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CONTRACTIVE PROJECTIONS AND ISOMETRIES
IN SEQUENCE SPACES

BEATA RANDRIANANTOANINA

ABSTRACT. We characterize one-complemented subspaces
of finite codimension in strictly monotone one-p-convex, 2 <
p < 00, sequence spaces. Next we describe, up to isometric iso-
morphism, all possible types of one-unconditional structures
in sequence spaces with few surjective isometries. We also
give a new example of a class of real sequence spaces with few
surjective isometries.

1. Introduction. This paper is divided into three parts. Through-
out we consider real sequence spaces with one-unconditional basis.

First we study images of contractive projections—we prove (Theorem
1) that in strictly monotone and one-p-convex, 2 < p < oo, (or, dually,
one-g-concave, 1 < ¢ < 2) sequence spaces every one-complemented
subspace of finite codimension n contains all but at most 2n basic vec-
tors. Calvert and Fitzpatrick [11] showed that if any such hyperplane
is one-complemented, then the space is isometric to £, or co.

Characterizations of contractive projections are important in approx-
imation theory, and they have been studied in various function spaces,
cf. survey [15], spaces with Lorentzian metric [16] and sequence spaces.
Existence of a norm-one projection onto a subspace is also related to
the existence of a linear selection for the metric projection onto its
complement—this connection and related references are discussed in [4].
For the fuller discussion of existing (extensive) literature we refer to [13,
3, 4].

Theorem 1 applies to a rich class of spaces including, e.g., £,, 1 <p <
00, p # 2, {p(¢r) where 2 <p,r < oo orl <p,r<2,as well as a wide
class of Orlicz and Lorentz spaces. It generalizes the analogous result
known for classical sequence spaces: see [7, 32, 33, 4] for ¢;, [5, 3] for
by, 1 <p < oo, p#2, [31] for £, 1 < p < oo, p# 2. The analogous
result is not true in ¢y [7, 4] or £ [2].
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Our method of proof is quite different, and we believe simpler, than
those used before.

Next we investigate all (up to isometric equivalence) one-unconditional
structures in a given sequence space. This is an isometric version of the
question of uniqueness of unconditional basis, which has been studied
since the late sixties, cf. [9] for various sequence spaces and [19] for
detailed discussion and references.

In the complex case the situation is well understood. Kalton and
Wood proved [21, Theorem 6.1] that all one-unconditional bases in a
complex Banach space are isometrically equivalent, cf. also [29, discus-
sion on p. 452 and Corollary 3.13] and [18]. Lacey and Wojtaszczyk [22]
observed that this does not hold in real L,-spaces; they give a complete
description of the two possible types of one-unconditional structure in
L, cf. also [6]. As far as we know, very little work has been done since
then in real Banach spaces, except [29].

In Theorem 4 below we establish that in real sequence spaces
which have few surjective isometries there are two types of isometri-
cally nonequivalent one-unconditional structure. Corollary 5 formu-
lates some additional assumptions which yield the uniqueness of one-
unconditional basis.

It now becomes of interest to describe the spaces satisfying assump-
tions of Theorem 4, i.e., spaces with few surjective isometries. This
is a problem that has been studied for its own right by many authors
starting with Banach [1] who characterized isometries in £;. In the
complex case the theory is well developed, see, e.g., the survey [17]
and its references.

In the real case Braveman and Semenov [10], cf. also [28, Theorem
9.8.3], proved that symmetric sequence spaces have few (in our sense)
isometries. Skorik [30] showed an analogous result for a special class
of real sequence spaces. Also recently there has been some interest in
isometries of finite-dimensional sequence spaces from a linear algebra
point of view, see [14, 12, 23], but they did not enlarge a class of
spaces with one-unconditional basis and which have few isometries.

In Section 4 we prove that there is another general class of spaces
with only elementary surjective isometries. Namely, as an application
of Theorem 1, we show (Theorem 10) that all surjective isometries
between two strictly monotone sequence spaces which are both one-p-
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convex, 2 < p < 00, or one-g-concave, 1 < g < 2, are elementary. Our
results are valid in both finite and infinite-dimensional spaces.

2. Norm-one complemented subspaces of finite codimension
in sequence spaces. We say that a Banach space X is one-p-convex,
respectively one-g-concave, if for every choice of elements {z;}?_; in X
the following inequality holds:

n 1/p n 1/p
H(Zw) < (Zmnp) i£1<p< oo,
=1

i=1
or, respectively,

(% =n)"

1=

n 1/q

> <Z ||xi||q> if 1 < ¢ < oo,
i=1

cf. [24, Definition 1.d.3]).

Theorem 1. Let X be a strictly monotone sequence space, dim X =
d > 3, with a one-unconditional basis {e;}_,. Suppose that

(a) X is one-p-convez, 2 < p < oo, or
(b) X is one-q-concave, 1 < q < 2, and smooth at each basic vector.

Then any one-complemented subspace F of codimension n in X
contains all but at most 2n basic vectors of X.

Remark. Notice that Theorem 1 states only necessary and not
sufficient conditions for the subspace to be one-complemented (unlike
the theorem of Baronti and Papini [3] for ¢,). Also Baronti and
Papini [3] prove that in ¢, every one-complemented subspace of finite
codimension is an intersection of one-complemented hyperplanes. The
analogous statement is not true in general, cf. [8] and [4, Example 6.4].

For the proof of Theorem 1 we will need the following observation
which we state in the form of the lemma for easy reference.

Lemma 2. Let X be a one-p-convez, 2 < p < 0o, sequence space with

a one-unconditional basis, and let P : X 2 F be a projection. Assume
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that there exist disjoint elements x,y € X such that supp Py D suppx,
Pz =z and card (supp ) < co. Then ||P| > 1.

Proof of Lemma 2. Let us assume, for contradiction, that ||P]| <1
and take z,y with ||z|| = ||y|| = 1. By one-p-convexity of X, and since
z and y are disjoint, we get for all 7 € R:

(1) 1P+ 7yl < e+ 7yl = (|2 + |ryP)VP] < (L +[77)HP.

Since p > 2, X is one-2-convex [24, Proposition 1.d.5], and for any
T € R, we get:

(2) (P + 7yl + Pz — 7))
< (I1P(z +Ter) | + [|P(z — rer) %)/
< VR(L+ [T,

by (1). On the other hand,

(3) NI(IP(z + 7y +|P(z —7y)/*) /2|

>3 @il + T (Py)if)D) e
i€Esupp ©
>v2| Y V14 2((Py)i/xi)e:
1€ESuUpp

> V2y/1 4 n72||z|
=21+ nr2

R(CDN

Notice that > 0, since supp z C supp Py.

Combining (2) and (3), we get /14 172 < (1 + |7|P)"/? which gives
us the desired contradiction when |7| < 7'/(P=2), O

where

Proof of Theorem 1. We first prove part (a) of the theorem. Let F' be
a one-complemented subspace of codimension n, say F' = N}_, ker f;
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for some f; € X*, and the contractive projection P : X — F'is given
by P=1dx — 2?21 f; ®v? for some linearly independent v/ € X with
fi(v¥) = ;1 (where &5 denotes Kronecker delta).

Assume that e; ¢ F if i € I. If card I < n there is nothing to prove so
without loss of generality {1,2,...,n} C I and f;(e;) = 0;5, 1,5 < n.

Notice first that if I ¢ U ;suppv?, then P(e;) = e, — > 1 fi(er)v?
and so (P(e;)); = 1. Thus, by strict monotonicity of X, P(e;) = ey,
i.e., e; € F. Therefore,

(4) IcC U supp v'.

i=1

Now take any a = Y ;" ; a;e;. Then
P(a) = a3 fi(a)
j=1

i— Y Y aifi(ei)r’

j=1i=1

n
Zaie
i=1

n n
Zaiei — aivi.
i=1 1

1=

Hence there exists ag € span {ey, ... ,e,} such that

supp P(ag)\{1,...,n} = U suppv'\{1,... ,n}.
i=1

If card (U"_;suppv®\{1,...,n}) > n, then card (supp P(ao)\{1,2,

.,n}) > n+1 and there exists € F with supp « C supp P(ao)\{1,2,

.,n}, since codim F =n < n+1. Now z and ag satisfy assumptions
of Lemma 2 which contradicts the fact that P is contractive.

Thus card (U?_;supp v*\{1,... ,n}) < n and, by (4),

card I < card < U supp vi> < 2n,
i=1
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which proves part (a) of the theorem.

We prove part (b) by duality. Consider contractive projection
P* = Idx~ — Z?Zl v ® f;. X* is one-p-convex for some p > 2
and strictly monotone so by part (a) we get that, say, v!,...,v" C
span {e},... ,e3,}. Thus, by (4), I C {1,...,2n} since X is strictly
monotone. O

Theorem 1 can be combined with our previous results about nonex-
istence of one-complemented hyperpanes in nonatomic function spaces
which do not have any bands isometrically equal to Ly [26, Theorem
2], cf. also [20, Theorem 4.3, 27, Theorem 2.7].

Corollary 3. Suppose that X is a separable strictly monotone
function space on (2, u) which is either one-p-convex for some 2 <
p < o0 or one-g-concave for some 1 < q < 2 and smooth at X4 for
every atom A of p. Suppose further that, for some g € X*, kerg is
one-complemented in X. Then g is of the form aX4s + BXp, where
a,B8 € R and A, B are atoms of .

The above statement exactly parallels (and extends) the theorem
proved by Beauzamy and Maurey for L, [5, Proposition 3.1], cf. also
[25].

3. Isometries and one-unconditional bases of sequence
spaces. An operator T : X — Y between two sequence spaces with
one-unconditional bases {e;}&; and {f;}¢ ,, respectively d < oo, will
be called elementary if

T(e:) = aifo()
for some a; € R and a permutation o of {1,...,d}.

We will say that a pair of indices k, [ is interchangeable in X if for any
z,z € X |zk| = |21, |zi] = |2x| and |z;| = |z for all i # &, imply that
llz]| = ||z||. Space X is rearrangement invariant if and only if every two
indices are interchangeable.

Theorem 4. Suppose that X and Y are separable spaces with one-
unconditional bases {e;}&_; and {f;}&,, respectively, and suppose that



CONTRACTIVE PROJECTIONS 329

all surjective isometries of one of the spaces X or Y onto itself are
elementary. Suppose thatT : X —'Y is a surjective isometry.

Then there ezist a set A C {1,...,d} and a one-to-one map o : A —
o(A) C{1,...,d} such that for everyi € A

T(e;) = €ifoi
where ¢; = *1.

The complementary sets
Bx ={1,...,d}\A and By ={1,...,d}\c(4)

split into families of disjoint pairs Px C 2Px, Py C 2B¥ so that there
exists a one-to-one map 7 : Px =% Py and if 7(,5) = (k,1), then

8;
T(el) - ||fk: + le (fk: +5ifl)
5 |
T(ej) = m(fk —¢ift)

where §;,; = 1.
Moreover,

(a) all pairs (i,7) € Px and (k,l) € Py are interchangeable in X or
Y, respectively.

(b) If all isometries of Y, respectively X, onto itself are elementary,
then the set A, respectively o(A), depends only on the spaces X,Y and
not on the isometry T'.

The following fact is an immediate consequence of Theorem 4.

Corollary 5. In the situation of Theorem 4, if we assume addition-
ally that no two-dimensional subspace of one of the spaces X orY is
isometric to (3 and both spaces X and Y are either one-2-conver or
one-2-concave, then every surjective isometry T : X — Y is elemen-

tary.

Remark. Since all surjective isometries of rearrangement-invariant
sequence spaces onto itself are elementary [10], Corollary 5 may be
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viewed as an isometric and sequence space version of the deep re-
sult of Kalton about (isomorphic) uniqueness of lattice structure in
nonatomic 2-convex (or strictly 2-concave) Banach lattices which em-
bed complementably in a strictly 2-convex, respectively strictly 2-
concave, rearrangement-invariant function space [19, Theorems 8.1 and

8.2).

Proof of Theorem 4. We use all the notation as introduced above.

Let us first see that the final remark follows readily from the main
statement of the theorem.

(a) Let y € Y and = T 1(y). Consider the element # € X such that
&; = —z; and &, =z, for v # j. Then ||Z|| = ||z|| and so ||y = ||T'Z||.
But from the form of T' we see that (T%)r = e;u, (TZ); = e;yx and
(T%), =y, for v # k,l. Hence (k,!) is interchangeable in Y. Proof for
(,7) € Px is similar.

(b) Assume that the set A depends on the isometry 7', and use the
notation Ar to emphasize that dependence. Assume that i € Ay\Ar
for some isometries U,T. Then

—1 (51
iy (nga(z)) T(el) ||fk + fl” (fk + Elfl)?
which contradicts the fact that the isometry TU ! : Y — Y is
elementary.

Now let us return to the proof of the main statement of the theorem.
It is clear that if 7 has the described form then so does T~!. So we
can assume without loss of generality that all isometries of, say, Y onto
itself are elementary.

We will split the proof of the theorem into a series of lemmas.

Lemma 6. For any ¢ < d there exist at most two indices k and [
such that

T(ei) = arfr + oufi.

Lemma 7. Suppose that for some t,j,k,1 < d
T(e;) = arfr + arfi
T(ej) - 5kfk7
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where a; # 0, e, = 1. Then ai = 0.

Lemma 8. Suppose that for some i,j,k,l,m <d,
T(e;) = anfr +oufi
T(e]) = ﬂkfk: + /Bmfmy
where ag, B # 0. Then
(a) l =m and oy, B # 0,

(b) sgn (akay) = —sgn (BrBm) and |ak| = lou| = [Bk| = [Bm| =
/|1fi + fmll-

Lemma 9. Suppose that, for all n < d cardsuppT(e,) < 2. Let
i, k,l < d be such that

T(e;) = apfr + aufi,

where ag,a; # 0, k £ 1. Then there exist a unique j % i and By, 8; # 0
so that

T(ej) = Brfr + Bufi-
Proof of Lemma 6. Denote
d d
T(ej) = Z QG mfm, Tﬁl(fn) = Zﬁn,jej-
m=1 j=1

For any choice of signs ¢ = (6]’)?21, €j = £1, we define an isometry
Se : X - X by Sc(ej) = €je;. By unconditional convergence, we get

for every n:

TST ' (fn)

d
T<Z,8n,j€jej>
j=1
d
Zé—jﬁn,j< Z aj,mfm)

j=1 m=1

d
d d
> ( 5jﬁn,jaj,m>fm-
i=1

1
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Since T'S. T~ ! is elementary (as a surjective isometry of Y') we conclude
that for every n < d and ¢ = (Ej)‘;:l there exists exactly one m such
that

d
(5) ijﬁn,jaj,m # 0.

i=1

Now fix i < d. Since T ! is onto there exists n < d with Bn,i # 0.
By (5) we get

d
) Ik with Y~ B ok #0
j=1

g;=1forall j

N with  — Z,@n,jaj,l + Bricig #0
Jj#i

~1 j#i
&= ..
1 ] =1.

(7)

Hence, for any m # k,l, a; m =0, i.e.,
T(ei) = aipfr + iy fi,
which proves the lemma. u]
Proof of Lemma 7. Consider T~1. Then
T~ (fi) = exe;
T7Yf) = ailel - skZ—’;ej.

And, since ||T(e;)|| = ||IT ()| = 1, we get |ay| < 1 and 1/|oy| < 1.
Hence |oy| = 1.

Thus, if X is strictly monotone, ay = 0.
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If X is not strictly monotone, denote by

M = sup{m : ||e; + me,|| = 1},
N =sup{n: ||fi + nfil = 1}.

We have
1 =||T(eres + sgn (o) Mejl|
= |leran fr + exau fi + Megsgn (o) fi|
= [|fe + (M + |k |) fr |-
Hence
M + |Oék| < N.
Similarly,
Hence
M+2|ak| §N+|ak| <M
and |ag| = 0. u]

Proof of Lemma 8. (a) Consider T—!. We have

(8) T Yoagfr +ufi) = e,
9) T (Bifr + Bumfm) = €;.

By Lemma 6 there exist indices p, q, 7, s,t,u < d such that

(10) Tﬁl(fk) =Ypep +Vq€q, P #q,
(11) T7Yf) = nrer +nses, T #s,
(12) T (fm) = Eser + Euen, tF#u.

From (8) we get
(13) OkYpep + AkVq€q + CuNrer + Qinses = €;.

So i € {p,q,7, s}, say i = p.
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If ¢ ¢ {r,s}, then 5, -ns = 0, say ns = 0 and ¢ = r. But then, by
Lemma 7, 74 = 0 and

T_l(fk) = Yp€i, T_l(fl) = Mrér,
where |v,| = |7,| = 1 which contradicts (8).
Hence ¢ € {r,s}, say i =r.
By Lemma 7, 4,75 # 0, and thus, by (13), ¢ = s. That is, we have
i=p=r and ¢=s#i.
Similarly, from (9), (10) and (12) we get that

j=qg=t and wu=p#j.

Therefore,
it=p=r=u and j=q=s=t,

and T~ !(span{fi, fi,fm}) C span{e;,e;} which implies that
dimspan {fx, fi, fm} =2 and so m = [.

It follows immediately from Lemma 7 that «;, 5, # 0.
(b) Since [ = m, denote T'(e;) = Bi.fr + Bifi- Then

T~ '(fx) = —BiMe; + oy Me;
T7Y(f) = BeMe; — arMe;,

where M = (o Bx — ax3) 1.

Denote by S the isometry of X such that S(e;) = —e; and S(e;) = e;.
Then

TST *(fx) = T(BiMe; + ouMej) = M (B + arfBi) fe + 2MBrou fi.

Since T'ST ! is a surjective isometry of Y, it is elementary and since
2M By # 0 we get oyfBk + axfB; = 0, i.e.,

(14) i = —agf.
Moreover,

(15) 2M Brey| = 1.
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Combining (14) and (15) we obtain |oy| = |oy| and |Bx| = |5i], and since
1T (eq) |l = [[T(ej)|| = 1 we have |ax| = |eu| = [B| = |Bi] = 1/ fx + fill-
]

Proof of Lemma 9. Lemma 8 implies that for any j # i we have
either supp T'(e;) = supp T'(e;) or supp I'(e;) Nsupp I'(e;) = &. Hence,
by surjectivity of 7', there exists j # ¢ with T'(e;) = Brfr + Bifi and,
by Lemma 8, S8, 8; # 0.

Uniqueness of j is an immediate consequence of the fact that T
preserves the dimension of subspaces. ]

4. Isometries in one-p-convex sequence spaces.

Theorem 10. Suppose X and Y are separable strictly monotone
sequence spaces with one-unconditional bases and dim X = dimY =
d >3, d < oco. Suppose that

(a) X and Y are one-p-convez, 2 < p < 00, or

(b) X and Y are one-q-concave, 1 < q < 2, and smooth at each basic
vector.

Then any isometry U from X onto Y is of the form

d d
U( Z akek> = Z €Kk fo(k)
k=1 k=1

where o is a permutation of {1,... ,d} and e = £1 fork=1,... ,d.

Proof. We will prove the theorem with the assumption (a). Part (b)
follows by duality.

For any k < d the hyperplane {z; = 0} is one-complemented in
X and so is U{zy = 0} in Y. By Theorem 1 there are at most two
numbers ki, ky < d such that U{zy, = 0} = {a1yx, + a2yr, = 0} for
some ag,as € R. We will say that coordinates k and [ are related if
{k1, k2} N {1, 12} # 2.

For the proof of the theorem we need three technical lemmas.
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Lemma 11. Suppose U{z) = 0} = {@1yr, + a2yr, = 0} where
a1, a9 # 0, and suppose that 1 is related to k. Then {l1,ls} C {k1, k2}.

Lemma 12. For any k < d there is at most one coordinate | (# k)
related to k.

Lemma 13. For any k < d there exist i,j < d, K;,k; € R such that
Uler) = Kifi + Kjfj.

Moreover, if both ki, k; # 0 then there exist (unique) | # k and
iy Aj € R such that U(e;) = Nifi + A fj.

Let us first see that Theorem 10 indeed follows from Lemma 13.

If, say, k; = 0, then |x;| = 1 since U is an isometry. So we need only
to show that k;, k; cannot both be nonzero.

Assume for contradiction that x;,k; # 0. Then by Lemma 13 there
exists [ # k such that U(e;) = A;fi + A f; for some A;, \; € R. By
one-p-convexity of Y, we get

1= |[wifi + 55 fill < (K] + RVP < (w7 + 53)12
L= [[Xifi + 2 £ < OF + 0DV < (AF + A2

Hence

KP4 K5+ A7+ A7 > 2.
So, say,
(16) (57 + A1) = [[(mi, M) |2 > 1.

On the other hand, by one-2-convexity of X for any (a,b) € R? we
have ||aex, + ber]| < [|(a, b)||2. But

llaex + berl| = [[(ari + bA:) fi + (ar; + bA;) £l
2 [[(ari + bXi) fill = [|(ar: + bA)]].

So
ll(ari +b0X:)| < ||(a,b)]|2,
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and this means that ||(k;,A;)||]2 < 1 which contradicts (16) and ends
the proof of the theorem. o

Proof of Lemma 11. Our assumption is
(17) U{wk = 0} = {Oélykl + A2Yk, = 0}7

where aj,as # 0 and [ is related to k. Without loss of generality,
{1 = k1 and we have

(18) U{z; = 0} = {B1yk, + Boyr, = 0}

where 81 # 0. If B2 = 0 there is nothing to prove so let us assume
B2 # 0. Proposition 1 applies to the isometry U ! gives us:

(19) U{yr, = 0} = {p1@m, + potm, = 0} = Hy,
(20) U{ykz = 0} = {lenl + V2, = 0} = Hk:2
(2].) U{y12 = 0} = {91:L‘t1 + 921‘,52 = 0} = Hll-

Denote E; = {xl = 0}, E, = {Ik = 0} C X.

Since U~! is an isometry, equations (17), (19) and (20) imply that
E, N Hy, = E, N Hy, = Hy, N Hy,, ie., the following systems of
equations are equivalent:

1Ty + 2T, =0 | _ | 1@y, + v2®p, =0
- T = 0

:Ek:[]
_ {uwml + f2m, = 0}

V1Zn, + V2Zn, =0

Since these systems have rank 2, this implies that, say, m; = n; =k,
mo = ng # k and pg,ve # 0.

Similarly, by considering equations (18), (19) and (21), we obtain
my = t;, ma = ty and either m; = | or mo = [. Hence, k =
mi; = n; = t; and I = myg = ng = t. But this means that
codim (Hy, N Hy, N Hy,) < 2. Since U is an isometry, we have

codim {yk, , Yk, , Y1, = 0} = codim U(Hy, N Hy, N Hy,)
= codim (Hk1 N Hy, N le) <2.
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Hence [ = ks. O

Proof of Lemma 12. If k is related to [ then, for at least one of k, I,
say k, U{zr, = 0} = {1y, + a2yr, = 0} where o,z # 0. Then by
Lemma 11 {l1,l2} C {k1,k2}, so if ¢ is related to ! it is also related to
k and {tl,tg} C {kl,kg}. But then U{Ik,Il,It = 0} C {yklayk2 = 0}
and so ¢ € {k,[}. o

Proof of Lemma 13. We have

Uler) € () U{x, = 0}.

v#£k

By Lemma 12 there exists at most one coordinate ! related to k£ and
by Lemma 11 {kq, ka,l1,l2} = {i,7} where ¢ # j if and only if there
exists [ # k related to k. Moreover,

(22) if v#k,l, then {w,m}n{ij}=2,

where U{z, = 0} = {a(v)y,, + B(V)yv, = 0}.

Since U is one-to-one and onto,

N Tlw, =0} = ) {w =0}
v#k,l uFLJ

Hence Ul(ex),U(e;) € span{f;, f;} which proves the first part of the
lemma.

The second part follows immediately from the fact that span {U(e),
U(er)} = span{f;, f;} and condition (22). O
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