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BILINEAR INTEGRATION IN TENSOR PRODUCTS

BRIAN JEFFERIES AND SUSUMU OKADA

ABSTRACT. The integration of vector valued functions
with respect to vector valued measures is studied in this paper.
The resulting integral take its values in a tensor product space
satisfying a mild separation condition. The relationship with
bilinear integrals of R. Bartle and I. Dobrakov is examined.
The present integral has the advantage of allowing a treatment
of integration with respect to certain measures derived from
spectral measures, that is not otherwise available.

0. Introduction. The notion of integrating vector valued functions
with respect to vector valued measures has been treated by a number
of authors [1, 4-7, 2]. If the indefinite integral takes its values in
a tensor product space, then the special nature of topological tensor
products can be exploited to yield an integration theory suitable for
bilinear integration with respect to spectral measures. Integrals of this
nature arise in the study of random evolutions with respect to operator
valued measures [10].

As a guide to the sort of properties we are looking for, let 1 < p < oo
and X =Y = LP([0,1]), and consider X ® Y as a dense subspace of
LP([0,1]%). Let {y;}32, be an unconditionally summable sequence in
Y, and set m(A) = >_; 4 y; for each subset A of N. Then m is a Y-
valued measure. A scalar valued function f : N — C is m-integrable
if and only if {f(j)y;}72, is unconditionally summable in Y. It is
reasonable, therefore, that an X-valued function f : N — X should be
m-integrable in L ([0, 1]?) whenever {f(j) ® y;}52, is unconditionally
summable in LP([0,1]?).

Although this looks like a natural starting point for bilinear inte-
gration, it gives rise to some unusual features. For example, suppose
that 1 < p < 2. Then there exists an unconditionally summable se-
quence {y;}32; in LP([0,1]) and a bounded function f : N — LP([0, 1])

Received by the editors on October 15, 1995.

1991 AMS Mathematics Subject Classification. Primary 46G10, Secondary
28B05.

Key words and phrases. Vector measure, bilinear integral.

Copyright ©1998 Rocky Mountain Mathematics Consortium

o17



518 B. JEFFERIES AND S. OKADA

such that {f(j) ® y;}32; is not summable in LP([0,1]*). In other
words, bounded LP([0,1])-valued functions need not be integrable,
see Example 2.2. A modification of this example produces an ab-
solutely summable sequence {z;}$2, in LP([0,1]) and a function g :
N — LP([0,1]) such that {g(j)||z;][}72; is unconditionally summable
in LP([0,1]) but {g(j) ® x;}52, is not summable in L?([0,1]?), that is,
g is Pettis integrable with respect to the variation V(n) of the vector
measure n : A — ZjeA x;, but not with respect to n itself; see Exam-
ple 2.3. Of course, if g were Bochner integrable with respect to V (n),
then we would have 3272 g(7) [l < o0, 50 {9(j) ® z;}32, would
necessarily be an unconditionally summable sequence in L ([0, 1]%).

The bilinear integral of R. Bartle [1] is defined in terms of convergence
in semivariation, thereby encompassing integration with respect to
finitely additive set functions. However, convergence in semivariation
is too strong to deal with integration with respect to the measures m of
the above type. For example, if {y;}72; is unconditionally summable
in LP([0,1]), but Z]oi1 lly;ll;, = oo, such sequences exist whenever
1<p<2 and f : N — C is an m-integrable scalar function, then
the LP([0,1])-valued function F : j — f(j)1 may not be integrable in
the sense of [1, Definition 1], see Example 2.4. A sufficiently general
notion of bilinear integration ought to imply that F' is m-integrable
in L?([0,1)?) if and only if f is m-integrable, in the usual sense, in
L ([0, 1]).

Such an integral is given in Definition 1.5. We can avoid using
semivariation in the definition of the integral employed in the present
work, at the expense of having a more restrictive setting than that of
[1] and [4-7]. We give an example of an L%([0, 1])-valued measure m
whose tensor product semivariation with respect to the space L%([0, 1])
takes only the values zero and infinity, see Example 4.1. The only
L?([0, 1])-valued functions integrable with respect to such a measure,
in the sense of [1] and [4-7], are the null functions. Nevertheless, we
can identify the space of L?([0,1])-valued m-integrable functions on
[0, 1], in the sense outlined below, with the space of all integral kernels
associated with trace class operators.

1. Bilinear integration. A o-additive set function defined on a
o-algebra, with values in a locally convex Hausdorff space, is called a
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vector measure. Let X and Y be Banach spaces, and let X ® Y denote
their algebraic tensor product. The tensor product X ®Y equipped with
a norm topology 7 is denoted by X ®. Y. We denote the completion of
X®,Y by X®,Y. Let m : S = Y be a vector measure defined on the
o-algebra S of subsets of a set . As usual, the integral of X-valued
functions with respect to m is first defined for elementary functions.
An X-valued S-simple function is a function ¢ for which there exist
k=1,2,...,sets A; € S and vectors ¢; € X, j = 1,...,k, such that
¢ = 2521 cjXa,- The integral $ ® m of ¢ with respect to the Y-valued

measure m is defined by (¢ @ m)(A) = Z?zl c; @ [m(ANA,)], for all
Ae€S. Then (p@m)(A) e X ®Y, for each A € S.

We shall make some restrictive assumptions concerning the spaces X
and Y and their tensor product X ® Y, allowing us to integrate a class
of functions more general than the simple functions. Suppose that 7 is
the topology defined on X ® Y by a norm ||-||, with the property that
there exists C' > 0 such that

(T1) ||z @ y||» < C||z|| ||y|| for all z € X and y € Y, and

(T2) X' Y’ may be identified with a linear subspace of the continu-
ous dual (X ®, Y) = (X®,Y) of X ®, Y and ||z’ ® y'|| < C||z'|| ||y
forallz’ € X' and y € Y.

If conditions (T1) and (T2) hold, then 7 is merely said to be a norm
tensor product topology on X ® Y.

Definition 1.1. A norm tensor product topology 7 on X ® Y is
said to be completely separated if the subspace X' @ Y’ of (X ®,Y)’
separates the completion X®,Y of the normed space X ®; Y, that is,
if u € X®,Y and (u,2’ ®y') = 0 for all 2’ € X’ and y € Y/, then
u=0.

An equivalent formulation of the condition that 7 is completely
separated is that, if {£,}52, is any 7-Cauchy sequence in X ® Y for
which lim,, 00 (€n, 2’ @ y') = 0 for all 2’ € X’ and y' € Y’, then
lim, , &, = 0 in 7. For a completely separated, norm tensor product
topology T, the completion X®,Y of X®,Y is naturally identified with
a subspace of the completion of X®Y in the topology o(X®Y, X'®Y").

The injective tensor product topology is always completely separated,
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[13, 45.4]. If one of the Banach spaces X, Y has the approximation
property, then the projective tensor product topology on X ® Y is
completely separated, [13, 43.2].

We begin by stating an elementary but useful condition, [12, 18.4].

Proposition 1.2. Let T be a norm tensor product topology on X QY .
If X®,Y has a fundamental system of neighborhoods of zero which are
closed for the topology o (X ®Y, X'®Y"), then T is completely separated.

Vector valued function spaces are a central example of normed tensor
products. For a o-finite measure space (I',E,u) and 1 < p < oo,
the vector space of p-equivalence classes [¢],, of strongly y-measurable
functions ¢ : I' — X such that the scalar function [|¢|% is w-
integrable is denoted by LP(T', &, u; X). By strongly p-measurable, we
mean the limit p-almost everywhere of X-valued £-simple functions.
Then LP(T',E,p; X) is a Banach space under the norm |[[[¢].l, =
(Jp %115 dp)'/P. In most circumstances, we write ¢ instead of [¢],. If
p = 00, then L>®(T', £, u; X) is the Banach space of (equivalence classes
of) strongly u-measurable functions ¢ : I' = X for which the scalar
function ||¢||x is p-essentially bounded. The norm is the u-essential
bound [|9][ec of [|¢)]|x-

If1 < p < oo, then LP([,E, 1) ® X may be identified with a
subspace of LP(T',&,u; X). The relative topology of LP(T, &, u; X)
on LP(T, &, u) ® X satisfies conditions (T1),(T2); this is the tensor
product of central interest to the present work. The completion of
LP(T, &, 1) ® X in this topology may be identified with LP (T, &, u; X)
in the case 1 < p < 0.

It follows from the Hahn-Banach theorem and Proposition 1.2 that,
for a o-finite measure space (I, £, ) and 1 < p < oo, the LP(T, &, p; X)-
topology on LP(T, &, u) ® X is completely separated.

For each set A € S,let SNA={BNA:BecS} Aset AcSis

called m-null if m(B) = 0 for every subset B € SNA of A. A statement
which holds outside an m-null set is said to hold m-almost everywhere.

The following ubiquitous convergence result is a variant of Vitali’s
convergence theorem, [8, Theorem IIL.6.15].
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Lemma 1.3. Let (2, S) be a measurable space and X : § — C a
scalar measure. Suppose that fi, k = 1,2,..., are A-integrable scalar
functions converging A-almost everywhere to a function f, with the
property that the numbers frA(A) = [, frdX\, k = 1,2,..., converge
for each A € S. Then f is A-integrable and frA(A) — fA(A) uniformly
for Ae S as k — .

Given a function f : @ — X and an element ' € X', let (f,2’) denote
the scalar function defined by w — (f(w),z') for every w € Q. If ' €
Y’, then define a scalar measure (m,y’) on S by (m,y')(A) = (m(A4),y")
for every A € S, and its total variation is denoted by |{m,y’)|.

For an X-valued S-simple function ¢, the integral ¢ @ m is o-additive
in X ®; Y by property (T1) of the norm tensor product topology .
The following lemma is needed for Definition 1.5 to make sense.

Lemma 1.4. Let 7 be a completely separated, norm tensor product
topology on X ® Y. Suppose that ¢, k = 1,2,..., are X-valued S-
simple functions for which {(¢r ® m)(A)}32, is 7-Cauchy in X @, Y
for each A € S and ¢, — 0, m-almost everywhere, as k — oo. Then
limg oo (P @ m)(A) =0 in X @, Y for each A € S with respect to 7.

Proof. For each 2’ € X' and y' € Y’, the scalars ((¢r, @ m)(A),z' @
Y) = [4(br,2")d(m,y'), k =1,2,..., converge to zero for every A € S,
and (¢x, ') — 0, (m,y’)-almost everywhere. An appeal to Lemma 1.3
shows that limg o0 ((dr ® m)(A),2' ® y') = 0 for all 2’ € X’ and
y' € Y’'. But we know that {(¢r ® m)(A)}32, is already 7-Cauchy
in X ® Y, so the fact that 7 is completely separated tells us that
limg o0 (P ® m)(A) = 0 in 7. ]

Our bilinear integral is defined by adopting the conclusion of [1, The-
orem 9], a translation to the bilinear context of ‘Dunford’s second inte-
gral,” or in modern parlance, the Pettis integral for strongly measurable
functions.

Definition 1.5. Let (£2,S) be a measurable space, and let X and
Y be Banach spaces. Suppose that 7 is a completely separated, norm
tensor product topology on X®Y. Let m : § — Y be a vector measure.
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A function f : Q — X is said to be m-integrable in X&,Y if there exist
X-valued S-simple functions ¢;, j = 1,2,..., such that ¢; — f, m-
almost everywhere, as j — oo, and {(¢; ® m)(A)}32, converges in
X®,Y for each A € 8. Let (f@m)(A) = [, f(w)®dm(w) denote this
limit. Sometimes we write m(f) for the definite integral (f ® m)(Q).

To check that f ® m is well-defined, suppose that we have some
other X-valued S-simple functions ¢}, j = 1,2,..., such that ¢} — f,
m-almost everywhere, as j — oo and {(¢}; ® m)(A)}32; converges in
X®,Y for each A € S. Then (¢ — ¢;] — 0, m-almost everywhere, as
j — oo and {([¢};—¢;]@m)(A)}52, converges in X&®,Y, foreach A € S.
By Lemma 1.4, we must have (f ® m)(A) = lim;_,o(¢; ® m)(A) =
lim;_, o0 (¢ ® m)(A) for each set A € S.

The set function f@m : S — X®,Y is the setwise limit of o-additive
set functions ¢ ®m, k = 1,2,..., so by the Vitali-Hahn-Saks theorem,
[8, Theorem IV.10.6], it is itself o-additive for the topology 7. It is easy
to see that the map (f,m) — f ® m is bilinear, in the obvious sense.

We point out some facts that are easily established. In the case that
X = C, a function f : Q — C is m-integrable in the sense above if
and only if it is m-integrable in the sense of vector measures described
in [11, Section II.2], see [14, Theorem 2.4]. For the case when Y = C
and X is a Banach space, a function f: Q) — X is m-integrable in the
sense above if and only if it is strongly m-measurable in X and Pettis
m-integrable, [3, Section II.3]. In both cases, the class of functions so
obtained coincides with the integral of Bartle [1].

Moreover, if m has the x-property with respect to X, [1, Definition
2], then a function f : @ — X is m-integrable in X®,Y if and only
if it is integrable in the sense of Bartle [1, Theorem 9]. In this case,
both integrals agree. The assumption that 7 is a completely separated,
tensor product topology allows us to avoid using X-semivariation
to define integration with respect to m; an example of a measure
without finite semivariation, and so without the *-property, is given
in Example 2.2. We mention the connection with the bilinear integral
of Dobrakov [4] in Section 3. The proof of the next statement is
straightforward and is omitted.
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Proposition 1.6. Let X and Y be Banach spaces, and let T be
a completely separated, norm tensor product topology on X @ Y. Let
m : S — Y be a vector measure. If a function f : Q@ — X is m-
integrable in X®.Y, then for all x' € X' and y' € Y', the scalar
function (f, ') is integrable with respect to the scalar measure (m,y’)
and the equality

(1a) ([ sodm asy) = [ () dmy)

1s valid.

Furthermore, the X -valued function f is integrable with respect to the
scalar measure (m,y’), the scalar valued function (f,z') is integrable
with respect to the Y -valued measure m, and the following equalities
hold for all A € S:

(froan 00)={f ramn. )
= </A<f,x'>dm, y'>-

Corollary 1.7. Let X, Y, 7 and m be as in Proposition 1.6. If
a function f : Q = X is m-integrable in X®,Y, then the indefinite
integral f @ m is absolutely continuous with respect to m.

(1b)

Proof. Let A € S be an m-null set. It follows from (la) that
([f®m](B),2'®y") = 0 for all subsets B € SNA, whenever 2’ € X’ and
y' € Y'. Now apply the assumption that 7 is a completely separated,
norm tensor product topology. o

Corollary 1.8. Let X, Y, 7 and m be as in Proposition 1.6. If a
function f : Q — X is m-integrable in X&,Y and if g: Q — C is a
bounded S-measurable function, then gf is m-integrable in X®,Y, the
function f is g.m-integrable in X®,Y and the equalities (gf) ® m =
f®(g-m)=g.(f ®m) hold.

Proof. Bounded, scalar valued measurable functions are integrable
with respect to a vector measure taking values in a Banach space, [11,
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Theorem I1.3.1], so g is necessarily integrable for both measures m and
f ® m. Then,

((fem),a"®y')
[(f,2)-(m,y)], Dby (la)
g9(f,2")).(m,y') = (gf,2").(m, 1)
= (f,2").lg{m, y")] = (£, 2).(gm, y/).

(9(f@m),z' @y') =

g-
g-
=

Once we prove that gf is m-integrable and f is g.m-integrable, the
desired equalities are seen by appealing to Proposition 1.6, and the
assumption that 7 is completely separated.

Let g;, j = 1,2,..., be S-simple functions converging uniformly to
g on ), and suppose that ¢, & = 1,2,..., satisfy the assumptions
of Definition 1.5. Since the X ®, Y-valued measures ¢ @ m, k =
1,2,..., are uniformly 7-bounded on S by the Nikodym boundedness
theorem, [3, Theorem 1.3.1], it follows that as j — oo, the sequence
{(gj.1¢x ® m])(A)}32, converges to (g.[px ® m])(A), uniformly in both
A € S and k € N. In particular, gp¢r, — gf, m-almost everywhere,
and [(gror) ® m](A) converges in X&,Y as k — oo, for each 4 € S.
Only a glance at Definition 1.5 is needed to see that gf is m-integrable
in X®,Y. Finally f is g.m-integrable because

lim ({6 @ (9:m)])(4) = lim lim (s @ (9;.m)])(A)

k— k—00 j—o0

= lim lim ([¢x ® (g;.m)])(A)

j—00 k—oo

exists for each A € S. o
The following bounded convergence result will be useful later.

Lemma 1.9. Let X,Y and 7 be as in Proposition 1.6. Suppose
that m : § — Y is a vector measure. If f : Q@ — X is a bounded
function which is m-integrable in X&,Y, then for every € > 0, there
exist X -valued S-simple functions ¢, k = 1,2,..., which converge m
almost everywhere to f such that ||k (w)|| < ||fllec + € for all w € Q
and k =1,2,..., and (¢ @ m)(4) = (f ® m)(A) as k — oo for each
AeS.
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Proof. Because f is m-integrable, there exist X-valued S-simple
functions ¥, k = 1,2,..., such that ¥, — f, m almost everywhere,
and (¢ ® m)(A) — (f @ m)(A) as k — oo for each A € S. Let ¢
be a positive number and p a continuous seminorm on X. For each
k=1,2,..., let

A= (o 1 @) < [ flleo + e}

=k

and
b = YrXa,-

If w € Q is a point such that limy_,o ¥ (w) = f(w), then the triangle
inequality implies that limy_,o ¢r(w) = f(w), and hence U2 | Ay is a
set of full m-measure. The equality

(¢ ®m)(A) = (Yx @ m)(AN Ag)

is valid for all k =1,2,... and all A € S.

It follows from the Vitali-Hahn-Saks theorem, [8, Theorem IV.10.6],
that {¢r @ m}22; is a uniformly o-additive family of X ®, Y-valued
measures, so that

Jim sup | (4 m)(A1 45) = (9 m)(A)] =0.
Hence, if A € S, then (¢ @ m)(A) = (f ® m)(A) as k — oo. O

Another standard property of vector integrals is that continuous
linear maps can be dragged inside the integral to act on the integrand—a
property which takes the following form in the present context.

Suppose that X;,Y;, j = 1,2, are Banach spaces, and that 7, and m
are norm tensor product topologies on the tensor products X; ® Y7 and
X5 ® Y3, respectively. The tensor product of two linear maps S : X; —
Xoand T : Y] — Y5, is the linear map S® T : X; ®Y; & XoQ®Ys
defined by (S®T)(z®y) = (Sz)®(Ty) for each z®y € X1 ®Y7. There
is no guarantee that S ® T is continuous with respect to 7 and 75 even
if S and T are continuous. However, if S® 7 : X; ®,, Y1 = X2 ®5, Y3
is continuous, then the same symbol S ® T denotes the associated
continuous linear map between the completions X4 @)TI Y: and Xy <§>72Y2.
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Proposition 1.10. Suppose that X;,Y;, j = 1,2, are Banach spaces,
and that ™ and o are completely separated, norm tensor product
topologies on the tensor products X1 @ Y7 and Xs ® Y, respectively.
Let m : 8§ — Y; be a measure, and suppose that S : X1 — Xo
and T : 'Yy — Y5 are continuous linear maps whose tensor product
ST : X1 ®r Y1 — Xo ®r, Ya is continuous.

If f : Q — X3 is m-integrable in Xl@),.lYl, then S o f is T o m-
integrable in X2®,, Y2 and

(5’®T)/Af®dm:/A[SOf]®d[Tom],

for every A € S.

Proof. Let ¢, k =1,2,..., be X;-valued S-simple functions satisfy-
ing the assumptions of Definition 1.5. Then S o ¢y — S o f, m almost
everywhere, as k — 0o, because S is continuous. The continuity of T’
guarantees that T o m is a Ya-valued measure. Since S ® T is contin-
uous, the sequence {(S ® T)([pr ® m](A))}2, converges in Xo®,,Y>
for each A € §. A glance at Definition 1.5 is enough to complete the
proof. o

2. Semi-variation. In the context of bilinear integration, Bartle
[1] worked with a concept related to semivariation originally introduced
in [9]; it is needed in the proof of the bounded convergence theorem for
bilinear integrals.

Let S be a o-algebra of subsets of a nonempty set 2. Let X and Y be
Banach spaces, and suppose that 7 is a norm tensor product topology
on X ®Y. Let m: S — Y be a vector measure. The X -semivariation
Bx(m): S — [0,00] of m in X ®, Y is defined by

for every A € S; the supremum is taken over all pairwise disjoint
sets Ay,..., A from S N A and vectors z1,...,x, from X, such that
|lzj|| <1lforallj=1,...,kand k=1,2,.... A similar notion applies
if the canonical bilinear map (z,y) — z®y from X XY into X ® Y is

Bx () (4) = sup {

k
Yz @m(4))
j=1
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replaced by some continuous bilinear map (z,y) — zy into a Banach
space Z. If X = C, then the C-semivariation fc of minY =CQ®Y
coincides with the usual notion of semivariation ||m/|| of a vector valued
measure, [3, Section I.1].

If, for all sets Ay € S decreasing to the empty set, we have
Bx(m)(Ar) — 0 as k — oo, then we say that the X-semivariation
Bx(m) of m in X ®,Y is continuous. A study of continuity for semi-
variation has been conducted by Dobrakov [4-7]. If Sx(m) is contin-
uous, then Bx(m)(Q) < co. In fact, an equivalent formulation for the
continuity of Bx(m) is that the set of X ® Y-valued measures ¢ ® m
as ¢ ranges over all S-simple functions with values in the unit ball of
X, is bounded and uniformly o-additive for the norm ||-||;. A result of
Bartle-Dunford-Schwartz, [3, Theorem 1.2.4], then ensures that there
exists a finite nonnegative measure XA on S such that A < Sx(m) and
limy(4)—0 Bx (m)(A) = 0, see [6, Lemma 2]. In the paper [1], continu-
ity of the semivariation is called, unhelpfully, the *x-property.

Another of Dobrakov’s results [4, *-Theorem] implies that if X®,Y
contains no subspace isomorphic to ¢g, then the X -semivariation 8x (m)
of min X ®,Y is continuous once it is finite. In the case that 7 is equal
to the injective tensor product topology, the X-semivariation Sx(m)
of min X ®, Y is always continuous, hence finite, [16, Lemma 15].
However, the X-semivariation Bx (m) of m in X ®, Y need not even be
finite if 7 is the projective tensor product topology, see Example 4.1.

A Y-valued measure m, with finite variation V(m) : § — [0, c0),
necessarily has finite X-semivariation in X ®, Y, by virtue of the
separate continuity (T1) of the canonical map X x Y — X ®, Y.
Moreover, the X-semivariation of m in X ®, Y is continuous. We state
here a result that follows immediately from [1, Theorem 5].

Proposition 2.1. Let 7 be a completely separated, morm tensor
product topology on X ® Y. Suppose that m : S — Y is a measure for
which there exist sets Qi € S, k = 1,2,..., increasing to Q such that
the total variation V(m)(Q) of m on Qy is finite for each k = 1,2,.. .,
that is, m has o-finite variation.

If a function f : Q@ — X is Bochner integrable with respect to the
o-finite measure V(m), then f is m-integrable in X®,Y .
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The nature of bilinear integration is unlike the cases in which either
the measure or function is scalar; for example, bounded vector valued
functions need not be integrable with respect to a vector valued mea-
sure.

Example 2.2. A measure m : § — Y can have o-finite vari-
ation without having continuous X-semivariation, or even finite X-
semivariation. Let 1 <p < 2,and X =Y = LP([0,1]). We give X QY
the relative topology 7 of LP([0,1]?), so that X®,Y = LP([0,1]?).

Suppose that {y;}3°, is an unconditionally summable sequence in
LP([0,1]) such that > 7%, [|y;]|5 = oo, [15, Theorem 1.c.2]. Let @ = N
and let S be the family of all subsets of . Let m : S — Y be the
vector measure defined by m(A) =, . 4 yx for every A € S.

Let Aj, j =1,2,..., be pairwise disjoint subsets of [0, 1] with positive
Lebesgue measure |A;|. Set f; = XAJ./\AJ'P/” for each j = 1,2,...;
then ||f;|l, = 1. As k — oo, we have

1 k p k 1 k
/ S fiws0)| =3 / P dt =3 y;lE = oo.
0 =1 P j=170

j=1
Therefore the vector measure m has infinite X-semivariation but o-
finite variation. A function G : Q@ — LP([0,1]) is m-integrable in
LP([0,1]) if and only if the sequence {G(j) ®y,}32, is unconditionally
summable in L?([0,1]?). This is obviously guaranteed by the condition
e IG()Ipllyjll, < oo of the above proposition. However, the
bounded L? ([0, 1])-valued function j — f; on  is not m-integrable.

Example 2.3. Let the notation be as in the above example. Then
the sequence {f; ® y;}52, is not summable in LP([0,1]?). Now let
{a;}32, be a summable sequence of positive scalars and set g; = a; f;
for every j =1,2,.... The LP([0, 1])-valued measure m : A — > 4 g;
on S has finite variation V(m) : A — >°. ,a;. Set z; = y;/a; for
each j = 1,2,.... Then {a;z;}52, is unconditionally summable in
LP([0,1]), but {z; ® g;}32, is not summable in LP([0,1]*). In other
words, the function j — z; on N is Pettis integrable with respect
to V(m) in L?([0,1]), but it is not m-integrable in LP([0,1]%). Of
course, an LP([0,1])-valued function on N that is Bochner integrable
with respect to V' (m) is necessarily m-integrable.
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Example 2.4. Let 1 < p < 2and 0 < a < 1/p —1/2. Then
there exists an unconditionally summable sequence {2;}22; in LP([0, 1])

such that ||zj|l, = 1/(51/?In(j + 1)), [15, Theorem 1.c.2]. For each
j=12,...,set y; = j ?2;. Then

oo oo

1
. p =
Z HyJHp ; japjp/Z ln(j + l)P

=1

Nevertheless, {j%y;}32; is unconditionally summable in L ([0, 1]).

Le S be as in Example 2.2. Let m : § — L?([0,1]) be the measure
given by m(A) = >_,c 4 y; for every subset A of N.

Claim. The function f :j — j°1 on N, with values in LP([0,1]), @
m-integrable in LP([0,1]?), but it is not m-integrable in LP([0, 1]2) ;
the sense of [1].

Proof. We already know that f is m-integrable because {f(j)y;}72;
is unconditionally summable in LP ([0, 1]). Let ¢ be an L?([0, 1])-valued

simple function N. Then, for each j € N,
1£(5) = 6Dllp 2 [I1F G)llp = 16 p| = 7% = 16(7)ll5-

Let J be an integer greater than (max; |¢(j)|, + 1)/%. Then for
all j > J, the inequality ||f(j) — ¢(j)|lp > 1 holds. Let A = {j :
If(7) — ¢()llp = 1}. The argument used in Example 2.2 now shows
that the LP([0,1])-semivariation of m in LP([0,1]?) of the set A is
greater than or equal to .. ;[ly;||b = co. Consequently, f cannot
be approximated in L ([0, 1T)tsemivariation of m by LP([0, 1])-valued

simple functions. o

The following result is a direct consequence of Lemma 1.9 and the
definition of semivariation, so that the proof is omitted.

Lemma 2.5. Let 7 be a completely separated, norm tensor product
topology on X @Y. If m : S — Y is a vector measure and if g is a
Y -valued bounded function which is m-integrable in X®,Y , then

(g @m)(A)ll+ < llgllocBx (m)(4), A€S.
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Let m : § — Y be a measure. Let 7 be a norm tensor product
topology on X ® Y. If there exists an increasing family of sets 2, € S,
k =1,2,..., such that U? ,Q, = Q and SBx(m)(Q%) < oo for every
k = 1,2,..., then we say that m has o-finite X-semivariation in
X®,Y. If A€ S and the restriction of m to the o-algebra SN A has o-
finite X-semivariation, then we say that m has o-finite X-semivariation
on A.

Because bilinear integration at the present level of generality does
not have the same features as usual integration theories, it is prudent
to prove basic properties carefully. The following result is a useful
consequence of o-finite X-semivariation.

Theorem 2.6. Let 7 be a completely separated, norm tensor product
topology on X ® Y. Suppose that a vector measure m : S — Y has
o-finite X -semivariation in X @, Y.

If fj, 7 = L,2,..., are X-valued functions on Q which are m-

integrable in X®,Y such that {f; 521 converges m-almost everywhere
to an X -valued function f, and {(f; @ m)(A)}52, converges in X®,Y
for each A € S, then [ is m-integrable in XY and {(f; ®@m)(4)}32,

converges in X®,Y to (f ® m)(A), uniformly for A€ S.

Proof. Let ||| denote the norm of X®,Y. As usual, ||ul, : S —
[0, 00) denotes the semivariation of a measure y1: S — X®,Y . Because
the sequence {f; ® m}32, of vector measures converges setwise in
X®,Y, it is uniformly bounded by the Nikodym boundedness theorem,
and uniformly o-additive by the Vitali-Hahn-Saks theorem, so there
exists a nonnegative measure A : § — [0,00) with the property that
limy(4)—o || f; ® m||-(A) = 0, uniformly for j = 1,2,... . Moreover, A
may be chosen with the property that 0 < A(A) < sup; [|f; ® m||(4)
for all A € S, [3, Corollary 1.2.5].

Let N be an m-null set outside which f; — f pointwise. Corollary 1.7

then implies that || f; @ m|.(N) =0forall j =1,2,... . It follows from
the inequality above that IV is A-null.

Let ¢ > 0. Choose § > 0 such that, for every set A € S with the
property that A(A) < ¢, the inequality ||f; ® m|-(A) < /4 holds,
whenever j = 1,2,.... There exists an increasing sequence of sets



BILINEAR INTEGRATION 531

Qr €S,k=1,2,..., on which the X-semivariation 8x (m) of m is finite
and whose union is 2. The o-additivity of the measure A guarantees
that, for some K € N, we have A(Q\ Qk) < §/2.

An appeal to Egorov’s theorem, [3, Theorem III.6.12], ensures that
there exists a set Bs such that A(Q\ Bs) < §/2 and ||fx — fllx = O
uniformly on Bg, as k — co. Let As = Bs N Q. Then A\(Q\ A4s) < 6,
I f — fllx — 0 uniformly on As as k — 0o, and Bx(As) < co. Choose
K. € N such that

€
SR = Il < g tmyas + 1

for all £ > K.. It follows, from Lemma 2.5 and the definition of
semivariation that, given A € S,
(5 @ m)(A) = (fr @ m)(A)]|7
< I([f5 — frl @ m)(AN Ag)|7 +€/2
< IS5 = fellxXasllooBx (m)(As) +€/2 <,
for all j,k > K.. Thus {fx ® m(A4)}{2, converges in X®,Y, uniformly
for AeS.

It remains to prove that f is m-integrable in X®,Y. Each function
fx is integrable, so applying the same process to fx, and choosing a
subsequence {fy,;}72; of {fi}3Z,, if necessary, we obtain X-valued
S-simple functions ¢;, j = 1,2,..., and an increasing family of sets
D;jeS,j=1,2,...,such that

(1) U321 Dj is a set of full \-measure,
(2) supyep, If(w) = fi,; (W)lx <1/7,
(3) I(fx, ®@m)(A) = (fx, ®m)(A)||- < 1/j,foralll > jandall A € S,
(4) sup,ep, [1fx; (W) — 0 (w)llx < 1/4,
(5) [|(fr; ® m)(A) — (¢; @ m)(A)||- < 1/, for all A€ S,
for all j = 1,2,.... Hence, ¢; — f, m-almost everywhere, and

{(¢;©m)(A)}52, converges uniformly for A € S to limy—, o0 (fr®m)(A).

According to Definition 1.5 the function f is m-integrable in X&,Y and
limg o0 (fx @ m)(A) = (f ® m)(A), uniformly for A € S. O

As a consequence of the proof above, it is evident that if f: Q — X
is m-integrable and m has o-finite X-semivariation on the set {w € Q :
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f(w) # 0}, then the measure f ® m has o-finite X-semivariation. The
proof above shows that the condition that {(f; ® m)(4)}32; converges
in X®,Y for each A € S may be replaced by the condition that
{f; ® m}32, is a bounded and uniformly countably additive family
of X&,Y-valued measures.

Under further technical assumptions involving continuity of semivari-
ation and related concepts, I. Dobrakov [6, Theorem 17] has obtained
an analog of the Lebesgue dominated convergence theorem. We state
here the bounded convergence theorem of Bartle [1, Theorem 7, Lemma
3] in our setting.

Theorem 2.7. Let T be a completely separated, norm tensor product
topology on X QY , and suppose that a Y -valued measure m on S has
continuous X -semivariation in X ®, Y.

Then every strongly m-measurable, bounded function f : Q — X
is m-integrable. Moreover, if fr : Q =Y, k=1,2,..., are uniformly
bounded Y -valued functions converging to f, m-almost everywhere, then
the integrals [, fr®dm, k =1,2,..., converge to [, f®@dm in X®,Y,
uniformly for A € S.

Remark. Let 7 be a completely separated, norm tensor product
topology on the tensor product X ® Y of the Banach spaces X and Y.
Suppose that the X-semivariation in X ®, Y of a Y-valued measure m
is finite. If every strongly m-measurable, bounded function f: Q2 — Y
is m-integrable, then C. Swartz [18, Theorem 6] has proved that the
X-semivariation of m is necessarily continuous.

3. Relationship with Dobrakov’s integral. In this section, we
show that for Banach spaces X and Y, the bilinear integral given in
Definition 1.5 differs from the bilinear integral developed by I. Dobrakov
[4] only in the case that a Y-valued measure m does not have o-finite
X-semivariation in X ®,Y, a situation which is often the case for vector
measures arising from spectral measures, see Example 4.1.

Throughout this section, let S be a o-algebra of subsets of a nonempty
set 2, and let m : § — Y be a vector measure.

To prove that a function f is integrable, the local integrability of f
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and a candidate for the indefinite integral are required.

A function f: Q — X is said to be locally m-integrable if every non-
m-null set A € S contains a non-m-null set B € S such that fXxp is
m-integrable in X®,Y.

Lemma 3.1. Let 7 be a completely separated, norm tensor product
topology on X ® Y, and suppose that the measure m has o-finite X -
semivariation in X ®,; Y. Then a function f : Q@ — X is locally m-
integrable if and only if it is strongly m-measurable.

Proof. Let A : § — [0, 00) be a measure equivalent to m, [3, Corollary
1.2.6]. Suppose first that f is locally m-integrable. By an exhaustion
argument with the measure A, [3, Lemma II[.2.4], there exists an
increasing sequence {Q;}32, of sets from S, with union 2, so that
[Xq; is m-integrable in X®,Y for every j = 1,2,.... In particular,
the functions fXq,, j = 1,2,..., are strongly m-measurable, so f, being
the pointwise limit of such functions, is itself strongly m-measurable.

Conversely suppose that f is strongly m-measurable; then it is the
limit m almost everywhere of X-valued S-simple functions {¢;}32,.
By Egorov’s measurability theorem, [8, Theorem I11.6.12], every set A
of positive A-measure contains a set B of positive A-measure on which
{#r}72, converges uniformly. But Q = U3, Q; for sets 2; on which m
has finite X-semivariation, so for some j =1,2,..., the set BN {}; has
positive A-measure. From Lemma 2.5, we have the estimate

1[(¢r — ¢1) @ m|(T)||- < sup [(¢r — &) (W)l xBx (m)(£;),
ki1 €N

for all subsets T" € S of B N}, and hence, f is m-integrable on the
non-m-null set B N §2; contained in A. O

Theorem 3.2. Let 7 be a completely separated, norm tensor product
topology on X @ Y. Let m : § — Y be a vector measure and
f: Q2 — X a strongly m-measurable function such that m has o-finite
X -semivariation, in X @, Y, on the set {w € Q : f(w) # 0}.

Then f is m-integrable in X®.Y if and only if for each ' € X'
and y' €Y', the scalar function (f,z') is integrable with respect to the
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scalar measure (m,y'), and there exists a measure i : S — X®,Y such
that for each A € S, the equality

(W(A), 2 &) = /A (@), 2') d(m(w), ¢'),

2eX, yevY,

(2)
holds. In this case, p = f @ m.

Proof. If f is m-integrable, then the equality (2) holds for p = f®@m
by Proposition 1.6. In the other direction, suppose that (2) holds.
There exists an increasing sequence of sets Q; € S, 7 = 1,2,...,
such that m has finite X-semivariation on €; and U,Q; = {w €
Q : f(w) # 0}. We may assume, by Lemma 3.1, and the usual
exhaustion argument, [3, Lemma IIL.2.4], that f; = fXq, is m-
integrable for each j = 1,2,.... By (2) and Proposition 1.6 we have
p(ANQ,;) =[f; ®m|(ANQ;) for each j =1,2,... and A € S.

The o-additivity of p ensures that u(A N Q;) — u(A) as j — oo,
uniformly for A € S, and since f; — f pointwise as j — oo, it follows
from Theorem 2.6 that f is m-integrable in X&,Y and p = f ® m.
O

Remark. If X®,Y contains no subspace isomorphic to [, [3,
Corollary 1.4.7], then Equation (2) implies that the set function s : S —
X®,Y is necessarily o-additive; for example, if X®,Y is separable.

In the introduction we mentioned features of Bartle’s approach to
bilinear integration that are not well adapted to integration with
respect to spectral measures. An approach developed by I. Dobrakov
[4-7] largely circumvents these problems. The key is the simple
device of replacing convergence in X-semivariation employed in [1],
by convergence almost everywhere, at the expense of passing from
finitely additive to countably additive vector measures. However,
the approximation of integrable functions is still made with simple
functions based on sets with finite X-semivariation—an aspect we have
managed to avoid in Section 1.

We see how Dobrakov’s integral [4] can also be used to formulate
conditions for the integrability in X&®,Y of an X-valued function. The
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connection with Definition 1.5 will be a by-product. We slightly modify
the presentation of C. Swartz [18].

Let E and F be Banach spaces, and let £L(FE, F') denote the space of
all continuous linear operators from E into F. Assume that L(E, F) is
equipped with the strong operator topology. The (E, F')-semivariation
v(v) + § — [0,00] of an operator valued measure v is defined by
v(v)(A) = sup || Z?Zl v(Bj)x|| for every A € S, where the supremum
is taken over all partitions B; € S, j =1,...,n, of A, and ||zj||g <1
forall j =1,...,n, withn =1,2,.... Let S, be the collection of all
sets A € S such that v(v)(A) < co. Then S, is a é-ring. The indefinite
integral f ¢ dv of an E-valued S-simple function ¢ with respect to v
is defined in the obvious way; it is an F-valued measure A +— f o dv,
AeS.

Let us consider the special case in which F' = C. Then the operator
valued measure v : § — L(E, C) is a finitely additive set function with
values in the dual Banach space E’. Denote by V(v) the variation of
this E’-valued set function v. It then follows from the Hahn-Banach
theorem that V(v) = v(v) on S. It can happen that S, is extremely
small. To show this, let B([0,1]) denote the Borel o-algebra of the
interval [0, 1].

Example 3.3. Let 1 <p <ooand 1/p+1/g=1. Let S = B([0,1]).
The LP([0,1])-valued measure m : A — X4 on S defines a measure
v:S — L(L%([0,1]),C). Since V(v)(A) = oo for every non-Lebesgue-
null set A € S, [3, Example 1.1.16], it follows that S, consists of only
those Lebesgue-null sets in S.

The sometimes pernicious character of semivariation is concealed in
the following definition of Dobrakov [4, Definition 2].

A function f : @ — E is said to be (D) v-integrable if it is
the limit v-almost everywhere of FE-valued S,-simple functions ¢y,
k =1,2,..., with the property that the F-valued indefinite integrals

f¢k dv, k = 1,2,..., are uniformly o-additive on S. In this case,
the 1ntegra1 f fdl/ of f over a set A € § is defined by f fdv =
limg oo f Ok dl/ and the so-defined indefinite integral f f dv S —
F is o-additive by the Vitali-Hahn-Saks theorem.

It is proved in [4, Theorem 2] that this definition of [ f dv makes
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sense, and that the limit DfAfdz/ = limy_, DfA ¢ dv in the Banach
space F' is actually uniform in A € S (a similar argument appears
in Theorem 2.6). A (D) v-integrable function is called v-null if its
indefinite integral is the zero vector measure. The preceding cautionary
example, shows that the only (D) v-integrable functions may be the v-
null functions. We hasten to add that Example 3.3 is excluded in the
setting of Section 1.

Let 7 be a completely separated, norm tensor product topology on
X®Y. To the vector measure m : S — Y there is an associated measure
m:S — L(X,X®,Y) defined by m(A)z = z @ m(A4), A € S. With
the notation above, we have E = X, F = X®,Y and () = Bx(m).
Moreover, the m-null and m-null sets coincide.

Consider the special case in which Sx (m) () is finite. Then a strongly
S-measurable function f : Q — X is m-integrable in X&,Y if and only
if it is (D) 7h-integrable, in which case

(3) (fem)(A)="f fdn, AcS.

This is a consequence of the Vitali-Hahn-Saks theorem.

Given ¢ € (X ®,Y)', the measure m¢; = (om : § — L(X, C) satisfies
that y(m¢) = V(m¢). Let ||-||. denote the dual norm of (X ®, Y)".
Then we have the equality

Bx(m)(A) = S V(me)(A), A€S.

A strongly S-measurable function f : Q@ — X is said to be scalarly (D)
m-integrable if f is (D) m¢-integrable for each ¢ € (X ®, Y)'. In this
case the indefinite integral ° [fdm¢ : & — C is o-additive for every
(e (X®,Y).

If f is (D) 7-integrable, then by composing the approximating
sequence for f with ¢ € (X ®,Y)’, we see that the function f is
necessarily scalarly (D) mc-integrable and the equality b [fdm¢ =
(°[ f dn, ¢) holds on S.

In the case that m has finite X -semivariation, the following result has
been proved by C. Swartz [17, Proposition 2] as an application of the
dominated convergence theorem, [6, Theorem 17].
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Lemma 3.4. Let X and Y be Banach spaces, and suppose that T is
a norm tensor product topology on X ® Y. Let m : S — Y be a vector
measure.

If f : Q — X is a scalarly (D) m-integrable function such that m has
o-finite X -semivariation, in X @, Y, on the set {w € Q: f(w) # 0},
then

(i) for each A € S, the linear functional f; fdm:(— DfAfdmg,
(€ (X®,Y), is an element of (X ®,Y)" = L((X®,Y)',C); and

(ii) the (X®,Y)"-valued set function [~ fdim: A [} fdm, A€ S,
is o-additive with respect to the topology o((X ®.Y)",(X ®,;Y)') on
(X, Y)".

Proof. Let {€2;}72; be an increasing sequence of sets, with finite X-
semivariation in X ®, Y such that their union is {w € Q : f(w) # 0}.
Let A€ S. Let k=1,2,... and By = Q@ N{w € Q : ||[f(w)]x < k}
and A € §. Then we have

1y, £ Al < RV (me) () < kB (m) () IIC]l-,
(e (X®,Y).

Hence, f;ﬁBk fdm e (X ®;Y)". But, as noted above, the indefinite
integral [ fdm¢ is o-additive for each ( € (X ®,Y)’, and hence
the sequence of continuous linear functionals on B, fdm,k=1,2,...,
converge in (X®,Y)", with respect to the topology o ((X®.:Y)", (X ®-
Y)") by the uniform boundedness principle. Hence, the limit of this
sequence must be f;; f drm, which proves statement (i). It is evident
that [* f din is o-additive for the topology o((X ®, Y)", (X ®,Y)'),
because fo dm, is o-additive on S for each ¢ € (X ®,Y)". Thus
statement (ii) holds. O

The next result shows that we are dealing with ‘weak integrals’, in
the fashion of the Pettis integral of a strongly measurable vector valued
function with respect to a scalar measure.

Theorem 3.5. Let X and Y be Banach spaces, and suppose that T
1s a completely separated, norm tensor product topology on X R Y.



538 B. JEFFERIES AND S. OKADA

Suppose that m : § — Y 1is a vector measure. Let m : § —
L(X,X ®;Y) be the measure defined by m(A)x = z @ m(A) for every
x € X and A € S. Let f : Q - X be a strongly m-measurable
function such that m has o-finite X -semivariation, in X ®, Y, on the

set {w € Q: f(w) # 0}.
If f is scalarly (D) m-integrable, then the following statements are
equivalent:

(i) [ fdm € X®,Y for each A € S;

(i) the (X ®,Y)" -valued set function [~ f din : A f; fdm, AeS,
defined in Lemma 3.4 is o-additive with respect to the norm topology of
(X R, Y)Il;

(iii) f is m-integrable in X&,Y;
(iv) f is (D) m-integrable.

If any of the above statements holds, then f* fdm = fo dm = f®m
on S.

Proof. (i) = (ii). This is a consequence of the Orlicz-Pettis lemma
[3, Corollary 1.4.4].

(if) = (iii). By Lemma 3.1, we know that f is locally m-integrable.
Let B € S be a set such that Sx(m)(B) < oo and fXp is m-integrable
in X®,Y. Then fXxp is (D) rm-integrable. By applying (3) to the
function fXp we have

<(fXB ® m)(A)7C> = <DfAfXB dTh,C>

for every ¢ € (X®,Y)’, and hence

/* fXpdm=(fXp®m)(4) € X®,Y,
A

AeS.

(4)

By an exhaustion argument, [3, Lemma III.2.4], there exists an in-
creasing sequence {{2;}92, of sets with finite X-semivariation such
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that fXQJ. is m-integrable in X®,Y and such that the set {we:
f(w) # 0} \ (U2,9;) is m-null. Let A be an arbitrary set in S, and let

fi = fXq, for each j = 1,2,.... By (ii) we have
(5) lim / f; din = / fdin

in (X®,Y)" with respect to the norm topology. Now apply (4) to
B =, j=1,2,..., to conclude that the sequence {f; ® m)(A4)}52,
in X®,Y is convergent in the norm topology 7. Since f; — f, m
almost everywhere, as j — oo, statement (ii) holds and (5) implies
that f®m = [" fdin on S.

(iii) = (iv). Let {¢;}72; be a sequence of X-valued S-simple
functions satisfying the conditions in Definition 1.5. Let {€2;}32; be an
increasing sequence of sets with finite X-semivariation in X®,Y such
that their union is {w € Q : f(w) # 0}. Since lim;_,o(¢; ® m)(A4) =
(f ® m)(A) uniformly for A € S by Theorem 2.6 and since f ® m is
o-additive on §, it follows that

[(¢;Xa,) ®m](A) = (f @ m)(A), AE€S.

im
j—00

Again the Vitali-Hahn-Saks theorem implies that the function f is (D)
m-integrable and

Pf fdm=(fom)(4), AE€S,

because ¢;Xq,; — f, M almost everywhere, and ¢;Xq; is Sp-simple by
the fact that v(2;) = 5(£2;) < oo whenever j =1,2,....

(iv) = (i) Let A € S. Since (°f fdim,¢) = [ fdm; =
([ fdm, () for every ( € (X&,Y)', statement (i) holds. " O

The equivalence of (i), (ii) and (iv) under the assumption that m
possesses finite X-semivariation in X ®, Y has been proved in [17,
Theorem 4].

Corollary 3.6. Let X and Y be Banach spaces, and suppose that
T is a completely separated, norm tensor product topology on X Q Y.
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Let m : § =Y be a measure. Then a function f: Q — Y is (D) m-
integrable if and only if it is m-integrable in X®,Y , (Definition 1.5),
and the set {w € Q: f(w) # 0} has o-finite X -semivariation. If this is
the case, then the integrals so defined are equal.

Proof. The only thing that remains to be proved is that, if f is (D) m-
integrable, then the measure m necessarily has o-finite X-semivariation
on {w € Q: f(w) # 0}. The function f is the pointwise limit m almost
everywhere of X-valued Sy,-simple functions ¢;, j = 1,2.... Since m
has finite X-semivariation on the set A; = {w € Q : ¢;(w) # 0} for
each j = 1,2,..., and since {w € Q: f(w) # 0} \ (Uj2;4;) is m-null,
the conclusion follows. i

4. An example. In this section we consider the Hilbert space
L2([0,1]). Let B([0,1]) denote the Borel o-algebra of [0,1]. The fol-
lowing example shows that the X-semivariation of a Y-valued measure
in X ®, Y may take only the values zero and infinity. The exam-
ple arises by taking the most basic spectral measure with values in
L(L?([0,1])) = L£(L3([0,1]), L?([0,1])) and making it act on the con-
stant function with value one. A Hilbert space inner product, linear in
the first variable and antilinear in the second, will be denoted by (-|-).

Example 4.1. Let m : B([0,1]) — L?([0,1]) be the vector measure
defined by m(B) = xgfor every B € B([0,1]). Then the L2([0,1])-
semivariation of m in the projective tensor product L?([0,1]) ®
L2([0,1]), see [13, Section 41.2], is infinite on any Borel set A with
positive Lebesgue measure |A|.

For, let n be any positive integer and suppose that A;,j =1,...,n,
are pairwise disjoint subsets of A, with Lebesgue measure |A|/n. Let
¢; = (n/|A|)Y?x4, for each j = 1,...,n. Then @ : L*([0,1]) ®
L?([0,1]) — C, defined by ®(f®g) = (f|g) for every f € L%([0,1]) and
every g € L?([0,1]), is continuous but

n

@(Zﬁi’j ®m(Aj)> = Z(ij‘m(Aj)) _ |A|1/2n1/2.

Jj=1

Because n is any positive integer, the L?([0, 1])-semivariation of m in
L?([0,1]) ®, L?([0,1]) is infinite on A.
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Nevertheless, it is natural to consider the integration in L?([0, 1])
®xL?([0,1]) of functions with values in L?([0,1]), with respect to the
L?([0, 1])-valued measure m. Because the L?([0, 1])-semivariation of m
in L2([0,1])®, L?([0, 1]) is infinite, the conditions of Theorem 2.7 do not
hold and bounded operator valued functions need not be integrable, see
Example 4.3.

Remark. The only L2(]0,1])-valued functions which are (D) -
integrable in the tensor product space L*([0,1])®,L?([0,1]), and hence,
m-integrable in the sense of [1], are the null functions.

The space £()(L?([0,1])) of Hilbert-Schmidt operators acting on
L?([0,1]) is endowed with the Hilbert-Schmidt norm, [13, Section
42.4]. Let K denote the isometric isomorphism from L?([0,1]?) onto
LP(L2([0,1])), which sends an element k of L?([0,1]?) to the Hilbert-
Schmidt operator Ty, : L2([0,1]) — L?([0,1]) with kernel k, [19,
Theorem 6.11], that is, (Tx¢)(z) = fol k(z,y)é(y) dy for almost all
z € [0,1] and for all ¢ € L3([0,1]). For all ¢, ¥ € L*([0,1]) and
k € L*(]0,1]?), we have the equality

6)  (KKo|w)=(k|Fov) = / Kz, ) 6P (@) da dy.

[0,1]?

The projective tensor product L2([0,1])®,L%([0,1]) may be iden-
tified with a subspace of L?([0,1]?) in the obvious way. Then the
image £ (L?([0,1])) of L?([0,1))®-L>([0,1]) under K is the space
of nuclear operators on L?([0,1]). The nuclear and trace class op-
erators on the Hilbert space L?([0,1]) are the same. If we equip
LM (L2([0,1])) with the nuclear norm, [13, 42.5.(8)], then K induces an
isometry from L?([0,1])®,L?([0,1]) onto £M)(L?([0,1])). These obser-
vations indicate that for practical reasons the projective tensor product
L%([0,1))®-L?([0, 1]) is a worthy object of study.

The following proposition illustrates our claim that, in the present
context, we have devised the ‘right’ definition of integration of vector
valued functions with respect to vector valued measures in tensor
product spaces. In the following proposition, given a function k €
L?([0,1]%) and a point = € [0,1], let [k(z, -)] denote the equivalence
class in L%([0,1]) containing k(z, -). Moreover, let @ : B([0,1]) —
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L(L?([0,1])) denote the measure given by Q(A)¢ = Xa¢ for every
A € B([0,1]) and ¢ € L?([0,1]). Then @ is a spectral measure; that
is, QAN B) = Q(A)Q(B) for all A, B € B([0,1]), and Q([0, 1]) is the
identity operator.

Proposition 4.2. Letm : B([0,1]) — L2([0, 1]) be the vector measure
given by m(B) = xp, B € B([0,1]). A function f : [0,1] — L?([0,1])
is m-integrable in L?([0,1))®,L?([0,1]) if and only if there exists a
function k : [0,1]2 — C such that

(i) k is the kernel of a trace class operator; and

(ii) the set {z €[0,1] : f(z) = [k(=, -)] in L2([0,1])} is a set of full

If f is m-integrable, then [f ® m|(A) is equal to the equivalence class
in L?([0,1]%) of the function

(z,y) — Xa(2)k(z,y), (z,y) €[0,1]%.

Moreover, the equality K([f ® m|(A)) = Q(A)Kk is valid for each
A € B([0,1]).

Proof. Suppose first that the conditions (i) and (ii) are satisfied.
According to [13, 42.5.(5)], the operator T}, has a representation

Tid =Y n;(¢]9j)hys &€ L*([0,1)),

j=1

where {7;}52, is an absolutely summable scalar sequence, and {g;}72,
and {h;}52, are orthonormal sequences in the Hilbert space L([0,1]).
By the Beppo Levi convergence theorem, 77 [n;] g;(2)] |h;(y)| < oo,
so that we can define {(z,y) = 3272 n;g;(z)h;(y), for almost all
(z,y) € [0,1]2. Then the function ¢ belongs to L2([0,1]?). The
operators T} and T¢, defined by the kernels £ and &, respectively, are
equal. However, L2([0, 1]) ® L?([0, 1]) separates elements of L?([0, 1]?),
so k = ¢ almost everywhere on [0, 1]2.

Given j = 1,2,..., the functions g; and h; may be expressed as
gi = >0y @it and hj = 07 9jy,, both almost everywhere in [0, 1]
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and with respect to the norm topology of L?([0,1]), for some scalar
valued sequences {¢;;}7°, and {9;,}o2; of B([0,1])-simple functions
with 3%, [[¢llz < 2 and Y00, [¥jnll2 < 2, respectively. It then
follows from the condition (ii) that, for almost all z € [0,1], we
have 3279 _1 [Nl |dj1(2)] [9jnll2 < oo, and so the identity f(z) =
> 71n=1M$ji(2)¥;n holds in the norm topology of L*([0,1]).

Because [, (¢;(2)¢jn) ® dm(x) = Xadj ® ¢jn as elements of
L*([0,1]))®L?([0, 1)) for all j,I,n € N and because the triple sequence
{nj[Xadj] ® Pjn}33 ,—; is summable in the projective tensor topology
for every A € S, the function f is m-integrable according to Defini-
tion 1.5 and

/Af ®dm = Z nj[Xadji) @ Yjn, A€ B([0,1]).

jln=1

Conversely, suppose that f is m-integrable in L2([0,1])®,L?([0,1]).
Then the element (f ® m)(A) of L*([0,1])®-L3([0,1]) is expressed as
a function k € £2([0, 1]) so that IC(fO1 f ® dm) is a trace class operator
with kernel k. In terms of the inner product (-|-) of L([0, 1]), we have

(fol f®dm|¢ @) = fol(f\a) d(m|¢) by Equation (1la), and so an
appeal to Equation (6) shows that,

/01(f|$)d(mw)= (K[Alf®dm]¢‘w>

_ /[0 R y)$(y) ¥ (@) dz dy,

for all ¢,v € L?([0,1]). On taking 9 to be the characteristic function
of a Borel set, we see that for each ¢ € L?([0,1]), the equality
(f(z)]|4) = fol k(z,y)é(y) dy holds for almost all z € [0,1]. The
separability of L?([0,1]) ensures that (ii) holds. Finally the formula
K([f ® m](A)) = Q(A)Kk is valid for each A € B([0,1]) by (6). O

Example 4.3. Let m be the vector measure defined in Proposi-
tion 4.2. Let

k(@,y) =D nX(1)/(n1),1/m) () X(1/ (1), /m) (9)

n=1
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for all z,y € [0, 1].

Then fol k(z,y)?dy < 1 for all z € [0,1], but a straightforward
calculation shows that k£ is not the kernel of a trace class operator.
The function f : [0,1] — L%([0,1]) defined by f(z) = [k(z, -)] for all
z € [0,1] is therefore a bounded L?([0, 1])-valued function which is not
m-integrable in L2(]0,1])®, L?([0,1]).
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