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CONSTRUCTION OF THE SOLUTIONS
OF DIFFERENCE EQUATIONS IN

THE FIELD OF MIKUSIŃSKI OPERATORS

DJURDJICA TAKAČI AND ARPAD TAKAČI

ABSTRACT. We construct the solutions of certain dif-
ference equations with variable coefficients in the field of
Mikusiński operators F . The method we are using is very
similar to the method used for the difference equations with
variable numerical coefficients. We analyze the character of
the solutions of the difference equation obtained by using this
method.

The considered difference equations can be treated as the
discrete analogues for the differential equations whose coef-
ficients are operator functions in the field F . Therefore the
obtained solutions can be treated as the approximate solutions
for the corresponding differential equations.

1. Introduction. The set of continuous functions C+ with supports
in [0,∞), with the usual addition and the multiplication given by the
convolution

f(t) ∗ g(t) =
∫ t

0

f(τ )g(t− τ ) dτ, t > 0,

is a ring. By the Titchmarsh theorem, C+ has no divisors of zero, hence
its quotient field can be defined (see [2], and, for more advanced topics,
[3]). The elements of this field, the Mikusiński operator field F , are
called operators. They are quotients of the form

f

g
, f ∈ C+, 0 �≡ g ∈ C+,

where the last division is observed in the sense of convolution. Every
continuous function a = a(t), t ≥ 0, defines a unique operator which
we denote simply by a. In that case, we write

a = {a(t)}.
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We shall denote by Fc the subset of F consisting of the operators
representing continuous functions.

Among the most important operators are the integral operator l =
{1}, its inverse operator, the differential operator s and the identity
operator I. It holds

ls = I, lα =
{
tα−1

Γ(α)

}
, α > 0.

Clearly, s and I are not defined by any continuous function.

If x is a function with a continuous nth derivative, then

{x(n)(t)} = snx− sn−1x(0) − · · · − x(n−1)(0)I.

An operational function u(x) is a function that maps a set of real
numbers into the set of operators (see [2, Part 3, Chapter I]). It is
continuous on an interval (A,B) if there exist an operator q and a
continuous function f(x, t) on the domain Ω = {(x, t) | A < x < B, t ≥
0}, such that

u(x) = q · {f(x, t)}, x ∈ (A,B).

If, additionally, for a fixed x0 ∈ (A,B), the quotient

f(x, t) − f(x0, t)
x− x0

uniformly tends to the limit when x → x0 in every closed interval
[0, T ], then the operational function u(x) is differentiable at the point
x0 ∈ (A,B). In that case the product

u′(x0) = q

{
∂f(x0, t)

∂x

}

is the (first) derivative of the operational function u(x) at the point
x0 (see [2, Part III, Chapter I, Section 7]). A k−times differentiable
function (k = 2, 3, . . . ) is defined analogously.

In this paper, we consider the differential equation with variable
coefficients in the field F

(1)
p∑

i=0

Ai(x)siu′′(x) +
q∑

i=0

Bi(x)siu′(x) +
r∑

i=0

Ci(x)siu(x) = f(x),
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with the conditions

(2) u(0) = E, u(1) = F

where E and F are operators from F , and f(x), Ai(x), i = 0, 1, . . . , p,
Bi(x), i = 0, 1, . . . , q, Ci(x), i = 0, 1, . . . , r, are operator functions.

The differential equation (1) can be written in the form

P (x)u′′(x) +Q(x)u′(x) +R(x)u(x) = f(x),

where

P (x) =
p∑

i=0

siAi(x), Q(x) =
q∑

i=0

siBi(x), R(x) =
r∑

i=0

siCi(x).

From now on we take N ∈ N and put h := 1/N . As is usual in
numerical analysis, instead of u′(x) we shall put

u(x+ h) − u(x− h)
2h

while instead of u′′(x) we shall put

u(x+ h) − 2u(x) + u(x− h)
h2

.

So we obtain the difference equation in the field F corresponding to
(1):

(3)
P (x)

u(x+ h) − 2u(x) + u(x− h)
h2

+Q(x)
u(x+ h) − u(x− h)

2h
+R(x)u(x) = f(x).

If we denote by xn = xn−1 + h, where x0 = 0 and h > 0, n =
0, 1, 2, ..., N , and define the operators Pn, Qn, Rn and fn by Pn =
P (xn), Qn = Q(xn), Rn = R(xn) and fn = f(xn), respectively, then
the equation (3) becomes

(4) anun−1 + bnun + cnun+1 = fn, n = 1, . . . , N − 1.
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The conditions

(5) u0 = E, uN = F,

are in fact the conditions given by (2) of the differential equation (1).
The coefficients of equation (4) are of the form

an =
I

h2

(
Pn − Qnh

2

)
= α1,nI + sr1(α2,nI + φa,n),(6)

bn = − I

h2

(
2Pn −Rnh

2

)
= β1,nI + sr2(β2,nI + φb,n),(7)

cn =
I

h2

(
Pn +

Qnh

2

)
= γ1,nI + sr1(γ2,nI + φc,n),(8)

where in (6), (7) and (8) r1 = max{p, q} and r2 = max{p, r} are
natural numbers, α1,n, β1,n, γ1,n, α2,n, β2,n, γ2,n, n = 1, . . . , N − 1,
are numerical constants, assumed to be nonzero, and φa,n, φb,n, φc,n,
n = 1, . . . , N − 1, are operators from Fc. Moreover, for the operators
fn from the righthand side of (4) and the operators E and F from (5)
we shall assume that

fn = sκ(f1,nI + fc,n), n = 1, ..., N − 1,(9)
E = sσ(E1I + Ec),(10)
F = sσ(F1I + Fc),(11)

where κ and σ are integers, f1,n, E1 and F1 are nonzero numerical
constants and fc,n, Ec and Fc are operators from Fc.

The solutions of (4) are also in the field of Mikusiński operators and,
therefore, it is of interest to analyze their character. Actually, we use a
procedure from [1] and the well-known fact that the field of Mikusiński
operators has very good algebraic properties. Thus the usual addition
and multiplication with operators can be treated in the same way as
with complex numbers.

As will be pointed out in Section 3, the differential equation (1)
may represent a partial differential equation with certain initial and
boundary conditions.

Finally, in Section 4, we estimate the difference between the exact
and the approximate solution of the differential equation (1) with the
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conditions (2) in F , the last being the solution of the difference equation
(4) with (5).

Let us remark that in papers [4, 5] and [6], the difference equations
with constant coefficients (first and/or second order) in the field of
Mikusiński operators were analyzed. In paper [7], we constructed
the exact and the approximate solution of a difference equation with
variable coefficients, such that α2,n = β2,n = γ2,n = 0, n ∈ N, in (2),
(3) and (4), respectively.

2. Solutions of difference equations. Let us start with the
theorem that gives a recurrence relation for the solutions un, n =
0, 1, . . . , N , of the difference equation (4). As remarked in the Intro-
duction, we use the procedure (and also the notations) from [1, Chapter
2, Section 5].

Theorem 1. Solutions of the difference equation (4) with the
conditions (5) can be written as

uN = F,

un = Ln+1/2un+1 +Kn+1/2,
n = 0, 1, 2, . . . , N − 2, N − 1,

where L1/2 = 0 and K1/2 = E, and the operators Ln+1/2 and Kn+1/2,
1 ≤ n ≤ N − 1, have the forms

Ln+1/2 =
−cn

bn + anLn−1/2
,(13)

Kn+1/2 =
fn − anKn−1/2

bn + anLn−1/2
.(14)

Proof. Starting from the condition (5), where we have u0 = E, and
taking

L1/2 = 0, K1/2 = E,

we have
u0 = L1/2u1 +K1/2.

Using the equation (4), we can write

a1u0 + b1u1 + c1u2 = f1, or u1 =
−c1
b1

u2 +
a1E − f1

−b1
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(note that b1 �= 0, since we assumed β1,1 �= 0). Denoting

(15) L3/2 :=
−c1
b1

, K3/2 :=
a1E − f1

−b1 ,

we get
u1 = L3/2u2 +K3/2.

Further on, using the equation (4), we can write

a2u1 + b2u2 + c2u3 = f2, or u2 = L5/2u3 +K5/2.

If we assume that for some n ∈ {3, . . . , N − 2}, it holds

(16) un−1 = Ln−1/2un +Kn−1/2,

where Ln−1/2 and Kn−1/2, n = 2, . . . , N − 2, are of the form (13)
and (14), respectively, then putting (16) in equation (4), we obtain the
relation (12).

Note that, starting from the condition uN = F and using Theorem 1,
we get

uN−1 = LN−1/2F +KN−1/2,

wherefrom
uN−2 = LN−1−1/2uN−1 +Kn−1−1/2.

Continuing this procedure, by decreasing n, we get un, for n =
N − 3, N − 4, . . . , 1.

In order to see the character of the solution of the problem (4), (5),
we have to analyze the characters of the operators Ln+1/2 and Kn+1/2

for n = 1, 2, . . . , N−1. As we shall see, we have three cases to analyze:

(i) r2 > r1;

(ii) r2 = r1;

(iii) r2 < r1.

Let us start with the first case, r2 > r1.

Proposition 1. Assume in equation (4) the coefficients an, bn and
cn, 1 ≤ n ≤ N − 1, are of the form (6), (7) and (8), respectively, and
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the operators fn and E are of the form (9) and (10), respectively. If
r2 > r1, then

(a) the operators Ln+1/2 are from Fc, n = 1, 2, . . . , N − 1, and can
be written as

(17) Ln+1/2 =: lr2−r1(L1,n+1/2I + Lc,1,n+1/2), n = 2, . . . , N − 1,

where L1,n+1/2 are numerical constants and Lc,1,n+1/2 are operators
from Fc;

(b) the operators Kn+1/2, n = 1, 2, . . . , N − 1, can be written as

(18) Kn+1/2 = lλn(K1,n+1/2I + Kc,1,n+1/2),

where λ1 = min{r2−κ, r2−r1−σ}, . . . , λn = min{r2−κ, r2−r1+λn−1},
n = 2, . . . , N − 1, K1,n+1/2 are numerical constants and Kc,1,n+1/2 are
operators from Fc.

Proof. (a) From relation (15) we have

L3/2 =
−c1
b1

= − γ1,1I + sr1(γ2,1I + φc,1)
β1,1I + sr2(β2,1I + φb,1)

= − l
r2γ1,1/β2,1 + lr2−r1(γ2,1I + φc,1)/β2,1

I + (β1,1/β2,1)lr2 + (φb,1/β2,1)

= −
(
lr2
γ1,1

β2,1
+ lr2−r1

γ2,1I + φc,1

β2,1

)

·
∞∑

j=0

(−1)j

(
β1,1

β2,1
lr2 +

φb,1

β2,1

)j

.

It is well known in the Mikusiński operator theory that for any φ from
Fc the geometric sum

∑∞
i=1 φ

i converges in the field F to an operator
representing a continuous function. Therefore we can write

(19)
L3/2 = −

(
lr2
γ1,1

β2,1
+ lr2−r1

γ2,1I + φc,1

β2,1

)
(I + ρ1)

=: lr2−r1(L1,3/2I + Lc,1,3/2),
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where L1,3/2 = −γ2,1/β2,1 is a numerical constant, while ρ1 and Lc,1,3/2

are operators from Fc; since r2 − r1 > 0, the operator L3/2 is from Fc,
also.

From relation (13), using (19), we have

L5/2

=
−c2

b2 + a2L3/2

=
−(γ1,2I + sr1 (γ2,2I + φc,2))

β1,2I+sr2 (β2,2I+φb,2)−(α1,2I+sr1 (α2,2I+φa,2))lr2
( γ1,1

β2,1
I+l−r1

γ2,1I+φc,1
β2,1

)
(I+ρ1)

=
−
(
lr2 γ1,2

β2,2
+ lr2−r1 γ2,2I+φc,2

β2,2

)
I+

β1,2
β2,2

lr2 +
φb,2
β2,2

−
(α1,2

β2,2
lr2 +lr2−r1

α2,2I+φa,2
β2,2

)
lr2

( γ1,1
β2,1

I+l−r1
γ2,1I+φc,1

β2,1

)
(I+ρ1)

= −
(

lr2
γ1,2

β2,2
+ lr2−r1

γ2,2I + φc,2

β2,2

)

·
∞∑

j=0

((
α1,2

β2,2
I + sr1

α2,2I + φa,2

β2,2

)(
γ1,1

β2,1
I + sr1

γ2,1I + φc,1

β2,1

)

· l2r2(I + ρ1) − β1,2

β2,2
lr2 − φb,2

β2,2

)j

Hence, we can write

L5/2 = −
(
lr2
γ1,2

β2,2
+ lr2−r1

γ2,2I + φc,2

β2,2

)
(I + ρ2)

=: lr2−r1(L1,5/2I + Lc,1,5/2),

where L1,5/2 is a numerical constant, while ρ2 and Lc,1,5/2 are operators
from Fc; therefore the operator L5/2 is also from Fc.

If we suppose that for some n, 4 ≤ n ≤ N − 1, the operator Ln−1/2

is from Fc and can be written as

Ln−1/2 = −
(
lr2
γ1,n−1

β2,n−1
+ lr2−r1

γ2,n−1I + φc,n−1

β2,n−1

)
(I + ρn−1)

=: lr2−r1(L1,n−1/2I + Lc,1,n−1/2),
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(for some ρn−1 from Fc), then we have

Ln+1/2

=
−cn

bn + anLn−1/2

= − γ1,nI + sr1(γ2,nI + φc,n)
β1,nI + sr2(β2,nI + φb,n) + (α1,nI + sr1(α2,nI + φa,n))Ln−1/2

= −
lr2 γ1,n

β2,n
+ lr2−r1 γ2,nI+φc,n

β2,n

I + β1,n

β2,n
lr2 + φb,n

β2,n
+

(α1,n

β2,n
lr2 + lr2−r1

α2,nI+φa,n

β2,n

)
Ln−1/2

= −
(
lr2
γ1,n

β2,n
+ lr2−r1

γ2,nI + φc,n

β2,n

)

·
∞∑

j=0

(−1)j

(
β1,n

β2,n
lr2 +

φb,n

β2,2
+

(
α1,n

β2,n
lr2 + lr2−r1

α2,nI + φa,n

β2,n

)

· lr2−r1(L1,n−1/2I + Lc,1,n−1/2)
)j

.

So we can write

Ln+1/2 = −
(
lr2
γ1,n

β2,n
+ lr2−r1

γ2,nI + φc,n

β2,n

)
(I + ρn)

=: lr2−r1(L1,n+1/2I + Lc,1,n+1/2),

where L1,n+1/2 is a numerical constant, while Lc,1,n+1/2 and ρn are
operators from Fc. Thus the operator Ln+1/2, 1 ≤ n ≤ N − 1, belongs
also to Fc.

(b) The operator K3/2 can be transformed as follows:

K3/2 =
f1 − a1E

b1
=
f1 − (α1,1I + sr1(α2,1I + φa,1))E

β1,1I + sr2(β2,1I + φb,1)

=
lr2f1 − (lr2α1,1 + lr2−r1(α2,1I + φa,1))E

β2,1

· I

I + (β1,1/β2,1)lr2 + (φb,1/β2,1)

=
lr2f1 − (lr2α1,1 + lr2−r1(α2,1I + φa,1))E

β2,1
(I + ρ1).
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Since f1 = sκ(f1,1I + fc,1) and E = sσ(E1I + Ec), we have

(20)

K3/2

=
lr2−κ(f1,1I+fc,1)−(lr2−σα1,1+lr2−r1−σ(α2,1I+φa,1))(E1I+Ec)

β2,1

· (I+ρ1)

=: lλ1(K1,3/2I + Kc,1,3/2),

where λ1 = min{r2−κ, r2−r1−σ} (note that r2−σ > r2−r1−σ), K1,3/2

is a numerical constant and Kc,1,3/2 represents a continuous function.

Also, we have

K5/2

=
f2 − a2K3/2

b2 + a2L3/2

=
lr2f2 − (lr2α1,2 + lr2−r1(α2,2I + φa,2))K3/2

β2,2

· I

I +
β1,2
β2,2

lr2 +
φb,2
β2,2

−
(α1,2

β2,2
lr2 + lr2−r1

α2,2I+φa,2
β2,2

)
L3/2

=:
lr2f2 − (α1,2lr2 + sr1−r2(α2,2I + φa,2))K3/2

β2,2
· (I + ρ2)

=
lr2−κ(f1,2+fc,2)−(lr2α1,2+lr2−r1(α2,2I+φa,2))lλ1(K1,3/2I+Kc,1,3/2)

β2,2

· (I + ρ2)

=: lλ2(K1,5/2I + Kc,1,5/2),

where λ2 = min{r2 − κ, r2 − r1 + λ1}, K1,5/2 is a numerical constant
and Kc,1,5/2 represents a continuous function. Using the mathematical



SOLUTIONS OF DIFFERENCE EQUATIONS 1255

induction, we obtain
(21)
Kn+1/2

=
(
lr2fn−(α1,nl

r2 +sr1−r2(α2,nI+φa,n))Kn−1/2

β2,n

)
· (I + ρn)

=
(
lr2fn−(α1,nl

r2 +sr1−r2(α2,nI+φa,n))lλn−1(K1,n−1/2I+Kc,1,n−1/2)
β2,n

)

· (I + ρn)
= lλn(K1,n+1/2I + Kc,1,n+1/2),

where λn = min{r2−κ, r2−r1+λn−1}, K1,n+1/2 is a numerical constant
and Kc,1,n+1/2, for n = 1, . . . , N − 1, represents a continuous function.

Thus we have the following results.

Corollary 1. If the conditions of Proposition 1 are satisfied such
that κ < r2 and σ < r2 − r1, then the operators Kn+1/2 belong to Fc,
for n = 1, 2, . . . , N − 1.

Note that in this case it might happen that the operators fn and E
represent continuous functions (for κ < 0 and σ < 0) or that they do
not.

Corollary 2. If the conditions of Proposition 2 are satisfied such
that κ < r2 and σ > r2 − r1 > 0 (implying that the operators fn,
n = 1, . . . , N − 1, and E do not represent continuous functions), then
K3/2 does not represent an operator from Fc. However, for sufficiently
large N there exists 1 ≤ n0 ≤ N − 1, such that Kn+1/2, n = 1, . . . , n0,
do not represent operators from Fc and Kn+1/2, n = n0 +1, . . . , N−1,
do represent operators from Fc.

Proof. Using relation (20) we have

K3/2 = lλ1(K1,3/2I + Kc,1,3/2),

where λ1 = min{r2 − κ, r2 − r1 − σ}. Thus λ1 = r2 − r1 − σ, because
r2 − κ > 0. Since r2 − r1 − σ < 0, the operator K3/2 is not from Fc.
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The character of the operator

K5/2 = lλ2(K1,5/2I + Kc,1,5/2)

depends also on λ2. Let us remark that from the relations

r2 − r1 + (r2 − r1 − σ) = 2(r2 − r1) − σ > λ1

it follows that λ2 = min{r2−r1, 2(r2−r1)−σ}. If λ2 = 2(r2−r1)−σ <
0, then K5/2 does not represent an operator from Fc. Of course, it may
happen that λ2 > 0 and in that case K5/2 belongs to Fc. Continuing
this procedure, we see that by increasing n the expression r2−r1+λn−1

also increases; hence, for some n0, λn0+1 becomes greater than 0. But
then Kn0+1/2 does belong to Fc. Clearly, this conclusion holds if N is
sufficiently big.

The last proof gives us also the following

Corollary 3. If the conditions of Proposition 1 are satisfied such
that either

(i) 0 < κ < r2 and σ > (N − 1)(r2 − r1), or

(ii) κ > r2,

then Kn+1/2, n = 1, ..., N − 1, do not represent operators from Fc.

Let us remark that in the second part of last corollary the continuity
of the operator E does not “improve” the continuity of the operators
Kn+1/2.

We can give now the form of the solution un of the problem (4), (5).

Theorem 2. Assume in equation (4) the coefficients an, bn and
cn, 1 ≤ n ≤ N − 1, are of the form (6), (7) and (8), respectively,
fn, n = 1, . . . , N − 1, E and F are of the form (9), (10) and (11),
respectively. If r2 > r1, then the solutions of the equation (4) with
conditions (5) are of the form

(22) un = lωn(UnI + Uc,n), n = 1, . . . , N − 1,
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where ωN = −σ, ωn = min{(r2 − r1) + ωn+1, λn}, Un are numerical
constants and Uc,n are operators from Fc, n = 1, . . . , N − 1.

Proof. From the first relation in (12) we obtain that uN has the form
(22), where ωN = −σ. From (12), (17) and (21) we have

uN−1 = lr2−r1−σ(L1,N−1/2I + Lc,1,N−1/2)(F1I + Fc)

+ lλN−1(K1,N−1+1/2I + Kc,1,N−1+1/2)
= lωN−1(UN−1I + Uc,N−1),

where ωN−1 = min{r2 − r1 − σ, λN−1}, UN−1 is a numerical constant
and Uc,N−1 is an operator from Fc. Continuing this procedure we
obtain relation (22).

Corollary 4. Assume the conditions of Theorem 2 are fulfilled and
the operators fn, n = 1, . . . , N − 1, E and F are of the form (9),
(10) and (11), respectively, either represent continuous functions or
σ < r2 − r1, κ < r2. Then the solutions of the problem (4) and (5), the
operators un, n = 1, . . . , N − 1, represent continuous functions.

Proof. If σ < 0, κ < 0, then in Proposition 1 and its Corollary 1 it was
shown that the operators Ln+1/2, and Kn+1/2 for every 1 ≤ n ≤ N − 1
are from Fc. So, ωn ≥ 1, 1 ≤ n ≤ N − 1, and therefore the solutions of
equation (4), given by (22) are from Fc.

Similarly, if 0 < σ < r2 − r1, κ < 0, we have that ωn ≥ 1,
1 ≤ n ≤ N − 1.

Let us remark that in the last corollary it might happen that neither
the conditions E and F in (5), nor the operators fn are from Fc, but
still the solutions of equation (4) belong to Fc.

Corollary 5. Assume the conditions of Theorem 2 are fulfilled and
σ > r2−r1, κ < r2. Then for sufficiently large N there exists n0 < N/2
such that the solutions of the problem (4) and (5), given by (22), un,
n = 1, . . . , n0 and un, n = N − n0, N − n0 + 1, . . . , N − 1 do not
represent continuous functions, but un, n = n0 + 1, . . . , N −n0 − 1, do
represent continuous functions.
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Proof. Follows from Corollary 2 of Proposition 1.

Corollary 6. Assume the conditions of Theorem 2 are fulfilled and
either κ > r2 or σ > (N−1)(r2−r1). Then the solutions of the problem
(4), (5) do not represent continuous functions.

We turn now to (ii), i.e., to the case r1 = r2. To that end,
we shall additionally suppose that the complex numbers L2,n+1/2,
n = 1, 2, . . . , N − 1, given by

(23) L2,3/2 = −γ2,1

β2,1
, L2,n+1/2 = β2,n − α2,nL2,n−1/2,

are nonzero. Then analogously as in Proposition 1, we have

Proposition 2. Assume in equation (4) the coefficients an, bn and
cn, 1 ≤ n ≤ N − 1, are of the form (6), (7) and (8), respectively, and
the operators fn and E are of the form (9) and (10), respectively. If
r1 = r2 = m > 0, then

(a) the operators Ln+1/2 can be written as

Ln+1/2 = L2,n+1/2I + Lc,2,n+1/2, n = 1, 2, . . . , N − 1,

where L2,n+1/2 are numerical constants from (23), and Lc,2,n+1/2 are
from Fc, n = 1, . . . , N − 1;

(b) the operators Kn+1/2, n = 1, 2, . . . , N − 1, can be written as

Kn+1/2 = lλ(K2,n+1/2I + Kc,2,n+1/2),

where λ = min{m− κ,−σ}, K2,n+1/2 are nonzero numerical constants
and Kc,2,n+1/2 are operators representing continuous functions.

Corollary 7. Assume the conditions of Proposition 2 are satisfied
such that κ < 0 and σ < 0 (implying that the operators fn and E
represent continuous functions). Then the operators Kn+1/2, n =
1, 2, . . . , N − 1, belong to Fc.

Corollary 8. Assume the conditions of Proposition 2 are satisfied
such that κ > m > 0 or σ ≥ 0 (implying that the operators fn,
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n = 1, . . . , N −1, and E do not represent continuous functions). Then
the operators Kn+1/2, n = 1, . . . , N − 1, do not represent operators
from Fc.

Thus we have the following theorem.

Theorem 3. Assume in equation (4) the coefficients an, bn and cn,
1 ≤ n ≤ N − 1, are of the form (9), (10) and (11), respectively. If
r1 = r2 = m, and the operators fn, n = 1, . . . , N − 1, E and F , given
by (9), (10) and (11), respectively,

(i) represent continuous functions, then the solutions of the problem
(4) and (5) also represent continuous functions;

(ii) have the forms (9), (10) and (11), respectively, such that σ ≥ 0
or κ ≥ m (thus neither of them is from Fc), then the solutions of the
problem (4), (5) do not represent continuous functions.

We have come to the case (iii), namely r1 > r2.

Proposition 3. Assume in equation (4) the coefficients an, bn and
cn, 1 ≤ n ≤ N − 1, are of the form (6), (7) and (8), respectively, and
the operators fn, n = 1, 2, . . . , N − 1, E and F are given by (9), (10)
and (11), respectively. If r1 > r2, then

(a) the operators Ln+1/2, n = 1, . . . , N − 1, can be written as

(24) Ln+1/2 = l(−1)n(r1−r2)(L3,n+1/2I + Lc,3,n+1/2),

where L3,n+1/2 are numerical constants and Lc,3,n+1/2 are operators
from Fc. Hence the operators L2k+1/2 are from Fc, while the operators
L(2k+1)+1/2 are not, k = 1, . . . , [(N − 1)/2];

(b) the operators Kn+1/2, n = 1, 2, . . . , N − 1, can be written as

Kn+1/2 = lλn(K3,n+1/2I + Kc,3,n+1/2),

where λ1 = min{r2 − κ, r2 − r1 − σ}, . . . , λ2k = min{2r1 − r2 − κ, r1 −
r2 +λ2k−1}, λ2k+1 = min{r2−κ, r2−r1 +λ2k}, k = 1, . . . , [(N−1)/2],
where K3,n+1/2 are numerical constants and Kc,3,n+1/2 are operators
from Fc.
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Proof. (a) From relation (19) for r1 > r2 it follows that L3/2 is not
an operator from Fc and can be written as

L3/2 = lr2−r1(L3,3/2I + Lc,3,3/2),

where L3,3/2 is a nonzero numerical constant and Lc,3,3/2 is an operator
representing a continuous function. From relation (13) we have

L5/2

=
−c2

b2 + a2L3/2

=
−(γ1,2I + sr1 (γ2,2I + φc,2))

β1,2I+sr2 (β2,2I + φb,2)−(α1,2I+sr1 (α2,2I+φa,2))
(
lr2

γ1,1
β2,1

+lr2−r1
γ2,1I+φc,1

β2,1

)
(I+ρ1)

.

Thus we can write

L5/2 = −
(
l2r1−r2

γ1,2

δ2
+ lr1−r2

γ2,2I + φc,2

δ2

)
(I + ψ2)

= lr1−r2(L3,5/2I + Lc,3,5/2)

where δ2 := α2,2γ2,1/β2,1 is a numerical constant and ψ2 is an operator
representing continuous function which is obtained analogously as the
operator ρ2. Therefore we can conclude that the operator L5/2 is from
Fc. Continuing this procedure, we obtain the form (24) for all other
operators Ln+1/2, n = 3, . . . , N − 1.

(b) Omitted.

Note that in this case the operators ljLn+1/2 and ljKn+1/2, n =
1, 2, . . .N , for j > r1 − r2 are from Fc.

From the last proposition we get the following statements.

Theorem 4. Assume in equation (4) the coefficients an, bn and cn,
1 ≤ n ≤ N , are of the form (6), (7) and (8), respectively, and the
operators fn, n = 1, 2, . . . , N − 1, E and F are given by (9), (10) and
(11), respectively. If r1 > r2, then the solutions of the problem (4), (5)
are of the form

un = lωn(U3,nI + Uc,3,n), n = 1, 2, . . . , N − 1,
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where ωN = −σ, ωn = min{(−1)n(r1 − r2) + ωn+1, λn}, U3,n are
numerical constants and Uc,3,n are operators from Fc, n = 1, 2, . . . , N−
1.

Corollary 9. Assume the conditions of Theorem 4 are fulfilled such
that σ < r2 − r1 < 0, κ < r2. Then the solutions of the problem (4),
(5) represent continuous functions.

3. An application. Let us consider the partial differential equation

(25)
p∑

i=0

Ai(x)
∂2+iu(x, t)
∂x2∂ti

+
q∑

i=0

Bi(x)
∂1+iu(x, t)
∂x∂ti

+
r∑

i=0

Ci(x)
∂iu(x, t)
∂ti

= f(x, t),

for 0 < x < 1, t > 0, where p, q, r ∈ N, and the coefficients Ai(x),
i = 0, 1, . . . , p, Bi(x), i = 0, 1, . . . , q, Ci(x), i = 0, 1, . . . , r, are
continuous functions depending on the variable x, while f(x, t) and
u(x, t) are the given and the unknown function of two variables. We
assume that the solution u = u(x, t) of equation (25) satisfies certain
appropriate conditions, namely we take

(26)
∂µ+νu(x, t)
∂xµ∂tν

∣∣∣∣
t=0

= 0,

for µ = 0, ν = 0, 1, . . . , r − 1, µ = 1, ν = 0, 1, . . . , q − 1, µ = 2,
ν = 0, 1, . . . , p− 1, and, moreover,

(27) u(0, t) = E(t), u(1, t) = F (t).

In (27), E(t) and F (t) are continuous functions, depending only on the
variable t.

In the field of Mikusiński operators F , the problem (25), (26), (27)
corresponds to the problem

(28)
p∑

i=0

Ai(x)siu′′(x) +
q∑

i=0

Bi(x)siu′(x) +
r∑

i=0

Ci(x)siu(x)

= f(x), u(0) = E, u(1) = F,
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where E and F are given operators from Fc. Note that this problem, in
view of the special righthand side and boundary conditions, is a special
case of the problem (1), (2), considered at the beginning.

The difference analogue for the equation (28) is

(29) anun−1 + bnun + cnun+1 = fn

(i.e., equation (4)), with the coefficients an, bn and cn, given by (6),
(7) and (8), respectively.

The equation (29) with the conditions

u0 = E, uN = F,

leads us to the problem (4), (5). But in this case the operators E, F
and fn are from Fc and from Theorems 2, 3 and 4, it follows that its
solutions are from Fc.

4. The error of approximation. In order to give the error
of approximation in the field F , we have to say few words on the
comparison of operators. Namely, for two operators a = {a(t)} and
b = {b(t)} from Fc, we define

a ≤ b iff a(t) ≤ b(t) for each t ≥ 0

(see [2, p. 237]). Analogously, we shall say for two operator functions
that

a(x) ≤T b(x), x ∈ [c, d],

if a(x) and b(x) are representing continuous real valued functions of
two variables, a(x) = {a(x, t)}, b(x) = {b(x, t)} and

a(x, t) ≤ b(x, t) for t ∈ [0, T ], x ∈ [c, d].

The absolute value of an operator a from Fc, a = {a(t)}, denoted by
|a|, is the operator |a| = {|a(t)|}. Also, we put |a(x)| = {|a(x, t)|}.

By estimating the difference between the exact solution of the differ-
ential equation (28) and the exact solution of the difference equation
(29)) (4), i.e., (4), in the field of Mikusiński operators, we conclude
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that the solution of the difference equation (29) can be treated as the
approximate solution of the partial differential equation (25).

Let us suppose that the solution of equation (28) is from Fc and has
a continuous fourth derivative in the field of Mikusiński operators. Let
us denote by u(xn) the exact solution of equation (28) at the point
xn and by un, i.e., the solution of the difference equation (29), the
approximate solution at xn of the same equation, which also belongs
to Fc, n = 1, . . . , N . From

p∑
i=0

Ai(x)si

(
u′′(xn) − un+1 − 2un + un−1

h2

)

+
q∑

i=0

Bi(x)si

(
u′(xn) − un+1 − un−1

2h

)

+
r∑

i=0

Ci(x)si(u(xn) − un) = 0,

for n = 1, 2, . . . , N , we obtain

(30)

|u(xn) − un| =
∣∣∣∣
∑p

i=0Ai(x)si∑r
i=0 Ci(x)si

·
(
u′′(xn) − un+1 − 2un + un−1

h2

)

+
∑r

i=0Bi(x)si∑r
i=0 Ci(x)si

(
u′(xn) − un+1 − un−1

2h

)∣∣∣∣.

In this paper we give the error of approximation for r > p ≥ q. Then
we have r2 = r > r1 = p, and therefore we have the estimates

(31)

∣∣∣∣
∑p

i=0Ai(x)si∑r
i=0 Ci(x)si

∣∣∣∣ ≤T R1(T )l,
∣∣∣∣
∑q

i=0Bi(x)si∑r
i=0 Ci(x)si

∣∣∣∣ ≤T R2(T )l.

From (30) and (31) it follows

|u(xn) − un| ≤T
h2

6
(R1(T ) ·M4(T ) +R2(T ) ·M3(T ))l2,
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where

Mi(T ) = max
x∈[0,1], t∈[0,T ]

∣∣∣∣∂
iu(x, t)
∂xi

∣∣∣∣, i = 3, 4.

Note that the error of approximation is O(h2), as is in the classical
case.
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5. Dj. Takači and A. Takači, The numerical solution of the operator differential
equation, in Proceedings of the Conference, “Complex Analysis and Generalized
Functions,” Sofia, Bulgaria (1993), 315 327.

6. , The character of the solution of difference equation in the field of
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