to obtain
/ / Kz = Qu(¢) dedn
- /[ Ol (= QuiQ)]dedn
+ / /D K (== C)0u() de d
_ 5 /F Koz = QulQ)dC
+ / /D Kt (2= 0u(€) de

We let € — 0, again noting (2.5), and obtain (3.4). O

Theorem 3.2 (Higher order Pompeiu formulas). Let D be a regular
domain in the plane, and let w € C™ (D), m > 1. Consider a chain of
bi-indices

(O,O)ZOZO <ayp <oy <az << Oy,
with |ay| =n, 0 < n < m; thus,
an+1:an+6n7 0<n<m-1,
where, for each n, §, = (1,0) or &, = (0,1). Then, for z € D,
w(z) = TamyDaamw(z)

(3.6) 1 B w i0Yon
+§0 : / Koy (2 €)a,,w(¢) d](i€)].

Proof. We proceed by induction on m. First observe that the
Pompeiu formulas (3.2) and (3.3) may be written respectively as
1 .
w(z) = To1,pws(z) + 3 / Ko,1(z — Qu(() d(iC),
r

w(z) =Ty 0,pwz(2) + %/FKLO(Z — Qw(¢) d(i€).
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The first formula is (3.6) with m = 1 and oy = (0,1), do = (0, 1),
do = (1,0), while the second is (3.6) with m = 1 and oy = dp = (1,0),

)
8o = (0,1). Now assume (3.6) is valid for m and that w € C™+(D).
Using (3.4) of Lemma 3.1, applied to d,,, w, in (3.6) we write

Tam,’Daamw(z) = Taer(O,l),Daaer(D,l)w(z)

+5 [ Karson(c = 00u,u(0) de.

which gives (3.6) for m + 1 whenever 6,41 = (
way, we use (3.5) of Lemma 3.1 to derive (3.6

5m+1 - (1,0) )

0,1). In an analogous
) for m 4+ 1 whenever

We examine in more detail formula (3.6) in the special case a,, =
(0,n), 0 < n < m. Then §, = (0,1), §, = (1,0), and for w € C™(D)

we obtain

w(z) = TOmD Z /K0n+1 z2—=C %ﬁodc
Ot omu(o)
(3.7) T / / S de dn

"w(C)
n' 27m/ 8(" dc.

Expanding the powers (Z — ()", we find that this representation takes
the form

(3.8) w(2) = Tomp o) Z on(z

where the functions ¢g, ¢1,... , ¢;n—1 are analytic in D.

The formula (3.7) was derived also by Dzhuraev [8, Chapter 3] in
the process of generalizing the Bergman kernel function to higher
dimensions.

4. Existence and continuity of integrals. We investigate
existence and continuity of the integral T, , pw, in domains D in the
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complex plane C. The case m + n = 0, when the integral must be
viewed as a Cauchy principal integral, is delayed until the end of the
section. When m+n > 1, we discuss first the case when D is a bounded
domain in C, and then we consider D = C. By the notation M(...),
we mean a nonnegative constant depending on the entities listed inside
the parentheses.

Lemma 4.1. Let D be a bounded domain, and suppose m +n > 1,
with

(a) 1<p< 2, whenm+n=1,
(b) 1 <p < oo, when m+n=2, mn <0,
(¢) 1 <p< oo, when m+n=2, mn>0,
(d) 1 <p< oo, when m+n > 3.

Then K n € LP(D), and

(4].) HKmme,‘D S M(m,n,p,D).

Proof. Viewing the formulas for K, ,, in Section 2, we observe that

(42)  [Kmn(2)| < M(m,n)le[™"72(1 + |log 2]]),  if mn > 0,

(4.3) | K (2)] < M(m, n)\z|m+"_2, if mn < 0.

We deduce (4.1) from these inequalities. O

Theorem 4.2. Let D be a bounded domain, suppose m +n > 1,
and let w be a complex valued function in L'(D). Then the integral
Trmnpw(2) converges absolutely for almost all z in C. Moreover, if

(a) 1<p<2, whenm+n=1,
(b) 1 <p < oo, when m+n=2, mn <0,
(¢) 1 <p< oo, whenm+n=2, mn>0,
(d) 1 <p< oo, when m+mn > 3,
then for any bounded domain Q, Ty, , pw € LP(Q) with

(4.4) [T, pwllp.0 < M(m,n,p, D, Q)|w]1,p.
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Proof. Define F' on C according to

F(z) = / /D K (2 — O Jw(Q)] dE i,

and let g be an arbitrary function in L?(2), where 1/p+ 1/q = 1; then
@) [ Fe)lote)ldody

= [[ 11 [[ (e = O la2) o dy dean

In the cases listed under conditions (a)—(d) where p = oo, we have
q = 1; we may apply Lemma 4.1 to a bounded domain large enough to
contain the set {z — ( : z € Q,( € D}, and deduce that

[ 1oz = Ollg@) ddy < sup Koz =01 gl
Q zeQ,(eD
= M(m,n,D,Q)]|gllq,0-

In the cases where 1 < p < oo we have 1 < ¢ < 00, and Lemma 4.1
gives

// K (2 = Q)| l9(2)| dz dy

1/p
< ( /I |Km,n<z—c>wxdy> lglla

< M(m,n,p,D,Q)|g

|qyﬂ'

Thus, in all cases, we obtain from (4.5) that
J[ F@la) dsdy < [wliobm,n,.2,Dlglo:
Q
Therefore, F € LP(Q) with F(z) defined almost everywhere in , and

||FHP7Q < M(m,n,p,'D,Q)HwHLD.

Since F' dominates T}, , pw, we have Tp, , pw € LP(Q2), with (4.4)
holding. ]



A HIERARCHY OF INTEGRAL OPERATORS 679

Theorem 4.3. Let D be a bounded domain, suppose m~+n > 1, and
assume w € LP(D) where

(a) 2<p < oo, whenm+n=1,

(b) 1 <p < oo, when m+n=2, mn<0,

(¢) 1 <p< oo, whenm+mn=2, mn>0,

(d) 1 <p< oo, when m+n > 3.
Then T, pw(z) exists as a Lebesgue integral for all z in C, Ty, . p
is continuous in C, and for |z| < R with R > 0,
(4.6) | Tinn,pw(2)] < Mllw||p,p,

where M = M(m,n,p,D) in cases (a) and (b), M = M(m,n,p, D, R)
in (c) and (d).

Proof. From the formula

it follows that

T, pw(2)] < [[wllp, D | Km,n (2 =) lg,p-
Observing inequalities (4.2) and (4.3), we see that conditions (a)—(d)

imply

M(m,n,p,D) in cases (a) and (b),

Kpn(z—- < i
[ Kmn(z—)llqD {M(m,n,p,D,R) in cases (c) and (d);

thus we obtain (4.6).

In proving continuity of 13, » pw, we may assume p < oo in all cases,
as otherwise we may take p smaller. Setting w = 0 outside D, we have

for z in C,
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For z; and 2z inside some disk B, there is some larger disk By such
that

|Tm,n,Dw(Z1) m n, Dw 22

//B mn(Ol w21 =€) = w(zz — Q)] & dn.

Under conditions (a)—(d), Lemma 4.1 asserts that || Ky, .||¢,B, is finite;
then we obtain

|Tmn'Dw(z1) Tman(z2

1/p
< ||Kmn||q,Bo{ / / (e C)"dﬁdn} ,

which tends to zero as z; — z3 in B. (We require p < oo here.) |

Lemma 4.4. For k and [ integers, k +1 > —1, and for nonzero
complex numbers a and b, we have the following inequalities:

laka! — b*8'| < M (k,1)|a — |
1/(lal[b]) ifk+1=—1,
1/lal ifk+1=0,
SR alT BRI i k1> 1

(4.7)

Proof. We may assume [ > 0, as the case k > 0 then follows by
conjugation.

First suppose k + 1 = —1; then
(4.8) a*a' —b*p' = a7 o7 T M — o).
Using the identity
l

pittel — ! tidl = (b—a) Z e

-1
Fe )Y Bia )
j=0
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and setting ¢ = @, d = b, we obtain from (4.8) the estimate (4.7) for
the case k+1 = —1.

Now assume k + [ = 0. For general £ and | we may write
atal — b = ~faa'](a — b) + bla*al — b F]
obtaining the estimate
(4.9) laka' — b*8Y) < |a|*t "t a — b + [b]ja*tal — BB,
Taking k4 = 0 and applying (4.7) to the pair (k —1,1), we then have

- -b
ahal — BB < [ala — b] + p|as(k, 1120
|al[b]
and hence (4.7) for k+1=0.
Next consider the case k +1 = 1. First we note that switching a and
b in (4.7) yields, for k +1 =0,
1

akal — b*bl| < M(k,1)|a — b| o

Applying (4.9) then, we obtain for k + 1 =1,

1

la¥@' — bFb'| <|a — b| + |b| M (K, 1)]|a — b| Tk

which gives (4.7) when k41 = 1.

Finally, we suppose (4.7) holds for k + 1 = p where p > 1, and we
consider the case k+1 = p+ 1. From (4.9) and (4.7) for (k — 1,1), we
obtain

|(Lk6l o kal| < |a|k+l71|a o b|
k+l_2 . .
+ (oM (K, D)la = b D [al?[p* 2,

=0

and hence (4.7) for (k,1). u]
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We next discuss Holder continuity of the integral 17, , pw whenever
m+n > 1 and mn < 0. The cases mn > 0 are more easily handled
after our later discussion of differentiability of these integrals.

Theorem 4.5. Suppose m +n > 1 and mn < 0, let D be a bounded
domain in C, and assume w is a complex valued function in LP(D);
suppose also that

(a)2<p<oo,ifm+n=1,
(b)2<p<oo,ifm+n=2,
(c)1<p<oo,ifm+n=3,
(d)1<p<oo,ifm+n>4
For z € C, set

o) = Tnp0e) = [ [ Kol = Qu(c) den

Then for z1,2z9 € C, say with |z1|, |22| < R,

|21 — 22 fm+n>2,

(410) Jo(er) = oo < Mol {7 T2y S 2

where M = M(m,n,p) in case (a), M = M(m,n,p,D) in cases (b)
and (c), and M = M (m,n,p, D, R) in case (d).
Proof. In all cases, Holder’s inequality gives
(4.11)  Jo(z1) —v(z2)| < |lwllp, D[ Km,n(21 =) = Kmn(22 = )llg,p-
When p = 1, then ¢ = co with
[ Kmn(z1 =) = Kmn(22 = )llco,p
(412) = sup ‘Km,n(zl - C) - Km,n(z2 - C)‘a
¢eD

while 1 < p < oo implies 1 < ¢ < o0, with
(4.13)  ([Kmn(21 =) = Kmn(z2 = )llg,p)*

// |Km n\?21 — ) Km,n(ZZ - C)|qd'£d77;
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in both cases, the formulas of Section 2 lead to the estimate

| Kmn (21 =€) = Kpn (22 =€)
< M(m,n)|(21 = )™ H(z1 = ¢)

n—1

—(2 =" =0 |,

n—1

which with use of Lemma 4.4 yields

(414) [Kmn(21 —¢) — K22 — O < M(m,n)|z1 — 2|

|21 = ¢ e — (|7 if m+n =1,
|21 — ¢ if m+n =2,
1 if m+n =3,
S = Gl — ¢ i mn > 4.

When m + n =1, by a formula in [15, p. 39], we find that

// 2 — (1 Iz — ¢ TdEdn < M(p)s — 2%, 1<q<2,
D

which we use with (4.11)—(4.14) to obtain (4.10) when 2 < p < oco.

When m + n = 2, we use the estimate

// o - (| Tdedn < M(p,D), 1<q<2,
D

which with (4.11)—(4.14) yields (4.10) when 2 < p < co.

In the cases m+n = 3 and m +n = 4, when 1 < p < oo, (4.10)
follows easily from (4.11)—(4.14). O

Our results concerning the operators Ty, , p for bounded domains
lead directly to corresponding results when D = C; for brevity, when
D = C, we omit the subscript referring to the domain, adopting the
notation

Tpw =Ty ncw.
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Corollary 4.6. Assume m +n > 1, and let w be a complex valued
function in LL _(C) such that, for some § > 0,

loc
(4.15) w(z)| = O(|z] 7™ "7%), as z — 0.

Then the integral Ty, nw(z) converges absolutely for almost all z in
C and, provided that p satisfies conditions (a)—(d) of Theorem 4.2,
Tnw € LY (C).

loc

Proof. By (4.15), there exists K > 0 such that, for all R sufficiently
large,

(4.16) lw(z)| < K|z|~™" "%, if|z| > R.

Choosing such an R, for |z| < R we may write

Thaw(z) = K, (2 — Ow(C) de d
(4.17) ) //|C<R n(z = Qu(¢) d€ dn

" //KZR Kon,n(2 = Qw(C) d€ d.

By Theorem 4.2, the first integral on the right converges absolutely for
almost all z in the disk |z] < R, representing a function of class LP
in this disk; on the other hand, inequality (4.16), along with (4.2) and
(4.3), guarantees that the second integral converges absolutely in the
disk |z| < R, representing a function of class C'*° there. Since R may
be arbitrarily large, the theorem follows. ]

Corollary 4.7. Assume m +n > 1, let w be a complex valued
function in L},  (C) where p satisfies conditions (a)—(d) of Theorem 4.3,

and suppose that (4.15) holds for some 6 > 0. Then T, ,w(2) exists as
a Lebesgue integral for all z in C, and Ty, nw is continuous in C.

Proof. We split T}, ,w into two integrals as in the proof of Corol-
lary 4.6, and apply Theorem 4.3. ]

Corollary 4.8. Assume m +n > 1 and mn < 0, let w be a

complez valued function in LY (C) where p satisfies conditions (a)—(d)



A HIERARCHY OF INTEGRAL OPERATORS 685

of Theorem 4.5, and suppose that (4.15) holds for some § > 0. Then
T, nw 18 locally Lipschitz continuous in C when m+n > 2, and locally
Hélder continuous in C with exponent (p — 2)/p when m +n = 1.

Proof. Again, we split T, ,w into two integrals; then we apply
Theorem 4.5. u]

Finally, we discuss the operators Ty, , when m 4+ n = 0. In these
cases the singularity of K(z — () at ( = 2z has the order |z — (|7%;
consequently, the integral T}, , pw does not converge in the ordinary
Lebesgue sense. We must view the integral as a Cauchy principal value
integral,

(4.18) T npw(z) := lim //D Kpmn(z— Qw(() dé dn,

e—0

where D, is the domain D—{(¢ : |(—z| < €}, and the limit is taken in the
norm of LP(D). These integrals can be analyzed with the well-known
theory of Calderon and Zygmund [6, 7] concerning singular integrals,
a summary and extension of which is found in the book of Stein [14].
We first consider the case D = C.

Theorem 4.9. Assume m +n =0, (m,n) # (0,0), and let w be a
complex valued function in LP(C) where 1 < p < co. Then Ty, ,w, as
defined by (4.18) with D = C, also belongs to LP(C), and

(4.19) [T nwllp.c < M(p)llwlp,c-

Proof. First we consider the case n > 0; then Ti, yw = T_, nw,
n > 0. By the formulas of Section 2,

nf —n-tn-1 _ 2(2)
K pn(z) = (-1)"—27" 712" = TR’

where
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Obviously, € is homogeneous of degree zero. Moreover, letting do(z)
denote the arc length differential on |z| = 1, we have

/Z_l Q(2) do(z) = /0% Q(c) do

- /ZH ()%

n —n_—n—
=(-1)"— "l dz
e |z]=1
n —on—
— (=1 n_' 2 2n ldz
T J)z|=1

=0.

Since also € is C* on the boundary of the unit disk, Theorem 3 of [14],
Chapter 4, applies and we conclude that 7", ,, is a bounded operator
mapping LP(C) into itself, with (4.19) being valid.

The case n < 0 can be treated in a similar manner; but it is simpler
to observe only that T, _n,p = T_, p, as follows from (2.1). O

Corollary 4.10. Assume m +n = 0, (m,n) # (0,0), let D be a
domain in C, and let w be a complex valued function in LP(D) where
1 <p< oo Then T, ,pw, as defined by (4.18), belongs to LP(C),
and

(4.20) [ Zm,n,pwllp,c < M(p)|wllp,p-

Proof. We set w = 0 outside D; then T, ,, pw = Ty n,cW, ||wl|p,p =
lwl||p,c, and the result follows from Theorem 4.9. o

Corollary 4.11. Assume m +n = 0, let w be a complex valued
function in L} (C) where 1 < p < oo, and assume that, for some
6 >0,

lw(z)| = O(|]z| %), asz— oo.
Then Ty, nw € LY (C).

loc
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Proof. We may assume (m,n) # (0,0) as otherwise the result is
trivial. As in the proof of Corollary 4.6, (4.17) holds for R sufficiently
large. By Corollary 4.10, the first integral on the right of (4.17)
represents a function in LP(C), while the second integral is of class
C* in the disk |z| < R; hence, the result follows. O

Remark. In all circumstances discussed in this section where T}, , pw
is defined, it is clear from (2.1) that T}, , p@ also is defined, and in
fact,

(421) Tm,n,Dw = Tn,m,Du_}'

5. Differentiability of integrals. Now we discuss differentiability
of the integrals T,, , pw. It is helpful first to examine some special
cases, when D = C and w satisfies certain regularity conditions.

Lemma 5.1. Assume that m +n > 0, that w € C(C), and that, for
some § > 0,

(5.1) w(z)| = O0(]z] ™ "?), asz— oco.

(a) If m+n > 1, then T, nw(z) exists as a Lebesgue integral for all
z in C, and Ty, nw is continuous in C.

(b) If m+n =0, (m,n) # (0,0), and w is locally Holder continuous
in C, then for all z in C the limit

Tpmw(2) = lim / /|<— Koz = Qul) de

e—0

exists as a limit in the norm of C.

(c) Suppose, moreover, that w € C1(C); if
(5:2) wo(2)] =0(2) ™, sz — oo,
then

(5.3) Tmnw =Tpy1pws;, m+mn>0,
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and if

(5.4) wz(2)] = O(lz)) ™ " 1% asz— oo,
then

(5.5) Tnw =Tppi1wz, m+n>0.

Proof. (a) The result is a special case of Corollary 4.7.
(b) First we use (2.2) and (3.1) to observe that, for 0 < e < R,

// Km,n(z) dz dy = // 6sz+1,n(Z) dx dy
e<|z|<R e<|z|<R
1

_ 5{ / Koi1n(2) d2
|z|=R
- / Kpin(2)dz).
|z|=¢

But m +n =0 and (m,n) # (0,0) implies (m + 1) — n # 1; thus (2.4)
confirms that the last two integrals vanish. Hence, we conclude that

//€<<z|<R Komn(z=C) dEdn
= (~1)mtn //e<z|<R Ko (2) da dy = 0.

Therefore, fixing R > 0, for 0 < € < R we may write
56) [[  Kuale = uic) de
- / / Koz — C)w(C) dé di
[(—2|>R
] K= Ol(©) )] dean

Recalling that |K, (2 — ¢)| = (constant)|z — ¢|~2 when m +n = 0,
and viewing also (5.1), we conclude that the first integral on the right



A HIERARCHY OF INTEGRAL OPERATORS 689

of (5.6) is absolutely convergent; while as ¢ — 0 the second integral
converges to the absolutely convergent integral

//C <r Ko (2 = Qw(() —w(2)] € dn,

by virtue of the Holder continuity of w at z.

(c) First we consider (m,n) = (0,0). To verify (5.3), we apply (3.3)
to w and with D a large disk, say of radius R about 0; then, for |z| < R,

Toow(z) = = _//|<R

(¢) d€ dn

w()

27rz r(C— Z

As R — o0, (5.1) implies that the second integral tends to zero, while
(5.2) shows that Tj ow, exists as an ordinary Lebesgue integral; thus,
we obtain

To,ow = T1 gwy.

In a similar way we can use (3.2) to verify (5.5) for (m,n) = (0,0).
Next we verify (5.3) for the case (m,n) # (0,0). We write

e—0
= lim //egc-zm/s(66{_Km+l’n(z ~ el

+ K10 (2 — Que(C)) dé dn
= lim [-/ Kpin(z — Qw(¢)dC
I¢—zl=¢

Ty (2 _hm//qC oy Koz = () d

1
5 m n - d
. /IC oy Ko = Qui€) ¢

+ Tt1,nws(2).

(Note that Ty,41,nw,(2) exists as a Lebesgue integral, by application
of (a) to w,.) When m +n > 1, (2.6) applied to the pair (m + 1,n),
along with the continuity of w, confirms that the first line integral
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inside the large brackets tends to zero with e. When m + n = 0 and
(m,n) # (0,0), then (m + 1) — n # 1, and we may use (2.4) to write
this integral as

1

5[ Kmiale - OO v

which tends to zero as ¢ — 0 by virtue of (4.2), (4.3), and the
smoothness of w. Moreover, when (m,n) # (0,0), we can use (5.1),
(4.2), and (4.3) to show that the second line integral inside the brackets
also tends to 0 with ¢; thus we obtain (5.3).

When (m, n) # (0,0), we can prove formula (5.5) in a similar manner;
alternatively, we can also use (5.3) and the identity (4.21). o

Throughout the remainder of the paper, the letter p will refer to a
complex valued function in C§°(C), the space of functions of class C*
in C with compact support.

Lemma 5.2. For p € C§°(C),
(5.7) Tonp =Tomp, ifm+n>0,
(5'8) Tinnp = Tmi1,npz = Tinyny1pz, ifm+n >0,

(5.9) 0:(Tmmp) =Tm—1,np, fm+n>1,

(5.10)

62(Tm,np) = Tm,nflpa me +n2>1,
(5.11)

az(Tm,np) = Tm,npza lfm +n2> 07
(5.12)

82(Tm,np) = Tm,npi, 'Lf m+n > 0.

Proof. Formula (5.7) is again (4.21), while (5.8) combines (5.3) and
(5.5), valid because p satisfies the hypotheses required in Lemma 5.1.
Not that in fact all of Lemma 5.1 applies to p.
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Formulas (5.9) and (5.10) are clear if m+n > 1, as in these cases the
singularity at ¢ = z of the kernels K., 1,,(z — () and K n—1(2 — ¢)
is no worse than O(|z — ¢(|~!log|z — (|), allowing differentiation under
the integral of T}, ,p. When m 4+ n = 1, we use (5.8) as well as (5.9)
and (5.10) for m +n > 1, to write

8z(T’m,np) - az(Terl,npz) - Tm,npz =dm—-1,npP,
82(Tm,np) = aZ(Tm,n—Q—lpZ) = Tm,npi = 1Imn-1p-

Finally, combining (5.8)—(5.10), we obtain (5.11) and (5.12) from

6sz,np = a2Tm+1,npz = Lm,nPz,
8ETlm,np = aZTm,n—i-lpE = ImnpPz- a

Remark. Iterating (5.11) and (5.12), we conclude that T, ,p €
C*>(C), with
6k+l

(5.13) FETES

ak—q—lp
Tm,np = Tm,n <W> .

Theorem 5.3. Let D be a bounded domain in C, let w be a complex
valued function in D, and set w = 0 outside D. Under either of the
conditions

(a) m+n >2 and w € L'(D)
(b) m+mn >1 and w € LP(D) for some p > 1,
we have in C the Sobolev derivatives

(5.14) asz;n,Dw = Tm—l,n,Dw7
(515) 62Tm,n7’Dw = Tm,nfl,'Dw'

Moreover, for w € L*(D) we have also in C the Sobolev derivatives

(5.16) 8ZT1,0,pw = 6;T0,1,Dw = w.

Proof. Under condition (a), let {p;}72; be a sequence of complex
valued functions in C§°(D) converging to w in the norm of L*(D). We



692 H. BEGEHR AND G.N. HILE

apply Theorem 4.2 and Lemma 5.2 to conclude that, for any bounded
domain §2,

(5.17)
Tm,n,’Dpl — Tm,m’Dw in LI(Q),
(5.18)
0T ppt = T—1n, 0Pt — Tn—1npw in L'(Q),
(5.19)

82Tm,n,Dpl = Tm,nfl,Dpl — Tm,nfl,'Dw in Ll (Q)

Therefore, (5.14) and (5.15) hold in  and throughout C since Q is
arbitrary. When w € L'(D) and (m,n) = (1,0) we replace (5.18) with
9, Tioppt = p — w in L'(Q) to conclude that the first equation of
(5.16) holds; the second equation of (5.16) is obtained similarly.

Under condition (b), with also m +n > 2, (5.14) and (5.15) follow
from case (a) since D is bounded; thus, we need to consider case (b)
only when m 4+ n = 1. We may assume then that p < oo, and that
pr — w in LP(D). Again (5.17) holds by Theorem 4.2, and (5.18)
and (5.19) by Corollary 4.10 and Lemma 5.2; thus, we have (5.14) and
(5.15). O

Remark. It is clear that formulas (5.14) and (5.15) may be iterated;
for example, when w € LP(D) with 1 < p < oo and D a bounded
domain, we obtain the formulas

(5.20) OFOLT,, npw =Ty jmipw, ifk+1<m+n.
(Again, when (m — k,n — 1) = (0,0) we must take w = 0 outside D.)
Corollary 5.4. Assume m +mn > 1, and let w be a measurable

complex valued function in C such that, for some § > 0,

(5.21) lw(z)| = O(]z] ™ "°%), asz— oco.

(@) If m+n > 2 and w € L} _(C), then in the sense of Sobolev
derivatives in the entire plane C,
(5.22) 0:Tmpnw = Tm_1 nw,
(5.23) 0T nw =Ty 1w
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(b) If m+n=1and w € L}, (C) for some p > 1, then (5.22) and
(5.23) again hold in the sense of Sobolev derivatives in C; moreover,

the formulas
(523) 82T1,0w = 62T0,1w =w

are valid in C even in the case p = 1.

Proof. (a) First note that, by Corollary 4.6, the integrals 1), ,w,
Ty—1,nw, and Ty, ,,—1w represent functions in L{, . (C). By (5.21), we
may choose a bounded domain D containing a large enough disk about
the origin so that, for some constant K > 0,

(5.25) w(z)| < K|z|7™™ "0, Vze C-D;
then we write

(526) Tm,nw = Tm,n,Dw + Tm,n,'ﬁw’

where D is the domain complementary to D in C. By Theorem 5.3,
equations (5.14) and (5.15) hold in all of C. Moreover, because of
(5.25), T, 5 belongs to C°°(D), and in D we have the formulas

m,n,D

8ZCTrrL,n,ﬁﬁw = Tm—l,n,ﬁw7

(5.27)
8szm, n,DW = 1, n—1,DW-

Combining (5.27) with (5.14) and (5.15) then yields (5.22) and (5.23) in
the domain D, and hence in all of C since D may be chosen arbitrarily
large.

(b) We prove the result for the derivative 9., the proof for 9; being
similar. We may assume that p < oco. By Corollary 4.6, T}, ,w €
Li . (C); in fact, this assertion would be valid even if p = 1. Moreover,

Corollary 4.11 implies T},—1,w € L}, . (C), while if (m — 1,n) = (0,0)
this statement is trivial even when p = 1. Choosing D as in the proof
of (a), we have again (5.26). By Theorem 5.3, (5.14) holds in D, with
p = 1 allowed when (m — 1,n) = (0, 0); moreover, the first formula of

(5.27) again is valid in D. Addition yields (5.22). O
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Remark. We may iterate formulas (5.22) and (5.23), as in the case
of bounded domains. Consequently, if (5.21) holds and w € L¥  (C),
where p > 1, we have again (5.20) with now D = C.

Finally, we can give an easy extension of Theorem 4.5 to the cases
where m > 1 and n > 1.

Corollary 5.5. Suppose m > 1 and n > 1. Let D be a bounded
domain in C, and assume that w is a complex valued function in LP(D);
suppose also that

(a)2<p<oo,ifm+n=2
(b)l<p<oo,ifm+n=3
() 1<p<oo,ifm+n>4.
For z € C, set

o) = T = [ K~ Qul) de
D
Then for z1,2z9 € C, say with |z1|, |22| < R,

(5.28) [v(21) = v(z2)| < M[wllp,p[z1 = 22,

where M = M (m,n,p,D) in case (a), M = M(m,n,p, D, R) in cases
(b) and (c).

Proof. By Theorems 4.3 and 5.3, v € C'(C) with
82'0 = Tm—l,n,'Dwa 851) = Tm,n—l,Dw7
where, for |z| < R,

|02v(2)], [0zv(z)]

M (m,n,p, D) if m+n =2,
< wllp,p - .
M(m,n,p,D,R) if m+n > 3.

Hence, the mean value theorem yields (5.28). u]
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6. Norms of strongly singular operators. It is well known (see
[15, Chapter I] that the singular operators IT and II, acting on functions
defined on all of C according to the formulas

Mhu(s) = Toagu(s) =~ [ =gu(©)dean,
Mhu(s) = T3 yuz) = — [ i@ dean

are isometries on the space L?(C); that is to say, for complex valued
functions w in the space L?(C), we have the identities

(6.1) IMwl| g2y = [Mw| z2(cy = lwl|r2(c)-

We demonstrate now that in fact all operators To, —m, m € Z, are
isometries on L?(C). Among the operators T ,m, we call the operators
T, —m, Strongly singular, as the singularity of the kernels K, _,,,(z — ()
at ( = 2, having magnitude of the order |z — (|?, is nonintegrable.
As already pointed out, the integral defining T, _,w(z) must be
interpreted as a Cauchy principal value.

We employ the inner product

(v, w) := //C v dz dy,

defined for complex valued functions v and w in the space L?(C); the
corresponding norm we write as

1/2
||wl|2 :== [// |w|2dxdy] .
C

Our goal in this section is to establish the identity
(6.2) | T, —mwll2 = [lwll2,  Yw e L*(C).

We require two lemmas, of interest in their own right.

Lemma 6.1. Let m and n be integers; then for w € L*(C),

(63) Tm,—mTk,—kw = Tm+k7_m_kw.
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In particular, when k = —m,

(6.4) Topmm T mw = w.

Proof. Since C§°(C) is dense in L?(C), and the operators T}, _, are
bounded linear operators on L?(C) by Theorem 4.9, it is sufficient to
establish (6.3) for functions p in C§°(C).

First we verify the formula
(65) Tm,—mTk,—kP = Tm+1,7m71Tk71,17kp-

We set v := T}, _pp. By Lemma 5.2, v € C*(C). If k # 0, then

o) = Thurd) = [ Kol = nlc) de
supp p
and for z ¢ supp p,
(@)= [[ K- Opl6) dedn
supp p
— [ Kicmnte - 0pt) den
supp p
from these representations and (4.3) we conclude that, as z — oo,
(6.6) [(2)] = O(l217%),  |va(2)] = O(I2] 7).
If £k = 0, then v = Typop = p, and these estimates are obvious.
Therefore, in all cases we may apply Lemmas 5.1 and 5.2 to deduce
that
Tm,fmTk,fkp = Tm,fmv = Terl,fmez = m+1,—m8sz,—kP-
Also by Lemma 5.2,
0Tk —kp =Th—rp; = 05Tk 1-kp: = O:Th—1,1-kP;
thus,

Tm,—mTk,—kP = Tm+1,—m82Tk—1,1—kP = Tm—!—l,—mui
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where u := Tk_1 1_p. As we obtained (6.6), we have as z — oo that
lu(z)| = O(l2] %), |uz(2)| = O(lz| ®);
thus, we may again apply Lemma 5.1 to obtain, as desired,
Tm,—mTk,—kP = Tm+1,7mu2 =dm+1,-m-1U = Tm+1,7m71Tk71,17kp-

Next we take the conjugate of (6.5), apply (4.21), and replace p by p
to derive also

T Tk =T m1,mi1T1—k k15
then replacing m by —m and k£ by —k yields
(6.7) T, T, —kp = Trn—1,1-m Tkt 1,—k—1p-
Iterating (6.5) and (6.7), we conclude that, for any integer I,
(6.8) T, Tk, —kp = Trngt,—m—1Th—1,— k1P

Finally, taking | = & in (6.8) gives (6.3) for p. o

In the next lemma we require the integration by parts formulas

(6'9) <pzaa> = _<P,0'2>, <,02,0'> = _<,0, UZ>7

valid, for example, if p € C}(C) and o € C*(C).

Lemma 6.2. For m+n >0 and p,o € C§°(C),

(6.10) (Tonnp,0) = (_1)m+n<p7 Tnm0)-

Proof. First we assume m + n > 1. We compute

Tnnp o // mnp(2)0(z) dz dy
// //Kmf p(C) d€ dn da dy.
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Let B(0,R) be a ball containing both supp p and supp o; since the
singularity of K, »(z — () is integrable (see (2.5)), we have

//C //C|Kmvn(z = Ollp(Ollo(2)| d€ dn dz dy

< ollsollolc / / / / K (= — O] d€ dn dac dy
|z|[<R (<R
< Q3

o0

thus, we may interchange orders of integration to obtain
Tnnpe) = [[ 00 [ Kot~ 0o ey ay

://Cp(g) //CKmm(z—C)o(z)dxdydfdn

= o0 [[ Fne=aet de dyaan
1

= (_ )m+n <P, Tn,m(7>'

Next assume that m + n = 0. Using Lemma 5.2, formulas (6.9), and
the result for m +n > 0, we write

<Tm,np7 0> = <Tm+1,npza 0>
= —(pz: Tn,m+10) = (p, 0:Tp,m+10)
= (0, Tnmo) = (~1)™ (0, T ma). O

Theorem 6.3. For any integer m, the operator Ty, _y, is unitary on
L?(C), with T—, m both the inverse and adjoint operator to Ty, . In
particular, for v and w in L*(C),

(611) <Tm,—mvv w> = <U, T—m7mw>’
(6.12) [T, —mwll2 = [lwll2-

Proof. By Lemma 6.2, formula (6.11) holds for v and w in C§°(C);
then, since C§°(C) is dense in L?(C) and the operators T,, ., are
bounded, the result is valid also for v and w in L?(C). Formula (6.11)
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shows that T_,, », is the adjoint operator of T, _,,, while (6.4) shows
that it is the inverse; thus T}y, _, is unitary. We obtain (6.12) by taking
w =Ty, _mv in (6.11) and then replacing v with w. o

7. Boundary value problems. Expanding on some of the ideas of
the earlier sections of this paper, we investigate two boundary value
problems involving a higher order version of the complex Cauchy-
Riemann equation,

o™ w
7.1 =0,
(7.1) Sm
and its corresponding inhomogeneous version,
omw
7.2 =
( ) 627” v

(Solutions of (7.1) are called polyanalytic functions and have been
widely studied. The book of Balk [1] is a good reference and bibli-
ographical source.) We will solve a generalized Riemann problem for
(7.1) and a generalized Hilbert problem for (7.2) when the domain is
the unit disk. It is possible to use the machinery we have developed
to study more general boundary value problems, but because of space
limitations we restrict our attention here to these simpler problems; we
believe they are of some interest as natural extensions of well-known
problems for (7.1) and (7.2) when m = 1.

Let D be a regular domain with boundary I', and suppose w € C™ (D)
and solves (7.1) in D; then, according to Theorem 3.2 and in particular
formula (3.7), w has in D the representation

"w(C)
(7.3) w(z) = n' 9 /F = 3(" dc¢.

This formula of course generalizes the Cauchy integral formula, corre-
sponding to the case m = 1 when w is analytic.

Now let fo, f1,---, fm—1 be a collection of complex valued functions,
each Holder continuous on I'. Then we may form the sum of integrals

(7.4) w(z) = n, o / (¢)dc.
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We find that this sum solves a generalized Riemann boundary value
problem for (7.1), as described in the statement of the next theorem.
As is customary, we let Dt and D~ represent the interior and exterior
of D, respectively, and for a point ( on 0D we define the limits

W Q= m (),
w(¢) == z—)(l’i?é'l)* w(z).

We recall a well-known result concerning the Cauchy integral,

o) =5 [ £ ac,

whenever the domain D is regular with boundary I of class C! and with
nonzero tangent vector. If f is Holder continuous on I' with exponent
a, 0 < a < 1, then g is Holder continuous with the same exponent in
Dt UT and D~ UT, g vanishes at infinity, and g satisfies on I' the jump
condition gt — g~ = f. (For a proof, see, for example, [11, Chapter

2.)

Theorem 7.1. Let D be a reqular domain in the plane, of class
C' with everywhere nonzero tangent, let fo, fi,..., fm_1 be Hélder
continuous on T', and let w be specified by (7.4). Then w is a C™
solution of (7.1) in Dt and D™, and the derivatives

o"w
ozn’

are continuous in DT UT and D~ UT, satisfying on ' the jump
conditions

orw\ ™t o"w\
. - = <n<m-1.
(7.6) <82"> (82”) fn, 0<n<m-1

(7.5) 0<n<m-1,

Proof. 1t is clear from (7.4) that w is C° in DT and D~. Moreover,
it is a consequence of the Lebesgue bounded convergence theorem that
any integral of the form

(z-Q)"
/Fﬁf(odﬁ n2>1,
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with f continuous on I', is continuous in the entire plane C; indeed,
writing ¢ = ((¢t) for some real parameter ¢, a < t < b, with d¢ =
¢'(t) dt, we find that the integrand is bounded in absolute value by the
expression

|2 = CO A @),

which by continuity considerations has a bound independent of ¢ and z
as long as z remains in any bounded region. Consequently, we infer from
(7.4) and standard results for the Cauchy integral that w is continuous
in DY Ul and D~ UT, and that on I,

wh —w™ = fo.

Differentiation of (7.4) in D U D~ yields

o) = 3wt [E0 @ ac

_'_.
— n! 21

thus, likewise Ozw is continuous in DT UT and D~ UT, and satisfies on
r
(0zw)T — (O:w)” = f1.

We continue with this procedure, obtaining in the last steps the

formulas gm1 )
mw(z 1 1
om—lw\ "t B O™ tw\~ y
§zm—1 gzm—1) —Imb
and finally, 9™w/9z™ =0 in DT UT and D~ UT. o

Now we turn our attention to a boundary value problem for the
inhomogeneous equation (7.2), when the domain D is the unit disk.
We seek a solution w of (7.2) with derivatives satisfying the conditions

o"w
©9zn
o"w

m —
>n
0z z=0

R

=0 on JD,
(7.7)

I =0, for0<n<m-—1.
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We solve this problem by use of integral operators S,,, m =1,2,3,...;
these operators act on appropriate functions v defined in D, as specified
by the formula

—71
2 (m —1)! B

ym-1 ¢+zv() , 1+2Cv(C)
// (2Re (2 =z ¢ + — 2 ¢ d¢ dn.

(7.8) Spv(z) =

Theorem 7.2. Let v be a complex valued function in LP(D), where
D is the unit disk and 2 < p < oco. Then, for each m > 1, S,,v(z)
exists as an ordinary Lebesgue integral for all z in D and Syv € C(D).
Moreover,

(7.9) Re S, v =0, Im S,,,v(0) =0,
and in the sense of weak derivatives, in D we have the formulas

Smflv me22)
v ifm=1.

(7.10) 0:(Smv) = {

Proof. First consider the case m > 2. Since |z — (|/|1 — 2¢| < 1 for
|z] <1 and || < 1, when |z| < 1 we obtain from (7.8) an estimate of

the form
1S (2)| < M(m // |”<| de dn

1/q
SMWWM%/dewﬂ

< 00,

(7.11)

where 1/p + 1/¢ = 1 and we require 1 < ¢ < 2, implying that
2 < p < oo. Continuity of S,,v follows from the Lebesgue dominated
convergence theorem, as we have obtained an integrable bound on the
absolute value of the integrand of (7.8) independent of z. Next, when
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m = 1, we may write (7.8) as

Syo(z :——//Dgi ¢)dedn
]
(7.12) __//Dl_z Sdedn

277// d¢ dn.

The first integral on the right of (7.12) is Ty 1,pv(2); by Theorem 4.3 it
exists as a Lebesgue integral and is continuous in C. The second and
fourth integrals are constants; they exist in the Lebesgue sense because
of the estimate of (7.11). In the third integral, when z stays inside
D but a positive distance away from 0D the integrand is bounded in
absolute value by a constant multiple of |v(¢)|, and hence exists and
is continuous with respect to z. But for z # 0, a few calculations
confirm that this third integral is —Tp 1 pv(1/Z), and hence, again by
Theorem 4.3, exists and is continuous in C — {0}. Therefore the sum
(7.12) is continuous in D.

Now, to verify the first equation of (7.9), we observe that when z € 9D
we may use the relation z = 1/Z to confirm that the integrand of (7.8)
is purely imaginary. To check the second equation of (7.9), we merely
set z =0 in (7.8) and observe that the integrand is real.

Finally, the formulas (7.10) are easily verified when m > 2, as the
differentiation

0:(2Re (2 — ())"™" = (m —1)(2Re (2 — ¢))"”

is readily checked, and differentiation under the integral with respect to
Z in (7.8) can be justified by the absolute convergence of the resulting
integrals, which we have already confirmed. When m = 1, we view
again (7.12); the last three integrals on the right are analytic in D,
thereby yielding zero when differentiated with respect to z, while the
first integral has the derivative v, as stated in Theorem 5.3. o

Corollary 7.3. Let v € LP(D), with D the unit disk and 2 < p < oo,
and set w := S,v; then the derivatives 0"w/0z" exist in the weak
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sense in D for 0 < n < m, and are continuous in D for0 < n < m—1.
Moreover, w solves in D the inhomogeneous equation (7.2) and satisfies
also conditions (7.7). Indeed, w is the only function defined on D with
these properties.

Proof. By Theorem 7.2 we have in D the formulas

ow

0z
0%w o™ tw
B2 = Sm2Vyee s oy =
omw
oz™

= Om-17,

:1),

and all these derivatives up to order m — 1 are continuous in D. The
boundary conditions (7.7) follow from (7.9) applied to S,v, 0 < n <
m — 1.

Now suppose there are two functions w; and ws with these properties.
Then the difference v := w; — wsy solves in D the homogeneous
equation (7.1), besides also satisfying conditions (7.7). Setting ¢ :=
0™~ lu/0z™~1, we have ¢; = 0 in D implying that ¢ is analytic, with
Re¢ = 0 on 9D, Im ¢(0) = 0; thus ¢ = 0. Repeating this argument,
we obtain successively that

6m*1u _ 6m72u

0 8zm71 = azm72 =

®|QJ
IS

WY

M1l
£

and thus w; = ws. O

Corollary 7.4. Let v € LP(D), with D the unit disk and 2 < p < co.
Then for positive integers k and [,

(7.13) Sk(SlU) = S;Hlv.

Proof. Setting m := k + 1, we observe that each side of (7.13) has the
properties of the function w described in the statement of Corollary
7.3; since w is uniquely determined, (7.13) holds. O
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