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1. Introduction. Given two nonzero integers m and n and a
positive integer c, the classical Kloosterman sum is defined as

K(m,n; c) =
∑

1≤a≤c,
(a,c)=1

e2πi(am+ān)/c

where aā ≡ 1 (mod c). We can also define a generalized Kloosterman
sum

Kk(m,n; c) =
∑

1≤a≤c,
(a,c)=1

ε−κ
a

(
c

a

)
e2πi(am+ān)/c

for odd κ with κ = 2k, where εa = 1 if a ≡ 1 (mod 4) and = i
if a ≡ 3 (mod 4). Here (c/a) is the extended Kronecker’s symbol
(Shimura [16] or see Iwaniec [8] and Sarnak [14]). In other words
the generalized Kloosterman sum is the classical sum twisted by a
character. It is known (Iwaniec [8]) that this generalized Kloosterman
sum is essentially a Salié sum which is defined as

S(m,n; q) =
∑

1≤a≤q,
(a,q)=1

(
a

q

)
e2πi(am+ān)/q

for odd integer q.

The Linnik-Selberg conjecture (Linnik [13], Selberg [15]) predicts
that there is considerable cancellation in a weighted sum of the classical
Kloosterman sums:

∑
1≤c≤x

K(m,n; c)
c

= O(xε)
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for any ε > 0. The first nontrivial estimation in this direction was
obtained by Kuznetsov [12]

(1)
∑

1≤c≤x

K(m,n; c)
c

= O(x1/6(log x)1/3).

The method used in [12] is a Kuznetsov formula proved by Kuznetsov
and independently by Bruggeman in [2]. Briefly speaking, the Kuznetsov
formula is a weighted sum of classical Kloosterman sums

(2)
∞∑

c=1

1
c
K(m,n; c)ϕ

(
4π

√
mn

c

)

which can be expressed essentially as a bilinear form of Fourier coeffi-
cients of Maass cusp forms plus a spectral integral of Fourier coefficients
of Eisenstein series with coefficients given by certain Bessel transforms
of the function ϕ.

For the generalized Kloosterman sum Kk(m,n; c) estimation of its
weighted sum is also of interest and has important applications in
number theory. For instance, estimates of the sum

(3)
∑
c≤x,

c≡0 (mod Q)

Kk(n, n; c)√
c

e4πiνn/c

for some −1 ≤ ν ≤ 1 and Q ≡ 0 (mod 8), or equivalently, estimates of

(4)
∑
q≤x,

q≡0 (mod N)

S(n, n; q)√
q

for some N as pointed out by Sarnak [14], play a crucial role in Iwaniec
[8]. These estimates in turn imply bounds for Fourier coefficients of
modular forms of half-integral weights. The technique here is based
on explicit evaluation of the generalized Kloosterman sum in order to
control its oscillatory behavior. In the direction of the Linnik-Selberg
conjecture for the sum of generalized Kloosterman sums, Goldfield and
Sarnak [7] proved a result similar to the estimate in (1):

(5)
∑

1≤c≤x

Kk(m,n; c)
c

= Oε(x1/6+ε)
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for odd κ = 2k. Note that here xε actually represents a power of log x
higher than (log x)1/3 (Goldfield [6]). This result is based on estimation
of the Selberg’s Kloosterman zeta function

Z(m,n; s) =
∑
c≥1

Kk(m,n; c)
c2s

as t = Im (s) → ∞.

In this paper we will first establish a Kuznetsov formula for gen-
eralized Kloosterman sums twisted by a real character in Section 2
(Theorem 2.1). Our Kuznetsov formula may be regarded as a “soft”
formula, because we do not use Bessel transforms on the spectral side.
We use the theory of automorphic irreducible representations of GL(2)
to give the spectral side of the Kuznetsov formula another interpreta-
tion (Section 3). It is possible to get an “explicit” formula following the
arguments in Cogdell and Piatetski-Shapiro [3]. An advantage of this
“soft” Kuznetsov formula is that it can be lifted to a new Kuznetsov
formula over a quadratic number field. This will be done in Section 4
(Theorem 4.1). One possible application of our Kuznetsov formulas is
that we might be able to estimate weighted sums of generalized Kloost-
erman sums as those in (3), (4) and (5), using Kuznetsov’s approach.
This hopefully would improve the results in [7] and [8], at least to
smaller powers of logarithmic functions.

We want to point out that a similar Kloosterman sum or Salié sum
appears in Jacquet [9]. The geometric kernel function Kf (g, h) in [9] is
similar to ours, but the relative trace formula there is based on different
integration of Kf (g, h) which leads to different conclusions.

2. A new Kuznetsov formula. First let us choose an additive
character ψ = ψR · ∏

p<∞ ψp of QA trivial on Q such that ψR(x) =
e2πix and, at each finite place p, the order of the local character ψp is
zero. Since (am + ān)/c ∈ Q and ψ((am + ān)/c) = 1 for 1 ≤ a ≤ c
and (a, c) = 1, we can write

e2πi(am+ān)/c =
∏

p<∞
ψ̄p

(
am+ ān

c

)
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and the classical Kloosterman sum becomes

K(m,n; c) =
∑

1≤a≤c,
(a,c)=1

∏
p<∞

ψ̄p

(
am+ ān

c

)
.

Since the order of ψp is zero, the product above is actually taken over
prime factors of c. Thus

K(m,n; c) =
∏
p|c

∑
x∈R×

p /(1+�
ord p(C)
p Rp)

ψ̄p

(
mx+ n/x

c

)

where Rp is the ring of integers in Qp, �p is a prime element in Rp,
and R×

p is the group of units. Using integration, we get

K(m,n; c) = φ(c)
∏
p|c

∫

R×
p

ψ̄p

(
mx+ n/x

c

)
d×x,

where φ is the Euler function.

Similarly we can consider Kloosterman sums twisted by a real char-
acter. Let η = ηR

∏
p<∞ ηp be a nontrivial real idele class character of

Q×
A trivial on Q×. By the class field theory there is a unique quadratic

number field E = Q(
√
τ ) such that η is trivial on the norm group

NE/Q(E×
A), where τ ∈ Z is nonzero and square-free. In particular, for

p <∞, n ∈ Z and x > 0 with (x, p) = 1, we have

ηp(pnx) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if p > 2, p � τ , (τ/p) = 1,
or p = 2, τ ≡ 1 (mod 8);

(−1)n if p > 2, p � τ , (τ/p) = −1,
or p = 2, τ ≡ 5 (mod 8);

(−1/x) if p = 2, τ ≡ 7 (mod 8);
(−1)n(−1/x) if p = 2, τ ≡ 3 (mod 8);
(2/x) if p = 2, τ ≡ 2 (mod 16);
(−1)n(2/x) if p = 2, τ ≡ 10 (mod 16);
(−2/x) if p = 2, τ ≡ 14 (mod 16);
(−1)n(−2/x) if p = 2, τ ≡ 6 (mod 16);
(−τ1/p)n(x/p) if p > 2, p | τ , τ = pτ1.
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Then the conductor exponent of ramified ηp is 2 when p = 2 and τ ≡ 3
(mod 4), is 3 when p = 2 and τ ≡ ±2 (mod 8), and is 1 when p > 2
and p | τ . We have

∏
p|c

ηp(a) =
{

(−1/a)(a/(c, τ)) if 2 | c and τ ≡ 3 (mod 4),
(a/(c, τ)) otherwise

for (a, c) = 1 where (
a

(c, τ)

)

is the Kronecker symbol. Now we define a Kloosterman sum twisted
by the real character

∏
p|c ηp as

K(m,n; c; η) =
∑

1≤a≤c,
(a,c)=1

( ∏
p|c

ηp(a)
)
e2πi(am+ān)/c.

Then from
( ∏

p|c
ηp(a)

)
e2πi(am+ām)/c =

∏
p|c

ηp(a)ψ̄p

(
am+ ān

c

)

the twisted Kloosterman sum can be written as

K(m,n; c; η) =
∑

1≤a≤c,
(a,c)=1

∏
p|c

ηp(a)ψ̄p

(
am+ ān

c

)
.

By the same argument as above we get an integral expression

(6) K(m,n; c; η) = φ(c)
∏
p|c

∫

R×
p

ηp(x)ψ̄p

(
mx+ n/x

c

)
d×x.

Although our generalized Kloosterman sum K(m,n; c; η) is different
from the sum Kk(m,n; c), they both are essentially the Salié sum after
removing a power of 2 from c. Indeed, following the proof of Lemma 2
in Iwaniec [8], we have
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Lemma 2.1. Let c = qr with 4 | r and (q, r) = 1. Then

K(m,n; c; η) = K(mq̄, nq̄; r; η)K(mr̄, nr̄; q; η)

where q̄ and r̄ are given by qq̄ ≡ 1 (mod r) and rr̄ ≡ 1 (mod q).

We note that, when q is odd,

K(m,n; q; η) =
∑

1≤a≤q,
(a,q)=1

(
a

(q, τ )

)
e2πi(am+ān)/q

is the Salié sum S(m,n; q) for suitable q and τ .

Let f be a smooth function of compact support on GL(2,QA). We
assume that f = fR · ∏

p<∞ fp and that almost every local function
fp, p <∞, is the characteristic function of Kp = GL(2, Rp). Then the
geometric kernel is defined as

Kf (g, h) =
∫

Z(Q)\Z(QA)

∑
γ∈GL(2,Q)

f(g−1γzh)η(z)d×z.

By the spectral decomposition it is equal to the sum of the correspond-
ing cuspidal kernel, Eisenstein kernel and special kernel, cf., Gelbart
and Jacquet [4]:

Kf (g, h) = Kcusp
f (g, h) +Keis

f (g, h) +Ksp
f (g, h).

We will come back to the actual expressions of these kernels in later
sections. Now the Kuznetsov trace formula is given by the integral, cf.,
Goldfeld [5], Ye [17],

(7)
∫

Q\QA

∫
Q\QA

Kf

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy

=
∑

A∈Q×
If (A)

+
∫
QA

∫
Z(QA)

f

(
z

(−1/m
1

)(
1 x

1

))
η(z)ψ(x)d×z dx
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where m is a nonzero integer, and

If (A) =
∏

p≤∞

∫
Qp

∫
Qp

∫
Z(Qp)

fp

(
z

(
1 x

1

) (
A

1

) (
1 y

1

))

η(z)ψp(y −mx)d×z dx dy.

Here the product is taken over p = R and p <∞. We denote by Ifp
(A)

the p-adic local integral on the right side for p <∞, and by IfR
(A) the

real local integral for p = R.

We want to select functions fR and fp, p <∞, so that the right side
of (7) equals a weighted sum of generalized Kloosterman sums similar
to (2). For this purpose, let us fix a positive integer n. If n > 1 we write
n = pb1

1 · · · pbr
r , where p1, . . . , pr are distinct primes and b1, . . . , br > 0.

We now choose local functions fp for p < ∞. First let us assume
that p �= p1, . . . , pr. We want the function fp to be supported in Kp,
left-invariant under the principal congruence subgroup K3 consisting
of k ≡ I (mod �3

pRp), and bi-invariant under

N(Rp) =
{(

1 x
1

) ∣∣∣x ∈ Rp

}
.

Then fp is determined by its values at

(
a1

a2

)
and

(
a2

a1

)

for a1, a2 ∈ R×
p /(1 +�3

pRp). We set

fp

(
a1

a2

)
= fp

(
a2

a1

)
= ηp(a1);

this can always be done because ηp is either unramified or ramified with
its conductor exponent less than or equal to 3.

When p = pi, we want fp to be supported in

Kp

(
1

�bi
p

)
N(Rp),
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left-invariant under K3, and bi-invariant under N(Rp). Then fp is
determined by its values at

(
a1

a2�
bi
p

)
and

(
a2�

bi
p

a1

)

for a1, a2 ∈ R×
p /(1 +�3

pRp). We set

fp

(
a1

a2�
bi
p

)
= fp

(
a2�

bi
p

a1

)
= ηp(a1).

To choose the real function fR we use the Bruhat decomposition. We
set fR = 0 on the parabolic subgroup A(R)N(R), where

A(R) =
{( ∗ 0

0 ∗
)}

and N(R) =
{(

1 ∗
0 1

)}
.

On the big cell

N(R)A(R)
(

1
1

)
N(R)

we set

fR

((
1 x

1

) (
az

z

) (
1 y

1

))
= f1(x)f2(y)f3(z)f4(a)

for x, y ∈ R, a, z ∈ R×, where f1 and f2 are compactly supported
smooth functions on R and f3, f4 are compactly supported smooth
functions on R×, such that

∫
R

f1(x)e−2πimx dx = 1,

∫
R

f2(y)e2πiy dy = 1,

and ∫
R×

f3(z)
dz

|z|R = 1.
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Since the support of fR does not intersect a neighborhood ofA(R)N(R),
the function fR defined above is indeed a smooth function of compact
support on GL(2,R).

Using these local functions fR and fp, p < ∞, we can calculate the
right side of (7). Since fR vanishes on A(R)N(R), the second term on
the right side of (7) equals zero. Now to compute If (A) we look at the
local integrals Ifp

(A), p <∞, and IfR
(A).

We will use an expansion formula for p-adic local orbital integrals
proves in Ye [18]. By assuming bi ≥ 0 we only need to compute Ifp

(A)
when p = pi. Since fp is left-invariant under K3, it can be written
as a convolution fp = vol (K3)−1f0 ∗ fp, where f0 is the characteristic
function on K3. Substituting this convolution into the integral defining
Ifp

(A), we can rewrite Ifp
(A) as

Ifp
(A) =

∑
λ1,λ2∈Z,
k∈K3\Kp

Ψfp

(
k

(
�λ1

p

�λ1+λ2
p

))

·
∫

x,y∈Qp,z∈Z(Qp),

z

(
1 x

1

)(
A

1

)(
�

−λ1
p

�
−λ1−λ2
p

)(
1 y

1

)
∈K3k

ηp(z)ψp(y�λ2
p −mx) dx dy d×z

where

Ψfp
(g) =

∫
Qp

fp

(
g

(
1 x

1

))
ψp(x) dx.

Since fp is supported in

Kp

(
1

�bi
p

)
N(Rp),

we know that

Ψfp

(
k

(
�λ1

p

�λ1+λ2
p

))

is nonzero only if λ1 = 0 and λ2 = bi. When this is the case

Ψfp

(
k

(
�λ1

p

�λ1+λ2
p

))
= fp

(
k

(
1

�bi
p

))
.
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Consequently

Ifp
(A) =

∑
k∈K3\Kp

fp

(
k

(
1

�bi
p

))

·
∫

x,y∈Qp,z∈Z(Qp),

z

(
x A�

−bi
p +xy

1 y

)
∈K3k

ηp(z)ψp(y�bi
p −mx) dx dy d×z.

Since the function fp is bi-invariant under N(Rp), we may take the sum
above over k ∈ K3N(Rp)\Kp/N(Rp) and the integral over

z

(
x A�−bi

p + xy
1 y

)
∈ K3N(Rp)kN(Rp).

This last condition implies that ord p(A) ≤ bi, ord p(A) ≡ bi (mod 2),
and hence z ∈ �

(bi−ord p(A))/2
p R×

p .

If ord p(A) = bi, then z ∈ R×
p , x, y ∈ Rp, and we can integrate over x

and y to get

Ifp
(A) =

∑
k∈K3N(Rp)\Kp/N(Rp)

fp

(
k

(
1

�bi
p

))

·
∫

z∈Z(Qp),

z

(
A�

−bi
p

1

)
∈K3N(Rp)kN(Rp)

ηp(z) d×z.

Hence we can set

k =
(

a2

a1

)

with a1, a2 ∈ R×
p /(1 +�3

pRp) and get

Ifp
(A) =

∑
a1,a2∈R×

p /(1+�3
pRp)

fp

(
a2�

bi
p

a1

)

·
∫

z∈a1(1+�3
pRp),

zA�
−bi
p ∈a2(1+�3

pRp)

ηp(z) d×z.
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Recall

fp

(
a2�

bi
p

a1

)
= ηp(a1).

Since ηp(z) = ηp(a1), we can integrate over z and sum over a2 to get
Ifp

(A) = 1 when ord p(A) = bi.

Now we consider the case of ord p(A) < bi and ord p(A) ≡ bi

(mod 2). This time z ∈ �
(bi−ord p(A))/2
p R×

p , x ∈ �
(ord p(A)−bi)/2
p R×

p ,
and y = −A�−bi

p /x+ y1 with y1 ∈ Rp. Integrating over y1, we get

Ifp
(A) =

∑
k∈K3N(Rp)\Kp/N(Rp)

fp

(
k

(
1

�bi
p

))

·
∫

x∈�
(ord p(A)−bi)/2
p R×

p ,

z∈�
(bi−ord p(A))/2
p R×

p ,

z

(
x

−A�
−bi
p /x

)
∈K3N(Rp)kN(Rp)

ηp(z)ψ̄p

(
A

x
+mx

)
dx d×z.

Setting

k =
(
a1

a2

)

we get

Ifp
(A) =

∑
a1,a2∈R×

p /(1+�3
pRp)

fp

(
a1

a2�
bi
p

)

·
∫

x∈�
(ord p(A)−bi)/2
p R×

p ,

z∈�
(bi−ord p(A))/2
p R×

p ,

xz∈a1(1+�3
pRp),

−zA�
−bi
p /x∈a2(1+�3

pRp)

ηp(z)ψ̄p

(
A

x
+mx

)
dx d×z.

Note that

fp

(
a1

a2�
bi
p

)
= ηp(a1) and ηp(z) = ηp(x)ηp(a1).
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If we integrate over z ∈ (a1/x)(1 +�3
pRp) and sum over a2, we get

Ifp
(A) =

∫

�
(ord p(A)−bi)/2
p R×

p

ηp(x)ψ̄p

(
A

x
+mx

)
dx.

We observe that Ifp
(A) is nonzero only when ord p(A) ≤ bi and

ord p(A) ≡ bi (mod 2). Thus in the sum
∑

A∈Q× If (A) we can set
A = ±n/c2 with c ∈ Z×

+. Changing variables from x to x/c when
ord p(c) �= 0, we get

Ifp

(
± n

c2

)
= (1 − p−1)pord p(c)ηp(c)

∫

R×
p

ηp(x)ψ̄p

(
mx± n/x

c

)
d×x.

Therefore the Kuznetsov trace formula in (7) can be written as

∑
A∈Q×

If (A) =
∞∑

c=1

IfR

(
n

c2

)

·
∏
p|c

(1 − p−1)pordp(c)ηp(c)

·
∫

R×
p

ηp(x)ψ̄p

(
mx+ n/x

c

)
d×x

+
∞∑

c=1

IfR

(
− n

c2

)

·
∏
p|c

(1 − p−1)pordp(c)ηp(c)

·
∫

R×
p

ηp(x)ψ̄p

(
mx− n/x

c

)
d×x.

Using the twisted Kloosterman sum in (6), we get
∞∑

c=1

IfR

(
n

c2

)
K(m,n; c; η)

∏
p|c

ηp(c)

+
∞∑

c=1

IfR

(
− n

c2

)
K(m,−n; c; η)

∏
p|c

ηp(c).
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Back to the definition of fR, we see that

IfR
(A) =

∫
R

f1(x)e−2πimx dx

∫
R

f2(y)e2πiy dy

∫
R×

f3(z)
dz

|z|R f4(A)

= f4(A).

Therefore, the geometric side of the Kuznetsov trace formula is∫
Q\QA

∫
Q\QA

Kf

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy

=
∞∑

c=1

f4

(
n

c2

)
K(m,n; c; η)

∏
p|c

ηp(c)

+
∞∑

c=1

f4

(
− n

c2

)
K(m,−n; c; η)

∏
p|c

ηp(c).

We note that
∏

p|c ηp(c) = (−1)Ωunr(c) if all primes p | c split or are
inert unramified (see Section 4), where Ωunr(c) is the number of inert
unramified prime divisors of c counting multiplicity. Using the spectral
decomposition of the automorphic representations of GL(2), we finally
get a new Kuznetsov formula.

Theorem 2.1. Let f4 be a smooth function of compact support in
R×. For a positive integer n and a nonzero integer m, define functions
f1, f2, f3, fR, fp, p <∞, and f as above. Then

(8)
∞∑

c=1

f4

(
n

c2

)
K(m,n; c; η)

∏
p|c

ηp(c)

+
∞∑

c=1

f4

(
− n

c2

)
K(m,−n; c; η)

∏
p|c

ηp(c)

=
∫

Q\QA

∫
Q\QA

Kcusp
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy

+
∫

Q\QA

∫
Q\QA

Keis
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy.
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Here we used the fact that the integral of the special kernel equals
zero. This is trivial, because

Ksp
f (g, h) =

1
2

∑
χ2=η

χ(det g)χ̄(deth)

·
∫

Z(QA)\GL(2,QA)

χ(det y) dy

·
∫

Z(QA)

f(zy)η(z) d×z.

We remark that if we assume f4(A) to be zero for negative A, we
only get the first sum on the left side of (8). If, instead, f4 is
compactly supported on (−∞, 0), we get the second sum only, which
is a Kuznetsov formula with opposite signs when m is positive.

If we set η to be the trivial character, the discussion in this section also
applies. Consequently, we can get a Kuznetsov formula for the usual
classical Kloosterman sums. This is essentially the soft Kloosterman-
spectral formula of Cogdell and Piatetski-Shapiro [3]:

∞∑
c=1

f4

(
n

c2

)
K(m,n; c) +

∞∑
c=1

f4

(
− n

c2

)
K(m,−n; c)

=
∫

Q\QA

∫
Q\QA

K ′cusp
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy

+
∫

Q\QA

∫
Q\QA

K ′eis
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy

where K ′cusp
f and K ′eis

f are the cuspidal and Eisensteinian components
of the kernel

K ′
f (g, h) =

∫
Z(Q)\Z(QA)

∑
γ∈GL(2Q)

f(g−1γzh) d×z.

3. The spectral decomposition. Now we explain the meaning of
the spectral side of our Kuznetsov formula.
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Let σ be an automorphic irreducible cuspidal representation of
GL(2,QA) with central character η containing the unit representation
of KS . Here S is a finite set of places of Q containing R, p1, . . . , pr

(from n), and all ramified places, and KS =
∏

p/∈S K(Qp). We denote
by VS(σ) the subspace of the space of σ consisting of the forms invariant
under KS . Let {φj}j∈J be an orthonormal basis of VS(σ), and let σS

be the corresponding representation of GL(2,QS) on VS(σ). Then, for
the function f chosen above, the cuspidal kernel is given by (Jacquet
and Lai [10])

Kcusp
f (g, h) =

∑
σ

∑
j∈J

σS(f̃S)φj(g)φ̄j(h)

where f̃(g) =
∫

Z(QA)
f(zg)η(z) d×z. Hence the cuspidal integral can

be written as∫
Q\QA

∫
Q\QA

Kcusp
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy

=
∑

σ

∑
j∈J

∫
Q\QA

(σS(f̃S)φj)
(

1 x
1

)
ψ(mx) dx

·
∫

Q\QA

φ̄j

(
1 y

1

)
ψ(y) dy.

To define the Eisenstein kernel, we first introduce a Hilbert space
H(s, µ, ν) for s ∈ C consisting of functions φ on GL(2,QA) which
satisfy conditions

φ

((
a x

b

)
g

)
= µ(a)ν(b)

∣∣∣∣ab
∣∣∣∣
s+1/2

QA

φ(g)

for a, b ∈ Q×
A, x ∈ QA and g ∈ GL(2,QA), and

∫
K(QA)

|φ(k)|2 dk < +∞.

Here µ and ν are unitary characters of Q×
A trivial on Q× with µν = η.

The spaces H(s, µ, ν) form a trivial holomorphic fiber bundle of base
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C; hence, we may identify H(s, µ, ν) with H(µ, ν) = H(0, µ, ν) so that
each φ ∈ H(µ, ν) determines a section φ(s, µ, ν) whose restriction to
K(QA) is independent of s. Let {φα}, α ∈ I, be an orthonormal
basis of H(µ, ν), and let π(s, µ, ν) be the representation of GL(2,QA)
on H(s, µ, ν) by right translations. This representation π(s, µ, ν) is
unitary if s is purely imaginary. The Eisenstein series is defined as

E(g, φ, s, µ, ν) =
∑

γ∈A(Q)N(Q)\GL(2,Q)

φ(γg, s)

for Re (s) > 1/2 and is continued analytically to the whole complex
lane, where φ is a section of the bundle H(s, µ, ν). Then, as in Arthur
[1] and Gelbart and Jacquet [4], the Eisenstein kernel is

(9) Keis
f (g, h) =

1
4π

∑
µν=η

∞∫
−∞

∑
α,β∈I

(π(it, µ, ν)(f̃)φβ, φα)

· E(g, φα, it, µ, ν)E(h, φβ, it, µ, ν) dt.

This expression of Eisenstein kernel is actually valid for smooth
K(QA)-finite functions f . Since f = fR · ∏

p<∞ fp with fp being
locally constant and compactly supported, it is equivalent to say that
(9) is valid for those f with K(R)-finite smooth functions fR; in this
case, the two sums in (9) are indeed reduced to finite sums for each
fixed f . Arthur pointed out in [1] that the expression in (9) is a con-
tinuous functional on the space of K(QA)-finite compactly supported
smooth functions. Since this space is dense in C∞

c (GL(2,QA)), we
can then extend the definition of Keis

f to a continuous functional on
C∞

c (GL(2,QA)).

More precisely, let

r(ϕ) =
(

cosϕ sinϕ
− sinϕ cosϕ

)
.

Since fR(r(ϕ1)gr(ϕ2)) is a smooth 2π-periodic function of ϕ1 and ϕ2,
we can expand fR(g) into a Fourier series

(10) fR(g) =
1

4π2

∑
l,n∈Z

π∫
−π

π∫
−π

fR(r(ϕ1)gr(ϕ2))

· e−inϕ1e−ilϕ2 dϕ1 dϕ2.



GENERALIZED KLOOSTERMAN SUMS 1307

Since fR is smooth and compactly supported, the double series in
(10) is uniformly convergent for g ∈ GL(2,R). We also observe that
any finite partial sum of the right side of (10) is a smooth K(R)-
finite function; in particular, the integral in (10) is K(R)-finite for any
l, n ∈ Z. Therefore, for any compactly supported smooth function f ,
the Eisenstein kernel can be written as

Keis
f (g, h)

=
1

16π3

∑
l,n∈Z

∑
µν=η

+∞∫
−∞

∑
α,β∈I

π∫
−π

π∫
−π

(π(it, µ, ν)(f̃ϕ1,ϕ2)φβ, φα)

· e−inϕ1e−ilϕ2 dϕ1 dϕ2

· E(g, φα, it, µ, ν)E(h, φβ, it, µ, ν) dt

where

fϕ1,ϕ2(g) = fR(r(ϕ1)gRr(ϕ2))
∏

p<∞
fp(gp)

for g = gR
∏

p<∞ gp ∈ GL(2,QA). Note that the two inner sums here
are indeed finite sums for fixed f and l, n.

According to Arthur [1], the Eisenstein kernel is bounded by

(11) |Keis
f (g, h)| ≤ ‖f‖0 · ‖g‖L‖h‖L

for any compactly supported smooth function f , not necessarily
K(QA)-finite, where ‖·‖0 is a continuous seminorm on C∞

c (GL(2,QA))
and L is a constant; here ‖ · ‖ is a norm function on GL(2,QA). Since
the Eisenstein series are left-invariant under GL(2,Q), the integral of
Keis

f in (8) can be taken over compact subsets of QA. By the bounds
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given in (11), we obtain as in Ye [17], that
∫

Q\QA

∫
Q\QA

Keis
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y +mx) dx dy

=
1

16π3

∑
l,n∈Z

∑
µ,ν=η

+∞∫
−∞

dt

·
∑

α,β∈I

π∫
−π

π∫
−π

e−inϕ1eilϕ2 dϕ1 dϕ2

·
∫

K(QA)

∫
K(QA)

φβ(k′r(ϕ2))φ̄α(kr(ϕ1)) dk dk′

·
∫

Q×
S

∫
QS

f̃S

(
k−1

S

(
a ax

1

)
k′S

)
µS(a)|a|it+1/2

S dx d×a

·
∫

Q\QA

E

((
1 v

1

)
, φα, it, µ, ν

)
ψ(mv) dv

·
∫

Q\QA

E

((
1 w

1

)
, φβ, it, µ, ν

)
ψ(w) dw

where S is the same as in the cuspidal kernel, fS =
∏

p∈S fp, µS =∏
p∈S µp, kS =

∏
p∈S kp, kr(ϕ1) = kRr(ϕ1) ·

∏
p<∞ kp, etc.

4. A Kuznetsov formula over a quadratic number field. The
quadratic idele class character η in Theorem 2.1 is associated uniquely
with a quadratic number field E = Q(

√
τ ) with a nonzero square-free

integer τ . To simplify the matter, we will assume that m = n in this
section; this is indeed the situation when one estimates (3) and (4).

We will derive our results by local arguments. We note that p splits
in E if p = 2, τ ≡ 1 (mod 8), or if p > 2, p � τ , (τ/p) = 1; p is inert
unramified in E if p = 2, τ ≡ 5 (mod 8), or if p > 2, p � τ , (τ/p) = −1;
p is inert ramified in E if p = 2, τ ≡ 2, 3 (mod 4), or if p > 2, p | τ .
When p is ramified, the different exponent d of Ep over Qp is 1 if p > 2,
p | τ , is 2 if p = 2, τ ≡ 3 (mod 4), and is 3 if p = 2, τ ≡ 2 (mod 4).
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We will use a lemma proved in Ye [19]. A formula of this kind was first
proved by Zagier [20].

Lemma 4.1. Suppose that p is inert in Q(
√
τ ), b ∈ R×

p , c ∈ �pRp

if p is unramified, and c ∈ �d
pRp if p is ramified. Then

∫

(1/c)R×
p

ηp(x)ψ̄p

(
x+

b

c2x

)
dx

= p−d/2λEp/Qp
(ψ̄p)

∑
α∈R×

Ep
/(1+cREp ),

αᾱ∈b+εcRp

ψ̄p ◦ tr
(
α

c

)

where ε = 2 if p = 2 and τ ≡ 2, 3 (mod 4), and ε = 1 otherwise.

Here the local λ factor is defined as in Jacquet and Langlands [11].
That is,

λEp/Qp
(ψ̄p)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if p = 2, τ ≡ 1 (mod 4)

or p > 2, p � τ ;

i if p = 2, τ ≡ 3 (mod 4);

1 if p = 2, τ ≡ 2 (mod 16);

−1 if p = 2, τ ≡ 10 (mod 16);

i if p = 2, τ ≡ 14 (mod 16);

−i if p = 2, τ ≡ 6 (mod 16);
(−τ1

p

) ∑
1≤x<p(x/p)e

2πix/p

|∑1≤x<p(x/p)e2πix/p| if p > 2, p | τ with

τ = pτ1.

For the local orbital integral

Ifp

(
± n

c2

)
=

∫

(1/c)R×
p

ηp(x)ψ̄p

(
mx± n

c2x

)
dx
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when p | c, we have the following results.

Lemma 4.2. Suppose m = n and p | c.
(i) When p is inert unramified with c ∈ n�pRp, or when p is ramified

with c ∈ n�d
pRp,

Ifp

(
± n

c2

)
=
ηp(n)
|n|p p−d/2λEp/Qp

(ψ̄p)

·
∑

α∈R×
Ep

/(1+(c/n)REp ),

αᾱ∈±1+(εc/n)Rp

ψ̄p ◦ tr
(
αn

c

)
.

(ii) When p splits into E1 and E2 with c ∈ n�pRp,

Ifp

(
± n

c2

)
= |n|−1

p

∑
x∈R×

E1
/(1+(c/n)RE1 ),

y∈R×
E2

/(1+(c/n)RE2 ),

xy∈±1+(c/n)Rp

ψ̄p

(
xn

c
+
yn

c

)
.

(iii) When p splits or is inert unramified with c /∈ n�pRp, we have

Ifp

(
± n

c2

)
=
ηp(c)
|c|p (1 − p−1).

(iv) Ifp
(±n/c2) vanishes otherwise.

Proof. Part (i) follows from Lemma 4.1. When p splits we have

Ifp

(
± n

c2

)
= |n|−1

p

∑
x∈R×

p /(1+(c/n)Rp)

ψ̄p

(
xn

c
± n

cx

)
.

Setting y = ±1/x we get (ii). The last two parts are from direct
computation.
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By Lemma 4.2, we can rewrite the Kuznetsov trace formula in (7) as

∑
A∈Q×

If (A) =
∞∑

c=1

IfR

(
n

c2

)

·
∏

p|(c/(c,n)) if p is
inert unramified,

pd|(c/(c,n)) if p is
inert ramified

∑
α∈R×

Ep
/(1+(c/n)REp ),

αᾱ∈1+(εc/n)Rp

ψ̄p ◦ tr
(
αn

c

)

·
∏

p|(c/(c,n))
if p splits

∑
x∈R×

E1
/(1+(c/n)RE1 ),

y∈R×
E2

/(1+(c/n)RE2 ),

xy∈1+(c/n)Rp

ψ̄p

(
xn

c
+
yn

c

)

·
∏
p|c

ep(n, c; τ )

+
∞∑

c=1

IfR

(
− n

c2

)

·
∏

p|(c/(c,n)) if p is
inert unramified,

pd|(c/(c,n))if p is
inert ramified

∑
α∈R×

Ep
/(1+(c/n)REp ),

αᾱ∈−1+(εc/n)Rp

ψ̄p ◦ tr
(
αn

c

)

·
∏

p|(c/(c,n))
if p splits

∑
x∈R×

E1
/(1+(c/n)RE1 ),

y∈R×
E2

/(1+(c/n)RE2 ),

xy∈−1+(c/n)Rp

ψ̄p

(
xn

c
+
yn

c

)

·
∏
p|c

ep(n, c; τ )

where
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ep(n, c; τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηp(n)|n|−1
p if p is inert unramified or

splits with p|(c/(c, n)),
ηp(c)|c|−1

p (1 − p−1) if p is inert unramified or
splits with p � (c/(c, n)),

ηp(n)|n|−1
p p−d/2λEp/Qp

(ψ̄p) if p is inert ramified with

pd|(c/(c, n)),
0 if p is inert ramified with

pd � (c/(c, n)).

If we set β = αn/(c, n), x1 = xn/(c, n) and y1 = yn/(c, n), we can
rewrite the sums

(12)
∑

α∈R×
Ep

/(1+(c/n)REp ),

αᾱ∈±1+(εc/n)Rp

ψ̄p ◦ tr
(
αn

c

)

=
∑

β∈R×
Ep

/(1+(c/(c,n))REp ),

ββ̄∈±n2/(c,n)2+(εc/(c,n))Rp

ψ̄p ◦ tr
(

β

c/(c, n)

)

and

(13)
∑

x∈R×
E1

/(1+(c/n)RE1 ),

y∈R×
E2

/(1+(c/n)RE2 ),

xy∈±1+(c/n)Rp

ψ̄p

(
xn

c
+
yn

c

)

=
∑

x1∈R×
E1

/(1+(c/(c,n))RE1 ),

y1∈R×
E2

/(1+(c/(c,n))RE2 ),

x1y1∈±n2/(c,n)2+(c/(c,n))Rp

ψ̄p

(
x1

c/(c, n)
+

y1
c/(c, n)

)
.

Here we note that p|(c/(c, n)) implies that p � (n/(c, n)) and n/(c, n) ∈
R×

p . If we denote β = a+ b
√
τ , then the conditions

β ∈ R×
Ep
/

(
1 +

c

(c, n)
REp

)
and ββ̄ ∈ ± n2

(c, n)2
+

εc

(c, n)
Rp
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are equivalent to

a, b ∈ Rp

/ c

(c, n)
Rp and a2 − τb2 ∈ ±n2/(c, n)2 +

εc

(c, n)
Rp

for all local cases, except when p = 2 and τ ≡ 5 (mod 8). In this
exceptional case the conditions on β are equivalent to a = a1/2,
b = b1/2,

a1, b1 ∈ Rp

/ 2c
(c, n)

Rp, and a2
1 − τb21 ∈ ± 4n2

(c, n)2
+

4c
(c, n)

Rp.

Similarly we may set x1 = a+b
√
τ and y1 = a−b√τ when p splits. Then

the conditions on x1 and y1 attached to the above sum are equivalent
to

a, b ∈ Rp

/ c

(c, n)
Rp and a2 − τb2 ∈ ± n2

(c, n)2
+

c

(c, n)
Rp

if p > 2, p � τ , (τ/p) = 1, and are equivalent to

a = a1/2, b = b1/2, a1, b1 ∈ Rp

/ 2c
(c, n)

Rp,

and

a2
1 − τb21 ∈ ± 4n2

(c, n)2
+

4c
(c, n)

Rp

if p = 2 and τ ≡ 1 (mod 8).

Consequently, assuming 2 � (c/(c, n)) when τ ≡ 1 (mod 4), we can
take the global product of the sums in (12) and (13) over p|(c/(c, n))
and write it as

∑
1≤a≤c/(c,n),
1≤b≤c/(c,n),

a2−τb2≡±n2/(c,n)2 (mod εc/(c,n))

e4πia(c,n)/c

except when 2|(c/(c, n)), 2d � (c/(c, n)) and τ ≡ 2 or 3 (mod 4). Since
in the last cases we have

∏
p|c ep(n, c; τ ) = 0, these exceptional cases

do not matter.
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Now we consider the global product of the sums in (12) and (13)
taken over p|(c/(c, n)) when 2|(c/(c, n)) and τ ≡ 1 or 5 (mod 8). In
either case we have to use a1 and b1 to rewrite the sum in (12) or (13)
as

1
2

∑
a1,b1∈R×

p /(1+(2c/(c,n))Rp),

a2
1−τb21∈±4n2/(c,n)2+(4c/(c,n))Rp

ψ̄p

(
a1 + b1

√
τ

2c/(c, n)
+
a1 − b1

√
τ

2c/(c, n)

)
.

Here we have the coefficient 1/2 because the new sum covers the original
sum twice. Therefore the corresponding global product is equal to

1
2

∑
1≤a≤2c/(c,n),
1≤b≤2c/(c,n),

a2−τb2≡±4n2/(c,n)2 (mod 4c/(c,n))

e2πia(c,n)/c.

Substituting the above results into the Kuznetsov trace formula and
using our computation of IfR

(A) in Section 2, we get

∑
A∈Q×

If (A) =
1
2

∞∑
c=1

f4

(
n

c2

)

·
∑

1≤a≤2c/(c,n),
1≤b≤2c/(c,n),

a2−τb2≡4n2/(c,n)2 (mod 4c/(c,n))

e2πia(c,n)/c ·
∏
p|c

ep(n, c; τ )

+
1
2

∞∑
c=1

f4

(
− n

c2

)

·
∑

1≤a≤2c/(c,n),
1≤b≤2c/(c,n),

a2−τb2≡−4n2/(c,n)2 (mod 4c/(c,n))

e2πia(c,n)/c ·
∏
p|c

ep(n, c; τ )
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when 2|(c/(c, n)) and τ ≡ 1 (mod 4), and

∑
A∈Q×

If (A) =
∞∑

c=1

f4

(
n

c2

)

·
∑

1≤a≤c/(c,n),
1≤b≤c/(c,n),

a2−τb2≡n2/(c,n)2 (mod εc/(c,n))

e4πia(c,n)/c ·
∏
p|c

ep(n, c; τ )

+
∞∑

c=1

f4

(
− n

c2

)

·
∑

1≤a≤c/(c,n),
1≤b≤c/(c,n),

a2−τb2≡−n2/(c,n)2 (mod εc/(c,n))

e4πia(c,n)/c ·
∏
p|c

ep(n, c; τ )

otherwise. We note that the exponential sums above can be regarded
as the lifting of the Kloosterman sums K(n,±n; c; η) over the quadratic
number field E = Q(

√
τ ) (Ye [19]). We will denote them as

Kh±(n, c; τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∑
1≤a≤2c/(c,n),
1≤b≤2c/(c,n),

a2−τb2≡±4n2/(c,n)2 (mod 4c/(c,n))

e2πia(c,n)/c

if 2|(c/(c, n))and
τ ≡ 1 (mod 4),∑

1≤a≤c/(c,n),
1≤b≤c/(c,n),

a2−τb2≡±n2/(c,n)2 (mod 2c/(c,n))

e4πia(c,n)/c

if 2|(c/(c, n))and
τ ≡ 2, 3 (mod 4),∑

1≤a≤c/(c,n),
1≤b≤c/(c,n),

a2−τb2≡±n2/(c,n)2 (mod c/(c,n))

e4πia(c,n)/c

otherwise.

We also note that the product
∏

p|c ep(n, c; τ ) vanishes when either
(i) 2|(c/(c, n)), 4 � (c/(c, n)), and τ ≡ 3 (mod 4), or (ii) 2|(c/(c, n)),
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8 � (c/(c, n)) and τ ≡ 2 (mod 4). Now we can finally establish a
Kuznetsov formula over the quadratic number field E = Q(

√
τ):

Theorem 4.1. Let f4 be a smooth function of compact support in
R×. For a positive integer m = n we define functions f1, f2, f3, fR,
fp, p <∞, and f as in Section 2. Then

∞∑
c=1

f4

(
n

c2

)
Kh+(n, c; τ )

∏
p|c

ep(n, c; τ )

+
∞∑

c=1

f4

(
− n

c2

)
Kh−(n, c; τ )

∏
p|c

ep(n, c; τ )

=
∫

Q\QA

∫
Q\QA

Kcusp
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y + nx) dx dy

+
∫

Q\QA

∫
Q\QA

Keis
f

((
1 x

1

)
,

(
1 y

1

))
ψ(y + nx) dx dy.

The spectral side of this formula can also be lifted to E according to
the relative trace formula in Ye [17].
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