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A NEW REFINEMENT OF THE ARITHMETIC MEAN-
GEOMETRIC MEAN INEQUALITY

HORST ALZER

In what follows, we denote by A, and G, the weighted arithmetic

and geometric means of the positive real numbers z1,... ,z,, that is,
n n
A, = g piz; and G, = Hmfi,
i=1 i=1
where pi, ... ,p, are nonnegative real numbers with > 1, p; = 1.

The famous arithmetic mean—geometric mean inequality G, < A,
has found much attention among many mathematicians, and numerous
proofs, refinements, extensions and related results of what E.F. Beck-
enbach and R. Bellman call “probably the most important inequality,
and certainly a keystone of the theory of inequalities,” [1, p. 3|, can be
found in the literature. We refer to the monographs [1, 2, 5, 6] and
the references therein.

In 1978, D.I. Cartwright and M.J. Field [3] proved the following inter-
esting sharpening of the arithmetic mean—geometric mean inequality.

1

maxj<i<n T

Zpi(mi - An)2 S An - Gn7

i=1

1) .

with equality holding if and only if the z;’s corresponding to positive
p;’s are all equal. Moreover, the authors pointed out that the constant
1/(2maxi<i<n ;) is best possible.

The aim of this paper is to show that inequality (1) remains valid if
we replace on the lefthand side of (1) A, by G,. Since

0 < (An - Gn)2 = sz(xz - Gn)2 - sz(xz - An)27
i=1 =1
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we obtain a refinement of inequality (1).

Theorem. Ifxz; >0,i=1,...,n, andp; >0,i=1,... ,n, with
Yo pi =1, then

n

1 1 9
(2) 5—2}%(@ —G,) <A, G

maxi<i<n T i1

Proof. We follow the method of proof given in [3]. It suffices to
establish (2) for 7 < 2 < --- < z,,. We use induction on n. If n =1,
then (2) is obviously true. Let n = 2; we set

t==x;/x2 € (0,1] and p=np,
then (2) is equivalent to
(3)  2pt+2(1—p)—2t7 —p(t— ") — (1 —p)(1 —t*)* > 0.

Inequality (3) is valid for p = 0 and p = 1. Let p € (0,1); we denote
the lefthand side of (3) by f(t) and obtain

t3-p

) 2p(p— 1)

=p(2—p)+plp+1)t—22p - 1)tr=g(?),

say. A simple calculation yields g(t) > 0 for ¢ € (0,1], which implies
f"(t) < 0. Since f'(1) = f"(1) = 0, we get f(t) > f(1) = 0 for all
t € (0,1].

Let n > 3; we assume that inequality (2) with n — 1 instead of n is
true. Moreover, we may suppose that z; < z2 < --- < x,; otherwise,
if two of the z;’s are equal, then the validity of (2) follows from the
induction hypothesis.
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We define

@:M:{p:(pl,...,pn) |pi >0, i=1,...,n,
with Zpizl} — R,
i=1

n n
@(p1,... ,pn) = Zpifvi - Hwipi
i=1 i=1

Let ¢ attain its absolute minimum at p = (p1,... ,Pn). We assume (for
a contradiction) that p is an interior point of M. Then there exists a
real number « such that we obtain fori =1,... ,n,

)
e ) — e\ Dn =0,
api(so(pl Pn) — @ (p1 Pn)) -

with ¥(p1,... ,pn) = 35—y pj — 1. This implies that the function

~ 1 ~
h(ﬂ,‘) =T - Gn IOg(m) - g(m - Gn)2
+ 94, - G tog(a) - o

with A, = Y7 | piz; and Gy, =[], z; P*, has n distinct zeros, namely,
Z1,...,%,. Hence,

H(z) = —z,ah'(z) = 2% — (G + z)z + Gz, + G — Ay)

has n — 1 distinct zeros in (21, z,). The value

r= 5(Gut2a) + (G +22)/2? ~ Gulan + Go — A)

is a zero of H. Since

P =y = (@0 = Gu)/2)? + Cu(An — Gu) = (@ — Gu) /220,
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we conclude that H has at most one zero in (z1,z,). This implies
n — 1 < 1, which contradicts the assumption n > 3. Thus, p is a
boundary point of M. Hence, one component of p is equal to 0. Let
pr =0,k € {l,... ,n}; using maxi<i<n, izk T; < & and the induction
hypothesis, we obtain for all (p1,...,p,) € M:

Sa(pla"' apn) Z Sa(ﬁla aﬁn)

n

n
2 Zﬁﬂi - Hfﬂiﬁi

i=1 i=1
ik ik
n n 2
1 ) 5,
- E bi| xi — H x;™
2maxi<i<n, itk Ti i i
ik ik
> 0.

This completes the proof of the theorem. a

Remarks. 1) An analysis of the proof reveals that the sign of equality
holds in (2) if and only if the x;’s corresponding to positive p;’s are all
equal.

2) In a recently published note, L. Grafakos [4] has given an elegant
elementary proof of the following inequality due to Hilbert.

If a,,, n € Z, are real numbers which are square summable, then

2
o z(z ) <Y,
jezZ nizjfn nez
n#j

where the constant 72 is best possible.

Grafakos emphasized that his proof of (4) uses only one inequality,
namely, 2ab < a? +b%. If we use inequality (2) with n = 2 or any other
suitable refinement of 2ab < a? + b2, then we obtain a sharpening of
(4). For instance, applying 2ab < a® + b? — §(b — a)?, § < 1, we get

2 2
Qp A — Qp
Yy +5§j§:(—) <Y d
jeZ<n§Zn_J> nez;émez m-=n nez "
n#j n#*m
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valid for all real numbers a,, n € Z, which are square summable and
not all equal to 0.
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