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SOME ALGEBRA OF NEWTON POLYNOMIALS

D.G. MEAD AND S.K. STEIN

0. Introduction. For the positive integer k, Nj denotes the Newton
polynomial z* + y*. Let Q(z,y) denote the field of rational functions
in & and y with rational coeflicients and S the subfield consisting of the
symmetric rational functions. Q(N,, Np), a # b, is a subfield of S, and
we will determine the dimension of the extension of S over Q(N,, Ny),
denoted [S : Q(N,, Np)]. However, we have been unable to determine
the dimension of S over Q(N,, Ny, N.), though there is ample evidence
for the following conjectures.

Conjecture 1. Let a,b,c be distinct positive integers such that
(a,b,¢) =1. Then Q(Ng, Ny, N.) = S.

We will settle this conjecture for a few infinite families of triplets
a, b, ¢, but haven’t settled even the following two special cases.

Conjecture 2. Let b and c be integers, 1 < b < c. Then
Q(NlaNbaNc) = S

Conjecture 3. Let a,b,c be distinct positive integers such that
(a,b) = 1. Then Q(Ng4, Ny, N;) = S.

Throughout, the coefficients will be Q. If, for instance, the coefficient
field has characteristic 2, the algebra will be quite different; then
N2 = Ny, but Ny and N, are algebraically independent over Q.

1. The field generated by two Newton polynomials. Ev-
ery symmetric polynomial in the ring Q[z,y] is a polynomial in the
elementary symmetric polynomials S; = x + y and S; = zy. Since
Sy = Ny and Sy = (N — N5)/2, every symmetric polynomial is a
polynomial in N7 and N;. Consequently, Q(Ny, N2) = S. The iden-
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tlty N13 — N3 = 3N1;92 implies that Sg = (Z\fi3 — Ng)/(3N1) Thus
Q(N1, N3) = S. These are the only cases when two Newton polynomi-
als generate .S, as Theorem 1.2 implies. For its proof we will need the
following lemma.

Lemma 1.1. Any two Newton polynomials N, and Ny, a < b, are
algebraically independent.

Proof. Let u and v be indeterminates. By the degree of the monomial
u'v’ we shall mean ai + bj. Let P(u,v) be a polynomial in Q[u,v] of
minimal degree such that P(N,, Np) = 0. We may assume that all the
terms in P(u,v) have the same degree. Furthermore, there is a term in
P(u,v) of the form cu®, while all other terms have v as a factor.

Let w be a primitive 2bth root of 1. In the expression P(N,, Np),
replace y by w’z, obtaining simply ¢(1 +w®)*z% | which is not 0. This
contradiction establishes the lemma. ]

Theorem 1.2. Let a < b be relatively prime positive integers. Then
[S : Q(Ng, Np)] = ab/2 if ab is even, and a(b—1)/2 if ab is odd.

Proof. Let u = 2% 4+ y* and v = z® + y°; hence, y* = u — z* and
y® = v — xb. Since (a,b) = 1, it follows that y € Q(u,v,z). All that
remains, therefore, is to determine the degree of x over Q(u,v), for
that equals [Q(z,y) : Q(Ng, Np)], and [S : Q(Ng, Np)] is half of this

dimension.
Since

(uw—2*)" = (v-2")* =0,

x is algebraic over Q(N,, Np) of degree at most ab. Note that the
polynomial (u—z%)® — (v—2%)%, as a polynomial in the ring Q(u, v)|z],
has degree ab if ab is even and a(b — 1) if ab is odd.

We show that p(u,v,z) = (u — 2%)® — (v — x%)? is irreducible in
Q(u,v)[z].

Since Z[u,v] is a unique factorization ring, it suffices to show that
p(u,v,z) is irreducible in Z[u,v,z]. So assume that p(u,v,z) =
q(u,v, z)r(u,v,z) where both ¢(u, v, z) and r(u, v, z) are in Z[u,v, z].
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For each integer ¢, we have

(’LL o ia)b o (U o ib)a = q(uavai)T(u’vai)'

By [1, p. 77], (u —i%)® — (v — *)® is irreducible in Z[u,v,x]. Thus,
either q(u,v,1) or r(u,v,4) is 1 or —1. It follows that at least one of the
polynomials ¢(u, v, z) and r(u, v, z) assumes the value 1 for an infinite
number of choices of x or assumes the value —1 for an infinite number
of choices of . Consequently, one of those polynomials is identically 1
or identically —1 and hence (u — 2%)? — (v — 2%)? is irreducible.

Thus [Q(z,y) : Q(Na, Np)] = ab if ab is even and a(b—1) if ab is odd.
Since [Q(z,y) : S] = 2, the theorem follows. o

The next lemma reduces the computation of [S : Q(Ng, Np)] to the
case when a and b are relatively prime.

Lemma 1.3. Let a and b be distinct positive integers, with (a,b) = d.
Then

[S : Q(Na, Ny)] = d?[S : Q(Naya, Noja))-

Proof. First consider [Q(z,y) : Q(z%,y?)]. Since z is a root of the
equation 2? — z¢ = 0 (where z is viewed as the variable), and y is a
root of the equation 2¢ — y? = 0, [Q(z, ) : Q(z%, y?)] < d2.

On the other hand, for each pair of dth roots of 1, w and w', the
automorphism of C(z,y) defined by z — wz and y — w'y leaves
C(z%,y?) elementwise fixed. Since x + y has d? distinct images under
these automorphisms, it does not satisfy an equation over C(z%, y?) of
degree less than d2. Thus the degree of = + y over Q(z¢,y%) is at least
d?. Tt follows that [Q(z,y) : Q(z%,y?)] = d>.

Now
Q(Na, Ny) € Q(z, %) C Q(a, ).

Since [Q(z?,y%) : Q(N,, Np)] = [Q(z,y) : Q(Nasd, Ny/a)], the lemma
follows. n]

Corollary 1.4. The only pairs of integers a < b such that
Q(Ng, Np) =S are 1,2 and 1, 3.
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2. The implications for three Newton polynomials. The
information concerning the field generated by two Newton polynomials,
though inadequate to settle any of the three conjectures, does provide
some evidence for their truth.

For instance, consider Conjecture 2. Assume that (a,b) =1, a < b,
and that ab is odd. Let k be a positive integer and ¢ = kab(b — 1) — 1.
We will show that Q(N,, Ny, N.) = S.

Let d = [Q(z,y) : Q(Ng4, Ny, N¢)]. We wish to show that d = 2. By
Theorem 1.2,

d|a(b-1), d|blc—1) and d]a(c—1).

Thus d | ¢ — 1, that is, d | kab(b— 1) — 2. Tt follows that d | 2, hence is
2.

If, instead, a is even and b is odd, let ¢ = kab—1. The same argument
also justifies the case a odd and b even.

Similar reasoning provides an infinite number of cases for which
Conjecture 3 holds. For instance, let b be even, ¢ odd and (b,c—1) = 2.
Then Q (N1, Ny, N.) = S. Similarly, if b and ¢ are odd and (b—1,¢—1) =
2, or if b and c are even and (b, c¢) = 2, the same conclusion holds.

The same technique applies to specific ¢ and b. For instance,
Q(Ny, Ny, N;) =S if c=2or 3 (mod 4).

The same approach shows that if a is odd, then Q(Ny—1, Na; Noy1) =
S. In a similar way, one may show that if ¢ and b are even, c is odd,
(a7 b) = 27 (a7 C) = ]' = (b7 C), then’ a‘ga‘ln’ Q(Na7Nb7NC) = S'

3. The ring generated by N,, Ny, N.. We now turn our attention
to the ring Q[N,, Ny, N.| generated by N,, Ny, N.. To each monomial
NPNIN! we assign the degree ap + bg + cr. The vector space over Q
spanned by the monomials of a given degree, d, form a vector space,
M(d), whose dimension we denote m(d).

The vector space, S(d), consisting of the symmetric polynomials of
degree d has a basis consisting of z¢ + y?, 2% 1y + zy?~!,... . Hence,
its dimension is (d + 2)/2 if d is even and (d + 1)/2 if d is odd. These
numbers are upper bounds for m(d). If 2 < a < b < ¢, M(d) is not
all of S(d) since it does not contain z? 'y + zy?=!. As we will see,
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knowing the dimension m(d) would probably settle Conjecture 1. The
following lemma will be a tool in examining m(d).

First note that there are nontrivial polynomials P(u,v,w) such that
P(N,, Ny, N.) = 0, since any three elements in Q[z, y] are algebraically
dependent [1, pp. 200-202]. (Or one could give a direct proof by
showing that for large d the number of monomials of the form NP NJN7
is (far) larger than the dimension of S(d).)

Lemma 3.1. Let a,b,c be distinct positive integers. Then I =
{P(u,v,w) € Q[u,v,w] : P(Ng, Ny, N.) = 0} is a principal ideal in
Q[u7v7w]'

Proof. Let p, be a nonzero polynomial in I of smallest degree in wu.
We may assume that the only polynomials in Q[v, w] that divide p,, are
scalars, that is, elements of ().

Now let P € I. Then there are ¢ € Q(v,w)[u] and r € Q(v,w)[u]
such that P = gp, + r and either r = 0 or the degree of u in r is
less than the degree of w in p,. Write ¢ = ¢'(u,v,w)/d'(v,w) and
r = r*(u,v,w)/d*(v,w), where ¢, r* € Q[u,v,w] and d’,d* € Q[v, w].
We may assume that ¢’ and d’ are relatively prime and that r* and d*
are relatively prime. Therefore,

q (u,v,w)p,  r*(u,v,w)
d' (v, w) d*(v,w)

(1) P(u,v,w) =

Since N, and N, are algebraically independent, we may replace u, v, w
in Equation (1) by N,, Ny, N, and conclude that r* € I. By the
minimality of p,, r* = 0. We conclude that

d'P =q'p,.

But d’ and ¢’ are relatively prime and p, has only scalar divisors in
Q[v,w]. Thus d’ € Q, and it follows that P is a multiple of p, in the
ring Q[u, v, w], and therefore I is a principal ideal in Q[u, v, w]. O

Note that p, in the preceding proof is irreducible and homogeneous.
In order not to favor any particular variable we denote it P’ and denote
its degree by d'.
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Any nonzero polynomial P(u,v,w) of degree d such that P(N,, Np,
N.) =0 is a multiple of P’ by a polynomial of degree d — d'.

For a positive integer d, let W (d) be the vector space consisting of all
polynomials in Q[u,v,w] of degree d. Its dimension, which we denote
f(d), is the number of triplets z,y, z of nonnegative integers such that
ar + by + cz = d.

Let T : W(d) — M(d) be defined by T'(uvPviw") = NP NJ!N!. Then
for d < d' the dimension of the kernel of T' is 0 and for d > d’ is
f(d—d'). In particular, for d > d,

(2) m(d) = f(d) — f(d - d).

Euler investigated the function f(d), using the identity

11 1 ;
1—m“1—xb1—mbzzf(d)w'

With the aid of partial fractions over the complex field, and expanding
each partial fraction as a power series, one can obtain a formula for f(d).
Letting dy = (a,b), d2 = (a,¢) and ds = (b, ¢), we obtain the formula

2
f(d) = % + d(gd1 + gd, + gd3)(d) + (ha + hp + hc)(d).

The ¢’s and h’s are functions with periods indicated by their sub-
scripts; see, for instance, [2]. We conclude that

f@)— fa—dy =" | pa)

~ abe ’
where A is a uniformly bounded function of d. Taking limits as d — oo
shows that limg_, o, m(d)/d exists and that

. m(d) _ d’
AT e

Since m(d) is not larger than (d + 2)/2, it follows that the degree of
the minimal polynomial is at most abc/2.
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On the basis of many examples computed by Dean Hickerson with
the aid of Mathematica, we make the following conjecture.

Conjecture 4. If (a,b,c) = 1, then the degree of the minimal
polynomial for Ny, Ny and N, is at least 2abc/5.

The truth of Conjecture 4 would imply the validity of Conjecture 1.
To see this, note that there would then be three consecutive values
of d for which m(d) > (1/3)d. Call these dimensions n,n + 1,n + 2.
Pick a basis by,bs,... , b, for M(n) and a basis ¢;, ¢, ... , cs for M(n+
1). Then the r + s polynomials (z + y)b1, (z + y)be,...,(z + y)b,
€1,Ca,. .. ,Cs are linearly dependent, from which it follows that z +y €
Q(Ng, Np,N;). A similar argument, using the dimensions n and
n + 2, shows that zy € Q(Ng, Ny, N.), from which it follows that
S = Q(Ng, Ny, N.). In all the computed cases there is such a dimension
n less than abe/2.

REFERENCES

1. B.L. van der Waerden, Modern algebra, Volume 1, Frederick Ungar Publ. Co.,
New York, 1949.

2. Eugene Ehrhart, Sur le nombre de solutions non négatives d’une equation

diophantienne linéare, Comptes Rendus Hebdomadaires des Séances de I’ Acadamie
des Sciences 256 (1963), 4566-4569.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT DaAvis, DAvIs,
CA 95616-8633

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT Davis, Davis,
CA 95616-8633
E-mail address: stein@math.ucdavis.edu



