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ON THE SUPREMUM OF A FAMILY OF
SINGULAR COMPACTIFICATIONS

ROBERT P. ANDRE

ABSTRACT. Singular compactifications of locally compact
Hausdorff spaces were first introduced over a decade ago.
An elegant characterization of singular compactifications is
the following: A compactification aX of the locally compact
Hausdorff space X is singular if and only if X\ X is a retract
of aX. In this paper we provide a new representation of
singular compactifications. It has been previously shown that
the supremum of singular compactifications need not itself
be a singular compactification. Examples of this fact are
easy to find. We provide necessary and sufficient conditions
which describe when the supremum of a family of singular
compactifications is a singular compactification. We also show
that there are compactifications which are not the supremum
of a family of singular compactifications. For two singular
functions f and g such that S(f) is homeomorphic to S(g) we
describe conditions which show when X Uy S(f) is equivalent
to X Uy S(g)-

1. Introduction. All hypothesized topological spaces will be
assumed to be locally compact and Hausdorff.

Two compactifications X and vX of a space X are said to be
equivalent if there is a homeomorphism f : aX — X from aX
onto vX which fixes the points of X. This defines an equivalence
relation of the family of all compactifications of X. When we speak of
a compactification aX of X, it will be understood that we are referring
to the equivalence class of aX. The notation a X = vX will mean that
aX is equivalent to vX. We will say that the compactification X is
less than or equal to the compactification yX, denoted by aX < yX
if there is a continuous function f : yX — aX of vX onto aX which
acts as the identity on X. This defines a partial order on the family
K(X) of all compactifications of X. It is well known that K(X) is a
complete lattice with respect to the partial order < (see [1, 2.19]). If
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aX and yX are compactifications of X such that aX < vX, we will
denote the projection map from yX onto X which fixes the points of
X by Tya.

The family of compactifications studied here was first defined and
discussed in [4]. We introduce the object of our study in the following
definitions which appear in [4].

Definitions 1.1. A singular compactification induced by the function
f is constructed as follows: Let f : X — K be a continuous function
from the space X into a compact set K. Let the singular set, S(f), of
f be defined as the set {z € cl,f[X]: for any neighborhood U of z,
cl, f<[U] is not compact}. If S(f) = K, then f is said to be a singular
map. It is easy to verify that S(f) is closed in K and that if f is a
singular map then f[X] is dense in S(f). If f is a singular map the
singular compactification of X induced by f, denoted by X Uy S(f),
is the set X U S(f) where the basic neighborhoods of the points in
X are the same as in the original space X, and the points of S(f)
have neighborhoods of form U U (f< [U]\F) where U is open in S(f)
and F' is a compact subset of X. This defines a compact Hausdorff
topology on X Uy S(f) in which X is a dense subspace. We will say
that a compactification aX of X is a singular compactification if aX
is equivalent to X Uy S(f) for some singular map f.

We begin by stating some basic properties known to be possessed by
singular compactifications. The following is Theorem 4 in [11].

Theorem 1.2 [11]. The singular compactifications of X are precisely
those compactifications aX of X whose remainder aX\X is a retract
of aX.

Since a constant map is continuous, wX\X is a retract of wX,
the one-point compactification of X. So wX is always a singular
compactification.

It is easily verified that if 7 : « X — aX\X is a retraction from aX
onto aX\X, then r|x is a singular map which induces the singular
compactification X U, (S7|x).
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We also have the following important result from [11].

Theorem 1.3 [11, Theorem 7). If aX is a singular compactification
and vX s any compactification of X less than aX, then vX is also a
singular compactification.

Notation 1.4. For any compactification yX of X, C,(X) will denote
the set {f|, : f € C(yX)}. If f is a bounded real-valued singular
function, f will be regarded as a function from X into clgrf[X], i.e.,
we are letting K (in our definition of singular map) be clg f[X]. The
set S, will denote the set of all singular maps in C,(X). Thus Sg
denotes the collection of all singular maps in C*(X). If G C C,(X),
G7 will denote the set of extensions f7 to yX of the functions f in
G. The following is a generalization of Theorem 1.1 of [2]. The proof
appears in [9].

Lemma 1.5. Let f be a continuous function from a space X to a
compact Hausdorff space Z. Let Y = clzf[X] and Kx = {F C X :
F is compact}. Then S(f) =n{cly f[X\F]: F € Kx}.

Proposition 1.6 is a generalization of Lemma 1 in [3].

Proposition 1.6. If aX is a compactification of X, K is a compact
Hausdorff space and f : X — K is a continuous function which extends

to f*:aX — K, then f*[aX\X] = S(f).

Proof. We will first show that f*[aX\X] is contained in cly, ¢[x]
FIX\F] for all F € Kx and apply the previous lemma. Let F € Kx.
Then aX\X C cl,ax(X\F). Hence f*aX\X] C f¥clax(X\F)] C
cla, six1f[X\F]. Since this is true for all ' € Kx, f*[aX\X]
Ml sx) fIX\F] : F € Kx}. By the previous lemma f[aX\X]
S(f)-

Let p € K\f*[aX\X]. Let U be an open neighborhood (in K) of p
such that cl xU misses f*[aX\X]. Then cl x f~[U] C f[cle . f1xU]s

which is a compact subset of X. This implies that p cannot belong to
S(f). Hence S(f) = fe[aX\X]. O

<
<
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Corollary 1.7. Let f : X — K be a continuous map into a compact
Hausdorff space such that f[X] is dense in K. Let E¢(X) denote the
set of all compactifications aX of X such that f : X — K extends to
fe:aX — K. Then f is a singular map if and only if f*[aX\X]
contains f[X] for some (equivalently for all) aX € Ef(X).

Proof. (=). If f is a singular map, then S(f) = K = cl g f[X] (by
definition). By Proposition 1.6, f*[aX\S] = S(f) = clx f[X] for all
aX € Ef(X), hence f[X] is contained in f*[aX\X].

(<) Suppose now that f*[aX\X]| contains f[X] for some aX €
Ef(X). Since f[X] is dense in K (by hypothesis) cl x f[X] = K. We
must show that S(f) = K. Let p € K and U be an open neighborhood
of pin K = cl g f[X]. Then f*[U] meets aX\X, hence cl,x f<[U]
meets aX\X. Since clxf<[U] is dense in cloxf[U], clxf[U]
cannot be compact. Hence p belongs to S(f). Since K = S(f), f
is singular. O

Let G C C*(X). The evaluation map eg induced by G is the function
eqg : X - II{I, : g € G} (where, for each g, I, is a closed interval
containing g[X]) defined by eq(z) = (9(x))gecc. Note that the closure
in Iyegl, of eq[X] is a compact set.

If aX is a compactification of X and G C C, (X), then G* will denote
the family of all extensions of the functions in G to aX.

By the uniform norm topology or metric topology on C*(X) we will
mean the topology on C*(X) in which the closure of sets is the closure
under uniform convergence. The metric on C*(X) is defined as follows:
d(f,g) = sup{|f(z) — g(z)| : © € X} (see the introductory paragraph
of Chapter 16 of [12]).

The following result is the only theorem in [14].

Proposition 1.8 [14]. Let G C C*(X). Then there exists a smallest
compactification to which all functions in G extend.

The following notation was introduced in paragraph 2 of [8].
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Notation 1.9. If G is contained in C*(X), the symbol wgX will
denote the smallest compactification to which all functions in G extend.
If f belongs to C*(X), wsX will denote the smallest compactification
of X to which f extends.

Proposition 1.10. Let aX be a compactification of X and G C
Ca(X). Then G* separates the points of aX\X if and only if eg(=
ege) is one-to-one on aX\X.

Proof. Suppose G* separates the points of aX\X. Let p and ¢ be
distinct points in @X\ X. Then there exists a function f in G such that
f*(p) # f*(q). Hence el (p) # e&(q). It follows that ege is one-to-one
on aX\X. Conversely, if ega is one-to-one on aX\X, then, if p and
g are distinct points in X\ X, e%(p) # e&(g); this can only happen if
there exists some function f in G such that f*(p) # f*(q). Hence G*
separates the points of a X\ X. o

For further reference we formally present the following easy result
which appears in the proof of Theorem 1 of [8].

Proposition 1.11 [8]. Let G C C*(X) and aX be a compactification
of X. Then aX = wgX if and only if each function g in G extends to
g% in C(aX) and G separates the points of aX\X.

Proof. (=). Suppose aX = wgX. Then, by definition of wg X, every
function f in G extends to a function f* in C(aX). Furthermore,
G“ must separate the points of aX\X for, if not, we may collapse
any two points in aX\X which are not separated by G* to obtain a
compactification strictly smaller than wg X to which each member of G
extends, thus obtaining a contradiction. Hence G separates the points
of aX\X.

(«<). Since every function f in G extends to a function f* in C'(aX),
then weX is less than or equal to aX (by definition of wgX). Since
G* separates the points of aX\X, then wgX cannot be strictly less
than aX, hence aX = wgX. This proves the proposition. a
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Compactifications of the form wg X are briefly discussed in [8]. From
Propositions 1.6 and 1.11 we see that w; X\ X is homeomorphic to S(f)
for all f € C*(X). (Since {f“#} separates the points of wsX\X, it is
one-to-one on wy X\ X; hence, f“f|, x\x is a homeomorphism.)

Note that if aX is a compactification and Co(X) = {f|x : f €
C(aX)} is its associated subalgebra, then, since C(aX) separates

points of a X\ X, we, (x)X = aX. Hence, every compactification aX
can be expressed in the form wgX for some G C C*(X).

We will denote the one-point compactification of X by wX; hence,
Co(X)={g|x : g € C(wX)}, see Notation 1.4.

In paragraph 2 of [8], the author presents the following definition.

Definition 1.12. If f and g belong to C*(X), we will say that f
is equivalent to g, denoted by f = g, if f — g € Cu(X). If G and
F are subsets of C*(X), G is said to be equivalent to F, denoted by
G = F, if every function g in G is equivalent to some function f in F
and conversely.

If G is contained in C,(X), (G) will denote the subalgebra generated
by G and clg,(x)(G) will denote its closure in the uniform norm
topology on Cy(X).

In Corollary 1 of [8], we have the following useful proposition:

Proposition 1.13 [8]. If G C C*(X), then Cyuu(X) = cl¢,, (x)
(Cu(X)UG), (the closure in the uniform norm topology of the subalgebra
generated by C,(X)UG) where C,,(X) ={f|lx : f € C(waX)} (as in
Notation 1.4).

Also, in Theorem 1 of [3], we have the following result:

Theorem 1.14 [3]. If aX is a compactification of X and G C S,,
then aX = sup{X Uy S(f) : f € G} if and only if G* separates the
points of aX\X.

On page 29 of [11], the author describes a method of constructing



SINGULAR COMPACTIFICATIONS 7

a compactification of X by using the singular set of a function f
even if this function is not a singular map. The construction of
this compactification is very similar to the construction of singular
compactifications. We describe it here. Let f : X — Y be a continuous
map from a space X to a compact Hausdorff space Y. We define a
topology on the set X US(f) as follows: The basic open neighborhoods
of the points in X will be the same as in the original space X. If
p € S(f) we define a basic open neighborhood of p to be any set
of form V U [f<[O]\F] where O is an open neighborhood of p in Y,
V=0nS(f) and F is a compact set in X.

Notation 1.15. We will denote XUS(f) equipped with the topology
described above by X U* S(f).

It is shown in Theorem 9 of [11] that X U* S(f) is indeed a Hausdorff
compactification of X. We note that if f is a singular map, then
X Up S(f) =X U*S(f).

We will also make use of the following previously established results.

Proposition 1.16 [11, Lemma 1]. If f : X — Y is a singular
function mapping X into a closed subspace K of the compact Hausdorff
space Y and g :' Y — Z is continuous so that cl z(go f[X]) = Z, then
go f is a singular function.

Proposition 1.17 [8, Corollary 3]. If F and G are two equivalent
subsets of C*(X), then wgX is equivalent to wpX.

(Tt is also shown immediately following Corollary 3 in [8] that the
converse of the above statement fails.)

Theorem 1.18 [8, Theorem 2]. If G C C*(X) separates the points
from the closed sets in X, then sup{wsX : f € G} =wgX.

2. The supremum of singular compactifications. The main
results of this section are given in Theorems 2.6, 2.11 and 2.12. In
Theorem 2.6 we show that if aX is a singular compactification, then
aX can be expressed in the form wg_X. We also show that the converse
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of this theorem fails. In Theorem 2.12 we describe when a compactifi-
cation of form we X where G C Sp is a singular compactification. This
will simultaneously describe when the supremum of a family of singu-
lar compactifications is a singular compactification. In Theorem 2.11
we show that a singular compactification aX can always be expressed
in the form X UepS(er) = wpX where F is a subalgebra of Cy(X),
F C S,, er is a singular map and e$ separates points of X\ X.

Lemma 2.1. Let f : X — Y be a continuous function from the space
X into a compact Hausdorff space Y. If aX is a compactification of
X and f extends to f* : aX — Y so that f* separates the points of
aX\X, then aX is equivalent (as a compactification of X) to XU*S(f).

Proof. By Proposition 1.6, f*[aX\X] = S(f). We define a function
jiraX — X U* S(f) as follows: j(z) = f*(z) if = belongs to aX\X
and j(z) = z if = belongs to X. Clearly j is one-to-one. We now verify
that j is continuous. It is sufficient to verify that j pulls back open
neighborhoods of points in S(f) to open sets in X . Recall that the
open neighborhoods of points in S(f) are of the form V U (f< [O]\F)
where O is an open set in Y, V = O N S(f) and F is a compact set in
X. Note that

VU ToN =T VIu (O]

= (T VINnaX\X)U f0]
= fa™[0],
which is an open subset of aX.

It follows that 7 [V U f<[O]\F] is open in @X, hence j is continuous.
The lemma follows. O

The following corollary is an easy consequence of the lemma.

Corollary 2.2. If aX is a compactification of X, then aX can
be expressed in the form of X U* S(f), ie., aX is equivalent to
X U* S(eca(X)).

In Theorem 2.1 of [15], the author proves the following statement:
“If X is locally compact and K is a Hausdorff space, then there exists
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a compactification aX of X such that aX\X is homeomorphic to K
if and only if K is a continuous image of 3X\X.” In Corollary 2.3 we
give a similar result referring specifically to singular compactifications.

Corollary 2.3. Let X be a locally compact Hausdorff space and Y a
compact Hausdorff space. Then there exists a topology on the disjoint
union X UY of X and Y such that the resulting topological space is
a singular compactification of X if and only if Y is homeomorphic to
the singular set of some evaluation map eg induced by a subset G of

C*(X).

Proof. (=). This direction follows from Corollary 2.2.
(«<=). This direction follows from the definition of X U* S(f). O

Theorem 2.4. a) Let f € C*(X). Then wyX is equivalent to
XU*S(f). In particular, if f is a singular map, then wy X is a singular
compactification and wyX is equivalent to X Uy S(f).

b) If G C C*(X) and wgX is a singular compactification, then
t = el or|x is a singular map (where r : wgX — wgX\X is a
retraction map) and wgX is equivalent to X Uy S(¢).

Proof. The proof of part a) follows from the fact that f“ sepa-
rates the points of wy X\ X (see Proposition 1.11, Proposition 1.6 and
Lemma 2.1). If f is a singular map, then X U* S(f) is equivalent to
X Uy S(f) (Notation 1.15).

We now prove part b). Let G C C*(X) and suppose that wgX is
a singular compactification. Let r : wgX — weX\X be a retraction.
Recall that r|x is a singular map. Since the composition of a continuous
function with a singular function is singular (Proposition 1.16), then
t = eof or|x is a singular map. Since ¢ extends continuously to eg or
and e or separates points of wg X\ X, it follows from Lemma 2.1 that
weX is equivalent to X U, S(t). O

In what follows, we will show that it is possible to express any singular
compactification in a form that involves only real-valued singular maps.

We require the following lemma.
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Lemma 2.5. If aX is a singular compactification, then every
[ € Cy(X) is equivalent to some function h € S, (see Definition 1.12).

Proof. Let aX be a singular compactification, and let f € C,(X).
Then there exists a retraction map r mapping aX onto aX\X. We
have already see that r|x is a singular map. Then f®or|x is a singular
map and belongs to S, (Proposition 1.16). Let G = f — f*or|x. If
z € aX\X, g%(z) = f(x) — f¥or(z) = f*(z) — f*(z) = 0. Therefore
9%lax\x is the O-function on aX\X. Hence g € C,(X). Thus f is
equivalent to h = f* or|x. |

In Theorem 2.6 we show that if aX is a singular compactification
then aX can be expressed in the form wg, X.

Theorem 2.6. If aX is a singular compactification, then aX is
equivalent to ws, X. Hence every singular compactification aX of X
is the supremum of the family {X Uy S(f) : f € Sa} of singular
compactifications.

Proof. Let yX =wgs, X. By Proposition 1.13, C, (X) =cl ¢ (x){Cu(X)
US4 ). Since C,(X) U S, C Cu(X), then ws, X < aX.

Let f € Co(X). By Lemma 2.5, f 2 g for some g € S,. It is shown
in Proposition 1.17 that, if f = g then wsX is equivalent to wy X. Now
Cug(X) = clg, x(Co(X) U A{F}). Then cl¢,, x)(Cu(X) U{f}) =
cle,,x)(Cu(X) U {g}) € Cy(X). It follows that Co(X) C Cy(X);
consequently, a X < wg X. Since wg, X < aX and aX <wg X, aX
is equivalent to wg X. By Proposition 1.11, S separates the points of
aX\X. By Theorem 1.14, ws, X is equivalent to sup{X U; S(f) :
f € S4}. Hence aX is the supremum of the family of singular
compactifications {X Uy S(f) : f € Sa} (where X Uy S(f) = wsX
for each f in S,, by Theorem 2.4 a)). This is the assertion of the
theorem. o

The converse of the above theorem fails as we shall now see. Recall
that Sg is the set of all real-valued singular functions. On page 20
of [11], it is shown that SN = sup{N Uy S(f) : f € Sg}. Since
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SZSB separates points of (ws,N)\N (Proposition 1.11), then wg N =
sup{NU¢S(f) : f € S} (by Theorem 1.14). Hence SN is equivalent to
ws,; N, the smallest compactification to which all real-valued singular
maps extend. Since SN\N is not separable, SN\N cannot be the
continuous image of a separable space, hence SN cannot be a singular
compactification. It follows that not every compactification aX of form
wg, X is singular.

We know that there are compactifications which are singular and that
there are compactifications which are not singular but which are the
supremum of a family of singular compactifications (SN for example).
In [11], the author asks:

Can every compactification of X be expressed as the supremum
of singular compactifications?

We give the following example which provides a negative answer to
the question.

Example 2.7. Consider the two-point compactification of R, aR =
R U {p1,p2}. We claim that aR cannot be the supremum of singular
compactifications, i.e., R cannot be expressed in the form wg, R.

Proof. Suppose that aR = sup{7yR : 7R is a singular compactifica-
tion, YR < aR}. Since every singular compactification vX can be ex-
pressed in the form X = wg X =sup{X Uy S(f): f € Sy} = {wsX :
f € S,}, see Theorems 2.6 and 2.4 a), then aR = sup{supwsR : f €
Sy} :9R < aR} =sup{wsR : f € So}, where S, is the set of all sin-
gular real-valued maps which extend to aR. By Theorem 1.14, S& sep-
arates the points of aR\R. Let f € S, be such that f*(p1) # f*(p2).
By Proposition 1.6, f*[aR\R] = S(f) = {f*(p1), f*(p2)}. But since
f is a singular map, f maps R onto S(f) = {f*(p1), f*(p2)}. Since R
is connected this is clearly a contradiction. Consequently, YR is not the
supremum of singular compactifications. We have thus shown that not
every compactification vX can be expressed in the form wg X. O

In Theorem 2.6 and Example 2.7 we have shown that the two-point
compactification of R is not a singular compactification. (This is
also obvious from the fact that R is connected and oR\R is not.)
Note that the fact that the two-point compactification of R is not
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singular does not imply that the largest compactification of R which
is singular must be the one-point compactification of R. It simply
implies that no compactification YR of R larger than the two-point
compactification of R is singular (by Theorem 1.3). Note that sin(z) is
a singular map and that S(sin(z)) = [—1,1]. Then R Ugine S(sine) is a
singular compactification of R which is not comparable with the two-
point compactification of R. We are however guaranteed that SR is not
singular by the existence of a nonsingular compactification of R and by
Theorem 1.3. (Again, since SR is connected and SR\R isn’t, we have
an even simpler reason why SR is not a singular compactification.)

We now consider the following question:

When is the supremum of a collection of singular compactifica-
tions a singular compactification?

We begin with a brief discussion of the question. Given a family
A = {;X : i € A} of singular compactifications of a space X, we
seek ways of recognizing when the supremum, say aX, of A is itself
a singular compactification. There are many possible approaches to
this problem: one could look for a property possessed by the family
A which will guarantee that aX is a singular compactification. But
aX may be the supremum of many families of singular compactifica-
tions. Each one of these families (including the family of all singular
compactifications less than or equal to aX) would have to possess this
particular property. That aX is the supremum of the collection A tells
us that aX is not a compactification such as the two-point compacti-
fication of R (which is not the supremum of any collection of singular
compactifications (see Example 2.7)). After some reflection, we have
chosen to study aX as the supremum of “some” family of singular
compactifications rather than aX “the supremum of the collection A
of singular compactifications.” This approach has turned out to be
the most fruitful. Proposition 2.8 will show us that suprema of singu-
lar compactifications are precisely compactifications of the form wg X,
where G is contained in Sg. Given this result, to answer our question,
it will only be necessary to characterize those compactifications of form
wg X, where G is contained in Sg.

We begin with the following proposition:

Proposition 2.8. Let X be a topological space. The compactification
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aX of X is a supremum of a collection of singular compactifications if
and only if aX is equivalent to wgX for some G contained in S, .

Proof. (=). Suppose A = {a;X : i € A} is a collection of singular
compactifications such that X is sup{e; X : i € A}. Then

aX =sup{ws, X :i € A} (Theorem 2.6)

= sup{sup{X Uy S(f) : f € Sa,} : i € A}
(by Proposition 1.11 and Theorem 1.14)
=sup{X Uy S(f): f € U{Sqy, : 7€ A}}.

Hence, by Theorem 1.14, (US,,)® separates the points of aX\X.
Thus, aX is equivalent to wygq, X. Now US,, is contained in S,.
Hence we have shown that the supremum of a collection of singular
compactifications is of the form wg X, where G is a subset of S,,.

(«<=). Suppose that aX is equivalent to wgX, where G is contained in
S«- Then, by Proposition 1.11 and Theorem 1.14, o X is the supremum
of the collection {X Uy S(f) : f € G} of singular compactifications.
[}

Our question can then be reformulated as follows:
If G C Sg, when is wgX a singular compactification?

One may conjecture that [X Uy S(f)]V [X Uy S(g)] is singular if and
only if the evaluation map h = f X g is a singular map (as stated in
Theorem 8 of [11]). We provide the following counterexample.

Consider the natural numbers N. Let A denote the even natural
numbers, B denote the odd natural numbers and C' = {3}. Define the
maps f : N — {0,1} and g : N — {0,1} as follows: f[AUC] = {0}
and f[B\C] = {1}, g[4] = {1} and g¢[B] = {0}. Clearly, both f and
g are singular maps and X Uy S(f) and X U, S(g) each describe a
two-point compactification. We verify that X Uy S(f) is equivalent to
X UyS(g), hence their supremum will be their common value, a singular
compactification.

Let k : X Uy S(f) — S Uy S(g) be defined as follows: k(z) = x if
z € X and k(0) =1 and k(1) = 0. Now {1} U g < (1) is a basic open
neighborhood of 1 in X Uy S(g). Now k< [{1}Ug[1]] = {0}Ug (1) =
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{0}uAd = {0}Uf<(0)\{3} a basic open neighborhood of 0 in XU;S(f).
Consider now the set {0} U g (0) a basic open neighborhood of 0 in
X Uy S(g). Now k[{0} U g™ (0)] = {1} UB = {1} U (fT[1] U {3}) =
({1} U f<[1]) U {3} an open neighborhood of 1 in X Uy S(f). Thus,
k is continuous; hence, X U; S(f) is equivalent to X U, S(g). Note
that the evaluation map h = f x g maps A to {(0,1)}, B\C to {(1,0)}
and C to {(0,0)}. But A [{(0,0)}] = {3}. Since h pulls back an open
set, {(0,0)} to an open set, {3}, whose closure in N is compact, then h
cannot be singular. Consequently the fact that [X U S(f)]V[X UyS(g)]
is singular is not sufficient to imply that h = f x ¢ is a singular map.

Remark 2.9. For further reference, we would like to emphasize an
important point illustrated in the above example. In this example,
{f, g} is contained in Sg, hence, by Theorem 1.14, w{t,g3X is equivalent
to X Uy S(f) VX Uy S(g). We have shown that the evaluation map
€{f,9} = [ X g is not a singular map even though wy; ;1 X was proven
to be a singular compactification. Hence, if G is an arbitrary subset of
S, it is not sufficient that we X be a singular compactification for eg
to be a singular map, i.e., “wgX being singular does not imply that eq
is singular.”

Before we pursue our goal of characterizing those spaces of form wg X
which are singular we need a little more preparation. In Theorem 2.6
we have shown that, if aX is a singular compactification, then aX
is equivalent to wg, X. Given the original definition of a singular
compactification, one would naturally like to find a singular map which
induces wg_ X, i.e., a singular map f such that wg X is equivalent
(as a compactification of X) to X Uy S(f)). In Remark 2.9, we have
shown that this singular map need not be es,. We now describe
some properties possessed by singular maps which induce a singular
compactification of form wgX.

Theorem 2.10. Let G C Sg. Then the following are equivalent:
1) wgX is a singular compactification.

2) There is a singular function k : X — K mapping X densely into
some compact Hausdorff space K which extends to k“¢ : wgX — K
such that k“S is one-to-one on wgX\X (hence wgX is equivalent to

X Ug S(k)).
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Proof. 1) = 2). Since wgX is a singular compactification then there
exists a retraction map r : wgX — wgX\X (by Theorem 1.2). We
claim that the map ¢t = (e5%)|w,x\x © r|x is the required function.
Clearly wgX = X U, S(t) (by Theorem 2.4 b)). Since r|x is a singular
map then, by Proposition 1.16, ¢ is a singular map. Observe that
t°¢luex\x = eqwalwgx\x- By Proposition 1.11, G¥¢ separates the
points of wg X\ X, hence by Proposition 1.10 t*¢ = (e )|wgx\x © 7 is
one-to-one on wgX\X.

2)= 1). Let k be a singular map such that k“¢ separates the points
of wgX\X. By Lemma 2.1, wgX = X U* S(k) = X Ui, S(k) (Notation
1.15). Hence, wg K is singular. O

The next theorem describes more specifically a singular map which
induces a singular compactification wgX (G C Sg).

Theorem 2.11. Let aX be a singular compactification of X. Let
r:aX — aX\X be a retraction map, and define F to be {for|x : f €
C(aX)}. Then F C S,, F is a subalgebra of Co(X), er is a singular
map, €% separates points of aX\X, and aX = X UepS(er) ZwrX.

Proof. Let aX, the mapping r and the family of functions F be
as described in the statement of the theorem. By Proposition 1.16,
F C S,. It is easily verified that F' is a subalgebra of Cy(X). We
will now show that ey is a singular map. Let J = [[ ., S(g) and
t € clyep[X] and U be a basic open neighborhood of ¢ in J of the
form J N [{Uy, or|x : k = 1 to n}] where {f1,...,fn} C C(aX).
Then ef (t) C ex Ul = {(fror|x)T[Us, or|x] : B = 1ton} =
N{rlk o fi [Ugorix] : k=1 to n}. Suppose cl x N{r|§ o £ [Uppor|x] :
k =1 to n} is compact. Note that N{r|% o fi [Us,or/x] 1k =1ton} =
5 M5 [Uporix] + B =1 to n}]. Hence cl x| [N fi [Uporix] 1 k=
1 to n}] is compact. But this contradicts the fact that r|x is a singular
map. Hence ep is a singular map.

We now show that aX = X U, S(er). Recall that C,,(X) =
cle,(x)(Cu(X) U F) (Theorem 1.13). Since FF C S, C Cy(X), then
wpX < aX. Thus every function f*or|x in F extends to the function
f®or on aX. Let x and y be distinct points in aX\X. Then
r(z) =z # y = r(y). Since C'(aX) separates the points of X\ X then
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there is a function f in C(aX) such that f(z) # f(y). This means
that F'™ separates the points of aX\X. Hence, wrX is equivalent to
sup{wsX : f € F} = aX (by Theorem 1.14). Thus,

aX =2 X U* S(ep) (Lemma 2.1)
~ X U, S(er) (by Notation 1.15). O

We now proceed to answer our question: When is the supremum of
singular compactifications a singular compactification? (Equivalently,
when is a compactification of form wgX (where G is contained in Sg)
singular?

In what follows, we will require the following concepts. If B is a
collection of functions in C*(X), a mazimal stationary set of B is a
subset of X maximal with respect to the property that every f in B is
constant on it.

The maximal stationary sets of a subalgebra are briefly discussed in
[12, 16.31].

Let G C C*(X), z apoint in X and Gt ={f —r: f € G,r € R}.
The symbol x Kg will denote the set N{Z(f) : f € G,z € Z(f)}.
Thus y € K¢ if and only if f(y) = f(z) for each f € G. Suppose
aX is a compactification of X such that G (hence G+) is a subset of
Co(X). For z € aX, let ;Kga = N{Z(f*) : f € Gtz € Z(f*)}.
It is clear that the subset ;K¢ (;Kgo) is a maximal stationary set of
G (G*) which contains the point z. It is easily observed that, given
G C C*(X), the collection {x K¢ : © € X} forms a partition of X.

Theorem 2.12. Let aX be a compactification of X. Let G be a sub-
set of Sy such that the evaluation map ego : aX — IlyeqS(f) separates
the points of aX\X. Then aX is equivalent to wgX . Furthermore, the
following are equivalent:

1) e is a singular map and we X (=2 aX) is equivalent to the singular
compactification X U, S(eq).

2) eg[X] C 2% we X\ X].
3) eg is a singular map.

4) er is a singular map for every finite subset F' of G.
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5) o K5° N (wagX\X) is a singleton set for every x € X.

Proof. That aX is equivalent to wg X follows from Proposition 1.11.
1) = 3). Obvious.

3) = 1). By Lemma 2.1, wg X is equivalent to X U* S(eg) (since g
separates the points of wgX\X). Since e is singular, X U* S(eg) is
equivalent to X U, S(eq) (Notation 1.15).

2) < 3). This is a special case of Corollary 1.7.

3) = 4). Let P = Ijcgf[X]. Suppose the function eg : X —
cl peg[X] is a singular map. Define Mg r : Hicq f[X] — fer f[X] by
Mg r((f(z))sec) = (f(x)) fer- Then ep = Mg poeg so ep is singular
(by Proposition 1.16).

4) = 2). Let G C Sp, and suppose that, for every finite subset
F of G, e is a singular map. Then, since 3) = 1), X U, S(er)
is equivalent to wpX. We will show that eg[X] C egwe[waX\X] by
showing that egwe|weX\X]| N eg[X] is densely contained in eg[X].
Let p € eg[X]. Then p = eq(z) = (f(z))req for some z € X. Let U
be a basic open neighborhood of p in I;cgS(f). We will show that
U NegflweX\X]| is nonempty. Let F = {f € G : mf[U] # S(f)}
where 7y is the fth projection map with domain ITfceS(f). We
will denote the elements of F' as {f1, f2,...,fn} (where the indices
correspond to the nontrivial components of U). Since wrX is a
singular compactification, ex[X] C e [wrpX\X] (by 1) = 3) = 2)).
Consequently, there exists a point y in wpX\X such that €37 (y) =
(27 (), foor @)oo S5 ) = (@)oo fa(@) = em(z). Now
wrX is equivalent to wgX, hence there is a function 7 : wgX —
wrpX which maps wgX onto wpX, fixing the points of X. Let
u €5, (y) CwgX\X. Then f7%(u) = fi/" “Tugwr(u) = fru(y) =
fr(z) for k =1 to n. Then, for each k =1 to n, f;/°(u) = fr(x) € Ug.
Therefore, fis(u) € U; hence U N ex?[weX\X] is nonempty. Recall
that U was an arbitrary basic open neighborhood of p in eg[X]. Hence
we have shown that e3°[weX\X] Neq[X] is dense in eg[X]. Since
ery[weX\X] is compact, then eq[X] C eg® [we X\ X].

2) = 5). Suppose G C S, and eg[X] C egflwgX\X]. We first
note that, if f is a real-valued singular map, then, for any r € R,
f —r is a singular map (Proposition 1.16). Let z € X and K =
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KE¢ =n{Z(f*e): f € Gt,z € Z(f)}. By hypothesis, there exists
a y € wgX\X such that eg(z) = e5°(y). Then f¥%(y) = f(z) for all
f € G. Tt follows that y belongs to K N (wgX\X). We now verify that
(weX\X)N K = {y}. Suppose z belongs to K N (wgX\X) and z # y.
Then, since G¥¢ separates the points of wgX\X, there is an f € G
such that f¥¢(z) # f“4(y). If f(x) = ¢, then (f —¢€)(z) = 0. Since
f — € € GT and since y and z belong to K, then (f“¢ —¢)(y) = 0 and
(f*¢ —¢)(z) = 0. Consequently, f“S(y) = f¥%(z) = ¢, a contradiction.
It follows that K N (weX\X) = {y}.

5) = 2). Let G C S3, Gt = {f—-r: f € G,;r € R} and
K = n{Z(fve) : f € G*, x € Z(f)} for each z € X. Suppose
K N (wgX\X) is a singleton for each z € X. Let 2y € X and suppose
KN (weX\X) = {yo}. We wish to show that ec(zo) € ea° [waX\X].
Suppose that for some f € G, f(zr) = e. Then f —¢ € G* and
(f —¢e)(@o) = 0. By definition of K, (f“S — ¢€)(yo) = 0. Hence,
f¥¢(yo) = € = f(zg). Consequently, since f was arbitrarily chosen in
G, f(zo) = f“4(yo) for all f € G. Hence, eg(zo) = (f(0))fec =
(f“e(yo))rec = €&° (Yo) € e [weX\X]. All the parts of the theorem
have thus been established. |

We have just characterized compactifications of a space X which are
the suprema of singular compactifications.

Earlier, we provided an example of a compactification avX, namely
the two-point compactification of R, which could not be expressed in
the form wg, X. We now present a condition which guarantees that
a compactification aX is equivalent to wg X. (Recall however that
this does not imply that aX is a singular compactification; see Remark
2.9.)

Proposition 2.13. If aX\X is not totally disconnected, then aX
s equivalent to wg, X.

Proof. If aX\X is not totally disconnected, then oX\X has a
connected component K which is not a singleton. Let p and ¢ be
distinct elements of K. Let r and s be any two distinct elements of
aX\X. Then there exists an f € C(a,X) such that 0 < f < 1,
fi{p,r}] = {0} and f[{g,s}] = {1}. Since K is connected, f maps
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aX\X onto [0,1]. Since flaX\X] = S(f) (see Proposition 1.6), f|x
maps X into S(f). Hence f|x is a singular map. Therefore, we have
shown that S¢ separates points of aX\X. It follows that

aX =sup{wsX : f € Sq} (by Theorem 1.14)
=wg,X (by Theorem 1.18). O

The converse of Proposition 2.13 fails (even for connected spaces
X). A space X which is almost compact, noncompact (so that SX\X
is simultaneously connected and totally disconnected) witnesses the
failure of the converse of Proposition 2.13.

Proposition 2.14. Let X be a strongly zero-dimensional not almost
compact space. then BX is the supremum of the family of the two-point
singular compactifications of X. Hence BX = ws,X.

Proof. Since X is strongly zero-dimensional, then [SX is zero-
dimensional (see 3.34 of [21]). Let p and ¢ be distinct points in 8X,
and let U be a clopen set of X which contains p but not ¢g. Since the
singular characteristic function f = Xx\(wnx) has an extension to 3X
which separates p and ¢, then the family H of singular characteristic
functions of X extends to H” to separate the points of 5X. By Theo-
rem 1.14, fX = sup{w;X : f € H}. Since wyX is a singular two-point
compactification of X, we are done. u]

We now provide various results which follow quickly from some of the
properties of singular compactifications described above.

Proposition 2.15. Let K(X) denote the family of all compactifi-
cations of X. Let K = {aX € K(X) : aX\X is homeomorphic to a
closed interval of r}. Then K C {wyX : f € Sg}, and, if X is con-
nected, then K = {w;X : f € Sg}. (We will consider the singleton set
{a} in r as the closed interval [a,a] with empty interior.)

Proof. We will first show that K is contained in {wsX : f € Sg}.
Let «X € K. Then aX\X is homeomorphic to a closed interval of
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R. Since aX\X is an absolute retract, then aX\X is a retract of
aX (see 156D4 of [22]). Hence, X is a singular compactification.
Let r : aX — aX\X denote a retraction from aX onto aX\X and
h : aX\X — R denote a homeomorphism from aX\X to a closed
interval of R. Since r|x is singular, then h o r|x is singular (by
Proposition 1.16). That aX is equivalent to X Upe,(, S(hor|x) follows
from Lemma 2.1.

We now show that if X is connected then {w;X : f € Sz} is contained
in K. Let f € Sg. Recall that wyX is equivalent to X Uy S(f) (by
Theorem 2.4). Since wyX is a singular compactification, wyX\X is the
closure of the continuous image of the connected space X. This implies
that wy X'\ X is a connected compact subset of r. It follows that wsX
belongs to K. ]

We have shown that K is always contained in {w;X : f € Sg}.
However, if X is not connected, then it may happen that K is a proper
subset of {w;X : f € Sg} as witnessed by the following example. Let
f € C*(N) be defined as follows: f maps the even numbers to {3} and
the odd numbers to {4}. Clearly f is singular. Since f maps w;N\N
homeomorphically onto S(f) = {3,4} then w;N\N is not connected.
Consequently wyIN\N is not a closed interval of R.

Given a singular compactification aX of X, we know by definition
that aX is equivalent to X Uy S(f), where f : X — K is some singular
map from X into some compact Hausdorff space K. But there may be
many such maps f for which this is true. It is important to know how
these maps are related to each other.

On page 35 of [11], the following question is asked:

Suppose X Uy S(f) and X U, S(g) are two singular compactifica-
tions and f and g both map X densely into the same space K so
that S(f) = S(g). When are X Uy S(f) and X U, S(g) equivalent
compactifications of X?

To provide further motivation of the study of this problem, consider
the two functions sine and cosine on the real numbers. Note that
both are singular maps and that [-1,1] = S(sine) = S(cosine) is
their common singular set. One would surely wonder whether the
compactifications RUsjne S (sine ) and RU¢osine S(cosine ) are equivalent.
The following theorem will quickly help resolve this question.
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Note that, in the following theorem, the functions f and g are not
assumed to be real-valued maps. The conjecture that X Uy S(f) =
X Uy S(g) if and only if f and g agree except on a compact set, has
been shown (in [11]) to be false.

We answer the question in the following theorem. For convenience
we recall the following notation introduced in Chapter 1. If aX and
~vX are compactifications of X such that aX < vX, we will denote the
projection map from yX onto oX which fixes the points of X by 7.
If X and Y are two topological spaces “X =2 Y” will mean that X is
homeomorphic to Y.

Proposition 2.16. Let f : X — Ky and g : X — K, be two
singular maps from the space X into the compact spaces Ky and K,
respectively, such that S(f) = S(g). Then the following are equivalent:

1) X Uy S(f) is equivalent to X Uy S(g).

2) The function f : X — S(f) extends continuously to a function
f*: XUy S(g) = S(f)(=2 S(9)) in such a way that fx separates the
points of S(g).

Proof. (1 = 2). Let aX = X Uy S(f) and X = X U, S(9),
where S(f) = S(g). Suppose that aX is equivalent to yX. Let
r : aX — aX\X be defined as follows: r(z) = z if = belongs to
aX\X and r|x = f. Since f is singular and aX\X = S(f), it is
easily verified that r is continuous and hence is a retraction of aX
onto aX\X. Let m,, denote the projection map from yX onto aX,
i.e., Tyq fixes the points of X and maps yX\X homeomorphically onto
aX\X. Let f* : vX — S(f) be defined as f* = r om,,. Note
that f*[s(g) = 7 © Tyals(g) = Tyals()- Clearly f*|x = f and f* is
continuous, being the composition of two continuous functions. Hence
f X — S(f) extends continuously to a function f* : X U, S(g) —
S(f). Furthermore, since 7y, maps yX\X homeomorphically onto
aX\X and r is the identity function on aX\X, f* separates the points
of yX\X. This proves that the given condition is necessary.

(2 = 1). Suppose now that the function f extends continuously to
a function f*: X Uy S(g) — S(f) in such a way that f* separates the
points of S(g). It must then follow from Lemma 2.1 that X U, S(g) is
equivalent to X U* S(f). But since f is singular, X U*S(f) is equivalent
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to X Uy S(f) (see Notation 1.15). Hence X U, S(g) is equivalent to
X Uy S(f). This proves that the condition is sufficient. O

Example 2.17. The singular compactifications R Ugine S(sine ) and
R Ucosine S(cosine ) are not equivalent.

Proof. Suppose the singular compactifications R Usjne S(sine) and
R Ucosine S(cosine) are equivalent. Then, by Proposition 2.16, 1) =
2) the function sine : R — [—1,1] extends to a function sine* :
R Ucosine S(cosine) — [—1,1] such that sine*|g(cosine) iS one-to-one
on S(cosine ) = [~1,1]. Then sine *|g(cosine) is @ homeomorphism from
[-1,1] onto [—1, 1], hence is monotone (increasing or decreasing) and
maps endpoints to endpoints. Suppose without loss of generality that
sine *|s(cosine) Maps —1 to —1 and 1 to 1. Let U be an open interval
containing 1 such that U N [-1,1] € (1/2,1] and sine *[g g6 )[U] =
V C (1/2,1]. Observe that sin [U] N cos* [sin“ [U]] = sin“ [U] N
cos"[V] is empty. Since sine* is continuous on R Ugogine S(cosine),
sine*<[U] = V Usin“[U] is open in R Ucosine S(cosine). Since
V U cos“ [V] is also open in R Ucogine S(cosine ), then (V Ucos* [V]) N
sin® < [U] = V is open in R U¢osine S(cosine ). Since V' C S(cosine ), we
have a contradiction. Hence R Ugine S(sine) and R Ugogine S(cosine )
are not equivalent. u]

The following corollary offers an easy method of recognizing many
pairs of singular compactifications which are equivalent.

We introduce the following definition.

Definition 2.18. We will say that two functions f : X — K and
g: X — K from a space X to a space K are homeomorphically related
if there exists a homeomorphism h : cl g f[X] — cl kg[X] such that
h(f(z)) = g(z) for all z in X.

It is clear that families of homeomorphically related functions from a
space X to a space K form equivalence classes on the collection of all
functions from X to K.
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Corollary 2.19. Let f : X — K and g : X — K be two
singular maps on X such that S(f) = S(g) = K. If f and g are
homeomorphically related, then X Uy S(f) is equivalent to X Uy S(g).

Proof. Let h : S(9) — S(f) be a homeomorphism from S(g) onto
S(f) such that h(g(x)) = f(z). Note that g : X — S(g) extends
continuously to the function g* : X Uy S(g) — S(g) where g* acts
as the identity function on S(g), see Theorem 1.2. Hence h o g
extends to h o g* : X U, S(g9) — S(g) where (h o g*)|sq) = h, a
homeomorphism from S(g) onto S(f). Since f = hogon X, f extends
to f*: XUy S(g) = S(g) such that f* separates the points of S(g). By
Proposition 2.16, 2) = 1), X Uy S(f) is equivalent to X Uy S(g). o

Example 2.20. The singular compactifications R Uy,> S(sin?) and
R Uos2 S(cos?) are equivalent.

Proof. It is easily seen that both sin? and cos? are singular maps on
R. Observe that if A : [0,1] — [0,1] is the homeomorphism defined
by h(z) = 1 — , then h o sin? = cos®. Hence, by Corollary 2.19,
R Ugn2 S(sin?) is equivalent to R Ugog S(cos?). O
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