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AN EXAMPLE OF DUAL CONTROL

JOHN ROE

The C∗-algebras introduced by the author [8] to study index theorems
on open manifolds are now known to be analytic counterparts of
certain module categories appearing in controlled topology [2]. An
apparently significant distinction is that the modules used in controlled
topology are locally finite-dimensional, whereas the Hilbert spaces used
to construct the C∗-algebras are locally infinite-dimensional. In the
author’s opinion, this distinction arises because the analysis of elliptic
operators (which are the basic ‘cycles’ in analytic representations of
K-homology) itself constitutes a form of ‘control,’ but in a ‘spectral’
rather than a ‘spatial’ direction. The purpose of this note is to reinforce
this point of view by an example.

Let M be a compact odd-dimensional manifold, and let D be a
generalized Dirac operator on M acting on a Hilbert space H of L2

sections of the appropriate bundle. Then it is well known [1, 5] that D
gives a cycle in Kasparov’s analytic K-homology for M , and therefore
gives a map

K1(M) −→ Z.

We will show how this map may be obtained using controlled C∗-
algebra theory.

Recall [8, 6] that the basic object needed to define the C∗-algebra
of a coarse space X is an X-module, that is, a Hilbert space equipped
with an action of C0(X). Now we observe

Lemma 1. The operator D endows H with the structure of an |R|-
module.

(The notation |R| refers to the underlying coarse space of R.) To
see this we just use the spectral theorem, defining the action of f ∈
C0(R) on H by the operator f(D). Observe that elliptic theory
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for D (specifically, the fact that D has compact resolvent) implies
that this |R|-module is locally finite-dimensional in the sense that the
projection operator corresponding to any compact subset of |R| has
finite-dimensional range.

For a continuous function ϕ on M , let Aϕ denote the corresponding
multiplication operator on H.

Definition 2. An operator A on H is a smooth operator if the
iterated commutators

Ad (D)n(A) = [D, . . . , [D, A] . . . ]

are all bounded on H.

Multiplication by a smooth function ϕ is a smooth operator. In
fact, any pseudodifferential operator of order zero, with scalar principal
symbol, is smooth, although we will not need this fact.

Let S(R) denote the Schwarz class of rapidly-decaying functions on
R. For f ∈ S(R), let

K(f) =
∫

|tf̂(t)| dt.

One proves easily that the ‘norm’ K(f) is translation invariant and is
homogeneous under dilations: K(x �→ f(λx)) = λK(f).

Lemma 3. Let A be a smooth operator on L2(M), and let f be a
function in S(R). Then the commutator B = [f(D), A] is smooth also.
Moreover, there is a constant C such that

‖Ad (D)n(B)‖ ≤ C‖Ad (D)n+1(A)‖K(f).

In particular, this estimate holds when A = Aϕ for a smooth function
ϕ.

Compare [4, Section 3] for a similar estimate.

Proof. Use Fourier analysis to write

f(D) =
1
2π

∫
eitD f̂(t) dt



AN EXAMPLE OF DUAL CONTROL 1217

so that

[f(D), A] =
1
2π

∫
Xtf̂(t) dt

where Xt = [eitD, A]. It is easy to see that

d

dt
Xt = iDXt + i[D, A]eitD = iDXt + Yt,

where the term Yt is uniformly bounded in norm because [D, A]
is bounded. Using Duhamel’s principle to solve this inhomoge-
neous hyperbolic equation, we find that ‖Xt‖ ≤ ‖[D, A]‖|t|. Hence
‖[f(D), A]‖ ≤ K(f)/2π as required. This gives the estimate for ‖B‖.
To get the estimates for the commutators we need only remark that

Ad (D)nB = [f(D), Ad (D)n(A)]

since D commutes with f(D).

We now need an elementary observation.

Lemma 4. Let H = ⊕n∈ZHn be a Hilbert sum of Hilbert spaces, and
suppose that a matrix Amn of operators Hm → Hn is given. Suppose
that there is a function ρ ∈ l1(Z) such that

‖Amn‖ ≤ ρ(m − n)

for all m and n. Then the matrix (Amn) represents a bounded operator
A on H, with

‖A‖ ≤ ‖ρ‖l1 .

For the reader’s convenience we repeat the proof, see [9, Lemma
13.0.4].

Proof. We use the Cauchy-Schwarz inequality. Let u, v ∈ H be
represented by series

∑
um and

∑
vn with respect to the Hilbert sum
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decomposition. Then

|〈Au, v〉| ≤
∑
m,n

‖Amn‖1/2‖um‖‖Amn‖1/2‖vn‖

≤
( ∑

m,n

‖Amn‖‖um‖2

)1/2( ∑
m,n

‖Amn‖‖vn‖2

)1/2

≤ ‖ρ‖l1‖u‖‖v‖,
giving the result.

Proposition 5. Any smooth operator A belongs to the algebra
C∗(|R|; H), that is, it is locally compact and a norm limit of finite
propagation operators.

Proof. All operators on H are locally compact, because H is locally
finite-dimensional. Let Pn be the spectral projection onto the subspace
Hn of H corresponding to the interval [n, n + 1) in the spectrum of D,
and let Amn = PmAPn. In view of the preceding lemma, it will suffice
to prove that ‖Amn‖ = O(|m−n|−2), since then truncating the matrix
Amn at |m − n| ≤ R for some large constant R will produce a finite
propagation operator which can be made as close as we please to A.
We will prove, in fact, that ‖Amn‖ = O(|m − n|−∞).

To do this, pick a Schwarz function g(t) with g(t) = 0 for t ∈ [−1, 0]
and g(t) = 1 for t ∈ [1, 2]. For each |m − n| ≥ 2, define a Schwarz
function fmn on R by fmn(t) = g((t − n − 1)/(m − n − 1)) if m > n
and fmn(t) = 1− fnm(t) if m < n, so that fmn(t) = 0 for t ∈ [n, n+1],
fmn(t) = 1 for t ∈ [m, m + 1] and K(fmn) = O(|m − n|−1). We have

Amn = PmAPn = Pmfmn(D)APn − PmAfmn(D)Pn

= PmAd (fmn(D))(A)Pn.

Clearly this computation can be repeated k times to give

Amn = PmAd (fmn(D))k(A)Pn

for any positive integer k. But the preceding results then show that

‖Ad (fmn(D))k(A)‖ = O(K(fmn)k) = O(|m − n|−k)
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as required.

Representing a continuous function as a uniform limit of smooth
functions, we get

Corollary 6. For any continuous function ϕ on M , the multiplica-
tion operator Aϕ belongs to C∗(|R|; H).

Thus we have shown that the representation of C(M) on H gives rise
to a C∗-algebra homomorphism C(M) → C∗(|R|). The K-theory of
the algebra C∗(|R|) has been calculated [3] and it is 0 in dimension 0,
Z in dimension 1. Thus we have obtained a homomorphism

i : K1(M) = K1(C(M)) −→ K1(C∗(|R|)) = Z.

We claim that this is simply the index homomorphism obtained from
Kasparov’s theory.

Remark. Strictly speaking, the computation of the K-theory of
C∗(|R|) is valid only when the module H is sufficiently large, see
[3] for the precise condition required. The module defined above (for
a compact manifold) is certainly not sufficiently large in this sense.
However, any module can be embedded in a sufficiently large one, so
we still obtain the homomorphism i as claimed.

Theorem 7. The homomorphism i is the Kasparov index map.

Proof. Using the ideas of the index theorem for partitioned manifolds
[7] we know that the isomorphism K1(C∗(|R|)) → Z can be described
as follows. Let P be the projection on H which corresponds (in the
|R|-module structure) to the positive real axis R+. For a unitary
u ∈ C∗(|R|) representing an element of K1 form the ‘Toeplitz operator’
Tu = Pu on the range of P . One can show this operator is Fredholm,
and the integer we want is its index. However, in our situation, P is
just the positive spectral projection of D, and the operator Tu really
is a Toeplitz operator. The result follows since it is known that the
Kasparov pairing is given by the formation of a Toeplitz index.
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Final remarks. Everything could be made to work for noncompact
manifolds. However, we have chosen to emphasize the compact case in
order to make the following point. In bounded topology, all compact
objects are trivial. Nevertheless, the index is a nontrivial phenomenon
on compact manifolds. The reason that the index can nonetheless be
described in a controlled fashion is that a compact manifold still has
a noncompact ‘phase’ direction. Estimates on differential operators
provide control in the phase direction.

The proof that a smooth operator has finite propagation in the dual,
given above, does not depend on ellipticity (though local compactness
does). In fact, if D is any essentially self-adjoint first order differen-
tial operator and A is ‘smooth’ with respect to D, then A is in the
C∗-algebra generated by the finite propagation operators on the spec-
trum, by the same arguments as above. On the other hand, if an
operator is ‘smooth’ relative to arbitrary families of operators D, it
is in fact pseudodifferential; see [9, Lemma 8.5.2]. Following up this
line of thought leads to a ‘controlled’ characterization of the pseudod-
ifferential operators: an operator on M is in the C∗-algebra generated
by pseudodifferential operators (of order zero) if and only if it is in
the C∗-algebra of finite propagation operators for every ‘dual control’
structure defined by a family of commuting essentially self-adjoint first
order differential operators on M .
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