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ASYMPTOTIC CONSTANCY OF SOLUTIONS OF
DELAY-DIFFERENTIAL EQUATIONS OF
IMPLICIT TYPE

JULIO GALLARDO AND MANUEL PINTO

ABSTRACT. We study delay-differential equations with
time-state depending lag. We will prove that, under integra-
bility conditions, any solution converges. Reciprocally, for any
possible &, there exists a solution # such that z(t) — &.

1. Introduction. Let b and 7 be two positive reals, I = [0,0)
and B, [0, 2b] the closed ball centered at the origin with radius b < oo,
contained in C".

Consider the functions f and r satisfying the following assumption
Ch.

Cy) f : I x B,[0,20] — C™ is a continuous function satisfying
|f(t,z)] < p(t)|z| where p: I — I is continuous and 7 : I x B,[0,b] —
[0, 7] is another continuous function.

We are interested in the existence and asymptotic behavior of solu-
tions of delay-differential equations of the type

(1) &(t) = f(t,2(t — r(t, (1)) — =(t)).

Define, for t > 0,

my(t) = ‘31|1<pbr(t, z) and  Ap(t) = p(t) - pe - mp(2),

where i, = masee_rq is) and j(s) = p(s) for s > 0, (s) = (0)
for s < 0.
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488 J. GALLARDO AND M. PINTO

By a solution of (1) defined on [ty — 7,7), we mean a function
xz: [to—7,T) — C" for some t; > 0 and ty) < T < oo, which is
continuous on [ty —7,T'), differentiable on [ty, T'), and satisfies |z(t)| < b
and equation (1) for t > t.

In many cases f and r are globally defined and r does not need to
be bounded, for which we will consider equation (1), assuming the
following condition CS.

C5) f is a continuous function defined in whole I x C™, satisfying
|f(t,z)] < p(t) x| where u: I — T is continuous and 7 is a nonnegative,
continuous function, defined on I x C™ (and not necessarily bounded).

In this case, a function z : [ty —7,00) — C™ is a solution of (1) defined
on [tg — 7,00), if sup,>,, r(t,z(t)) < 7, x is continuous on [ty — 7, 00),
differentiable on [tg, 00) and satisfies (1) for ¢ > to.

We will prove that if A\, € L(I), then for any £ € C™ such that

|€] < b, there exists tp big enough and a solution x of (1) defined on
[to — 7, 00) satisfying |z ()| < b for t > ty and

2) a:(t)—§+0</too)\b(s)ds>, t — oo

Conversely, any solution z of (1) defined on [ty — 7,00) such that
|z(t)| < b, satisfies (2) for some & € C™. Moreover, demanding the
additional condition of smallness for ¢ large of

Y(t) = /tt u(s)ds,

—my(t)

this result is valid for solutions x with arbitrary continuous initial
condition. Furthermore, under uniqueness hypothesis any solution x
of Equation (1) initially small enough satisfies formula (2).

These results are also valid, in some cases, for several lags. So we can
consider the equation

(3) &(t) = Zfi(t,m(t—n(t,w(t))) — z(t))

if the lags 1,73, ... ,7, are bounded. We remark that we do not impose
restrictions of order to the lags, see [9, 14, 15, 16].
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Under the hypothesis A\, € L!(I), the same conclusions obtained for
the Equation (1) are also obtained for a system

(4) &(t) = g(t, x(t)) — g(t, x(t —r(t, z(t)))

satisfying |g(t,z) — g(t,y)| < u(t)|z — y| for all ¢, z,y.

This equation appears extensively in models of various phenomena
as growth of population, epidemiology, etc., see [2, 3, 4].

The existence of convergent solutions in delay differential equations
has been studied for systems

#(t) = f(t,2(91(8)), 2(92(1)), - .-, 2(gn(?)))

with several delays under L! integrability of f(-,z), for = fixed. See [1,
6, 7, 8, 9, 12-16]. However, Equation (1) is considered in [3, 5, 6,
7).

Some results along this line were obtained by Gyori [6] and Pituk
[13], studying equation (3) or (4) for r(¢t,z) = r(t). As an example, if
we consider the equation

(5) z(t) = P(t)[z(t) — z(t — r)], r constant,

the condition \, € L(I), implied by wu € LY(I) is similar to
condition P € L?(I) obtained by Atkinson and Haddock [1] to study
the asymptotic constancy of solutions of (5). In this paper the same
conclusion is true for r = r(¢, ) under the same condition or even with
one weaker.

In our work the point is to consider r = r(t, z) sufficiently small, (the
smallness condition is A\, € L'(I)), so that the solutions of the system
(1) behave as constants when ¢ tends to infinity. To our knowledge,
the problem studied here and the results obtained have not appeared
in the literature so far.

2. Main results. Through this section we assume that hypothesis
Cy holds. Let E = C([to — T, +00), C"), the topological vector space of
the continuous functions on [ty — 7, +00) provided by the open-compact
topology. Define C, C E by:
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z € C, if and only if x is constant on [ty — 7, to], |z(t)| < b, for ¢ > tg
and |z(t) — z(¢')] < 2bp(t —t'), for t,¢' > tp, 0 <t —t' < 7.

C,, is a closed and convex set in E. Given { € C", || < b, we define

the function
N:C,—FE

z — N(z),

where

Nﬂﬂ=£—sz@w@—r@wﬁﬁﬁ—wwﬂw
for t > tg
Nz(t) = Nz(ty) forto—7 <t <tp.

N is well defined, since for « € C,,

£ (s,2(s = (s, 2(s))) — 2(s))| < pu(s)|z(s — 7(s,2(s))) — 2(s)]
(6) < 2bu(s)psr (s, 2(s))
< 2bu(s)ps - mp(s) = 2bXp(s),

from where the integral is finite and Nz € E. Now we prove that
1. N(C,) C Cp.
2. N is continuous in C,,, with respect to the open-compact topology.
3. €y is a closed, convex and compact set.

Proving the above, the fixed point theorem of Tychonoff implies that
there exists z € C, satisfying N (z) = z, i.e.,

Mﬂ=£—sz@m@—ﬂaﬂﬁn—ﬂﬁws

for t > tg
z(t) = z(ty), forty—7 <t <ty.

Then
z(t) = f(t,z(t —r(t,z(t))) — z(t)) for t > to,

and by (6) we have z(t) = £ + 0( [, Ay(s) ds), t — occ.
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Lemma 1. If £ € C" and ty > 7 satisfy

€] + 2b/ Ap(s)ds < b,

to

then N'(Cy) C C,.

Proof. Let z € Cy, and y = N(z). By definition of N, y is constant
on [tg — 7,to]. Moreover, on account of (6),

ly(t) < €]+ /too |f(s,2(s —r(s,2(s))) — z(s))| ds
< |§|+2b/oo>\b(s)ds§b

for any t > ty. On the other hand,

y(t) = f(t,2(t, r(t, =) — x(t))
for t > tg, and hence,

[9(®)] < u(@®)](t —r(t,z(t))) — 2(1)]
< p(@)(Jz(t — 7t z())] + |z(8)])
< 2bu(t). o

Lemma 2. With respect to the open-compact topology, the operator
N is continuous in C,,.

Proof. Let {z,}, be a sequence in C),, and let z in C,,. Assume that
z, — x. We must prove that N (z,) — N(z) in the open-compact
topology.

Let [to — 7, L] be fixed, and estimate [N (zy,)(t) — N (z)(t)| for to —7 <
t < L. Since N (z,) and N (z) are constants in [t, — 7, to], we have, for
t Z to — T,

(7) W(zn)(t)=N(z)()] < /toolf(s,w(s — (s, 2(s))) — 2(s))
— f(s:2n(s — (s, 20(s))) — a(s))| ds.
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Let

Az, s) = f(s,z(s — r(s,z(s))) — z(s)),
Ay (z, 8) = Az, s) — Az, ).

We will prove that, for s >ty — 7,

(8) lim Ay (z,s)=0.

n—oo

We will use the uniform continuity of f on [tg, L] x B,[0, 2b], of z on [to—
7, L], of 7 on [tg, L] X B,[0,b] and that x,, — « uniformly on compacts.
Thus, there exists 6 > 0 so that (s,z),(s,2’) € [to, L] x B,[0,2b],
[(s,z) — (s,2')] < § imply |f(s,z) — f(s,2")| < €. Moreover, there
exists &' > 0 so that [t —t'| < ¢, t,t' € [to, L] imply |z(t) —z(t')| < §/3.
Finally, there exists 6” > 0 so that (s,z),(s,z’) € [to, L] x B,[0,b],
[(s,2) — (s,2')] = |z — 2’| < ¢ imply |r(s,z) — 7(s,2')] < §/3
and there exists N so that n > N imply |z,(s) — z(s)| < §/3 and
|zn(s) — z(s)| < ¢" for any s € [to, L].

Then, n > N implies |(s, z,(s)) — (s, 2(s))| = |zn(s) — z(s)| < §” on
[to, L] and |r(s, z,(s)) — r(s,z(s))] < 6’ or

(s = r(s,zn(s))) = (s = r(s,2(s)))| < ¢

on [tg, L]. This implies

|z (s — r(s,2,(5))) — (s —r(s,z(s)))| < /3
since s — r(s,z,(s)) and s — r(s,z(s)) belong to [to — T, L].

Now, using the above, we estimate A, (z,s). If n > N and s € [to, L],
then

|(z(s —r(s,2(s))) = 2(5)) = (2n(s = 7(5,2n(5))) — Tn(s))]
< fa(s — (s, 2(s))) — x(s — 7(s,2n(5)))]
+z(s = 7(s,2n(s))) — 2nls = r(s,2a(s)))|
+ |zn(s) — z(s)]
<6/3+6/3+46/3=0.

So (s,z(s—7r(s,z(s)))—z(s)) and (s, z,(s—7(8s, 2n(8))) —zn(s)) belong
to [to, L] x B,[0,2b] and hence A, (z,s) < e. As [to, L] is arbitrary, (8)
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follows. Then, by the Lebesgue theorem on dominated convergence, we
have

o0

(9) lim A, (z,s)ds =0.

n—0o0 tO

From (7) and (9), we get
N (@) (£) — N (@)(0)] < / " Au(e, s) ds

< / A, (z,8)ds — 0,
to
as n — 0o,

i.e., N(zp) — N(z) uniformly on [tg, +00). O
Lemma 3. C' = C}, is a compact set in E.

Proof. Any = € C is a Lipschitz function on any interval [tg, L]. In
fact, for t,t' € [tg, L], t > t', there exists n € N such that

t'+(n—17<t and t +nr>t.
Define, for i =1,2,... ,n—1; t; =t +ir. So

|2(t) — ()] = |2(t) — x(t, )| + [2(th_1) — z(t; o)
+oo A l2(ty) — 2(t)]
< 2bpe(t — tn_y) + 2bpy (t_y —th_s)
+ A 20 (8 — )
< 2ba(t — tn_y) + 2bf(th_y — th_s)
+ e+ 2bu(t) —t')
< 2ba(t —t'),

where 1 = maXse(to—r,L] |i(s)|-

Since the Lipschitz constant is the same for any z € C, we deduce
that C' is equicontinuous on [tg, L]. Moreover, for any z in C, |z(t)| < b,
for t > tg, in particular on [tg, L].
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So we can apply the Arzela-Ascoli theorem on [tg,t9 + 1] to a
sequence {z,}, in C to obtain a uniformly convergent subsequence
on [ty,to + 1]. Next, to this sequence obtained, we again apply Arzela-
Ascoli theorem on the interval [tg,tp + 2] and we obtain a uniformly
convergent subsequence on [tg,to + 2]. Continuing this process, we
finally get a subsequence {z, },, uniformly convergent on compacts, to
a function z € C. Since E is metrizable, this proves that C' is compact.
[}

We are ready to present the main result in this section.

Theorem 1. Let A\, € L*(I) and assume that hypothesis C; holds.
Then

i) For any £ € C™, |€] < b and tg > 0 such that \§|+2bftooo Ap(s)ds <
b, there exists a solution x of equation (1) defined on [tg — T,+00)
satisfying |z(t)| < b for t > to — 7 and formula (2) holds.

il) Moreover, for any solution x of (1) defined for t > to — 7 such
that |z(t)| < b, for t > ty — T there exists £ € C™, |¢] < b, satisfying
(2)-

Proof. Part i). It follows from Lemmas 1-3 and the Tychonoff fixed
point theorem. To prove part ii), let = be a solution of (1) defined on
[to — T, +00), to > 0, such that |z(t)] < b for t > ty — 7. We remark
that t > ¢ >ty and 0 <t — ¢t <7 imply

(10) |2(t) — @(t')] < 2bue(t - t').
In fact,

o) ~a(t) = [ ale)ds = [ fs.as— r(s,a(s)) ~ o) s,
and

t

|z(t) — 2(t)] < / (s, 2(s — r(s,2(s))) — x(s))| ds

¢

IN

/t, p(s)(|z(s — r(s, 2(s)))| + [(s)]) ds

¢
< / 2bp(s) ds < 2bug(t —t').
tl



ASYMPTOTIC CONSTANCY 495

Thus, (10) implies (6), and we can write:

z(t) = z(to) + t f(s,z(s —r(s,z(s))) — x(s)) ds

_§+0</oo>\b(s)ds>, t — oo,

where & = z(to) + f:)o f(s,z(s — r(s,z(s))) ds, which satisfies || < b,
since z(t) — £ as t — oo and |z(t)| < b for all ¢ >ty — 7. Then the
proof of Theorem 1 is complete. ]

For b > 0, define p, = sup{r(t,z) : (¢t,z) € I x B,[0,b]}. Now we can
establish the following corollary.

Corollary 1. Assuming condition C2 and that py < oo and Ay €
LY(I) for any (respectively some) b > 0, then

i) for any & € C™, respectively |£| < b, there exists a bounded solution
z of (1), respectively with |z(t)| < b, defined on [to — T,00), for to big
enough and an adequate T, respectively T = py, satisfying the asymptotic
formula (2).

il) Any bounded solution x, respectively |z(t) < b of (1), defined on
[to — T, 00) satisfies (2) for some & € C™, respectively |¢| < b.

Proof. i) Let b > 0 such that |{| < b, and we consider f and r
restricted to domain I X B,[0,2b] and I X B,]0,b], respectively. In

this domain, as p, < oo, the delay r is bounded by 7 = p; so that
r: I x Bpl0,b] — [0,7].
As )\ € L'(I), Theorem 1(i) can be applied, and for t, sufficiently

large, we obtain a solution z of (1) defined on [ty — T, 00) satisfying
|z(t)] < b and the asymptotic formulae (2), with £ given above.

ii) Let z be a solution of (1) defined on [ty — 7, 00) and bounded by
b > 0. Proceeding as in i), the conclusion ii) follows from Theorem 1
(ii). O

3. Complete solution to the problem. Now, with an additional
condition, we are able to obtain the above results for any continuous
initial function ¢.
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To state the next theorem, denote by Cj, ; the class formed by the
continuous functions ¢ : [ty — 7,to] — C™ such that |¢(¢)] < b. Let 1
be the first real > ¢y such that

(11) T —mp(m) =ty and s—mp(s) >ty for s>

Let v(t) = f:_mb(t) u(s) ds defined for t > 7.
Take ¢ € C™ and ¢y > 7 satisfying

(12) le| + 2bvyp (1) + 2b/ Ap(8) ds < b,

T1

and E = C([to — T,+00),C") as in Theorem 1. For ¢ € Cy, 5 such that
¢(to) = c, define the set S formed by = € E such that z|p,_, ) = &,
|z(t)| < b for t >ty and

|2(t) — a(t')] < 2buy(t —t')
for t,t' > ty, 0 <t —t' < 7. Now define

T:S —FE
z— T(z) =y,

where
y(t) =c +/t f(s,z(s—r(s,z(s))) —z(s))ds, t>tp

y(t) = ¢(t), to—7 <t <to.

As in Theorem 1, we will prove that 1) T'(S) C S, 2) T is continuous
in S in the open-compact topology and 3) S is closed, convex and
compact. Once this is proved, by the Tychonoff fixed point theorem
there exists € S such that T'(z) = z. Then z satisfies Equations (1)
and (6). So, as A, € L1(I), we get

a:(t)—§+0</too)\b(s)ds>, t — oo

That is, = satisfies formula (2), where

E=ct / " f(s2(s — r(s,2(s))) — 2(s)) ds,
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and |£| < b, according to (12).
Lemma 4. T(S) C S.

Proof. Let x € S and y = T'(z). First, obviously y|js,—r,] = ¢, by
definition of 7', We consider only ¢ > 7. The case ty <t < 7, will be
included. We have

T1

ly(®)] < | +/ |f (s, 2(s = (s, 2(s))) — z(s))| ds

to

+ / (5,25 — (s, 2(5))) — (5))]| ds

< el + 2b/ w(s)ds+ 2b/ w(s)usmp(s) ds

to T1
oo

< el + 2bvyp(m1) + 2b/ Xp(8) ds <b.

T1

This proves that |y(t)| < b for ¢t > ¢9. The rest of the proof follows as
in Lemma 1. O

Lemma 5. T is continuous on S, in the open-compact topology.

The proof uses the same techniques employed in Lemma 2, and the
dominated convergence theorem of Lebesgue is not needed. We omit
the proof.

The proof of the compactness of S is the same as that in Lemma 3.
So, by the Tychonoff theorem, we have

Theorem 2. Let N\, € Li(I), and assume that, for t sufficiently
large, vp(t) is sufficiently small for which ¢ € C™ and ty > T satisfy
(12). Then, for any ¢ € Cyyp with ¢(to) = ¢, the equation (1) has a
solution x satisfying x|jyy—r,) = ¢, |x(t)] < b fort > to — 7 and the
asymptotic formulae (2) for some £ € C", |£] < b.

If we consider now the Equation (1), under the condition Cs, and we
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assume that, for some b > 0, p, < 0o, we can establish the following
corollary.

Corollary 2. Suppose that condition Cs holds and that, for some
b >0, pp < oo and with 7 = py, Ny € L (I). Assume that, for t
sufficiently large, vy (t) is sufficiently small for which ¢ € C™ andto > 7
(12). Then, for any ¢ € Cy,p with ¢(to) = c, the Equation (1) has a
solution x defined on [ty — T,00) satisfying x|[to — T,t0] = ¢, |x(t)| < b
fort > 0 and the asymptotic formula (2), for some £ € C", || < b.

Proof. If we consider r restricted to the domain I x B,[0,b], then r
is bounded by 7 = pp. That is, » : I x B,[0,b] — [0, 7], and thus ),
(which depends on 7) is in L'(I). Restricting now f to I x B,[0,2b],
Theorem 2 can be applied. |

4. Assuming uniqueness of solutions. We consider once more
Equation (1) and the problem of the existence of solutions z, subject
to an initial condition = ¢ over the interval [ty — T, to], being top > 0
a real arbitrary.

We suppose that, for any ¢y and any ¢ € Cy, 5, there exists a unique
solution of (1) such that x|y, _,.] = ¢. Under these hypotheses, and
assuming that v, (¢) is sufficiently small for ¢ large, we will prove that
any solution z of Equation (1) satisfies (2).

Theorem 3. Suppose that N\, € L*(I) and that Equation (1) has a
unique solution for any to > 0 and ¢ € Cyyp. Assume that vy(t) is
small enough for t sufficiently large. Then

i) Every solution u of Equation (1), defined on [so —T,+00), so > 0,
and small enough on [sg — T, o, satisfies (2) for some |€| < b.

ii) For any £ € C™, |£| < b, any solution u of Equation (1) such that

u(t) = € as t — oo, satisfies (2).

Proof. i) Let u be a solution of Equation (1), defined on [sg — T, +00),
(so > 0). Let ty > s¢ be such that ftc;o Ap(8)ds < 1/4 and v, (t) < 1/8
for t > ¢y. By Lemma 7, there exists § > 0 such that ||us,|| < § implies
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|u(t)] < b/4 on [sg — T,tp]. In this way, we have

o0

b b b
|u(to)| + 2bys (1) +2b/ N(s)ds < 7+ 7 +5=b,

T1

and, moreover, as u|j,—r ] € Ctp, Theorem 2 implies that there
exists a solution 2 of Equation (1), with initial function ¢ = u|,—r4.]
satisfying (2). Otherwise, the uniqueness of the solutions of (1), subject
to condition x = ¢ over the interval [ty — 7,to], implies u = x on
[to, +00), and thus u satisfies (2).

ii) Let u be a solution of Equation (1), defined on [sy — T,+00),
(so > 0), such that u(t) — &, t — oo, where |£| < b. Since u(t) — £ as
t — o0, there exist t§ such that |u(t)| < b for all t > t§ — 7. Let tq > ¢
big enough, such that (12) holds with ¢ = u(¢g). Thus, Theorem 2 can
be applied with ¢ = uf;,_r 4], obtaining that there exists a solution
x defined on [ty — T, 00) satisfying the asymptotic formula (2). On the
other hand, as we are assuming uniqueness of solutions subject to an
initial condition in Cy, ;, we have that * = u on [ty — ¢, 00) and thus u
satisfies (2). o

5. Several lags. The extension of the above results to Equation (3)
B(t) =) filt,z(t — ri(t,z)) — x(1))
i=1

is simple.

Let f; : I x B,[0,b] — C", 1 < i < m, be continuous functions
such that |f;(¢,z)| < pi(t)|z| for p; : I — I, 1 < i < m, continuous
functions. For some constant 7 > 0, the lags r; : I x B,[0,b] — [0, 7]
are continuous functions, 1 < ¢ < m.

Define, for 1 <¢ < m and t > 0,

mz(t):sup ri(t,z) and pi(t) = sup [i(s).
|z|<b sE[t—,t]

Moreover, let p; = D%, pit, N(t) = pi(t)pmi(t) and Ny, =
>, Ab(t). From this, we can establish the same result proved for
Equation (1).
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Theorem 4. Let N\, € L*(I). Then

i) For any £ € C™, |€] < b and ¢y > 0 such that \§|+2bftzo Ap(s)ds <
b, there exists a solution z of (3) defined on [ty — T,00) satisfying
|z(t)| < b, fort >ty and the asymptotic formulae (2).

ii) Moreover, for any solution x of (3) defined for t > ty — 7, such
that |z(t)| < b, for t > tog — 7 there exists £ € C", |&| < b, satisfying
(2).

Proof. let E = C([to — 7,00),C™) and C,, C E be the same space
defined in Section 2, now with u; = Z:’;l it The proof is similar to
Theorem 1. ]

Results for Equation (3) corresponding to Theorems 2 and 3 can be
obtained in the same way.

6. Examples.

1. Consider the equation

(13) @(t) = A@)[=(t —r(t, z(t)) — z(t)]
where A(t) is bounded and m;, € L*(I). Here \y(t) = 0(my(t)) € L(),
and we can use our results.

Applying Theorem 1, we have

i) For any £ € C", |£| < b, there exists a solution = of (13), defined
on [ty — 7,00) for ¢y big enough, satisfying |z(¢)| < b for ¢ >ty — 7 and
the asymptotic formula (2).

ii) Any solution z of (13) defined on [tg — T, 00) such that |z(¢)| < b
for t > t satisfies the asymptotic formula (2) for some [£| < b.

The same conclusion is obtained if A(t)|A;] € L*(I) (with A not
necessarily bounded).

2. Consider the equation

&(t) = A@)[z(t —r(t,z(t))) — (t)]

where |A(t)| is nonincreasing, [ |A(t)|?dt < co and r: I x [—b,b] —
[0,7], a continuous function. Then Ap(t) < |A(t — 7)]% - mp(2), i.e.,
Ay € LY(I). So our results are applicable.
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3. In the equation

(14) a(t) = —t[m (t _ M) _ x(t)],

tt+1

fixed b > 0, it is clear that r(¢t,2) < Krq(t) for all (¢t,z) € I x By[0,b]
where K = b*+1 and 71 (t) = 1/(t*+1). Moreover, since \y(t) € L*(I),
Corollary 1 can be applied, and we obtain

i) For any ¢ € C taking to > 0 big enough, there exists a bounded
solution z of (14) defined on [ty — T, 00), with an adequate 7, satisfying
the asymptotic formula (2).

ii) Any bounded solution z of (14), defined on [ty — 7, 00) satisfies
the asymptotic formula (2) for some ¢ € C.

4. Let the equation

(15) i(t) = [a} <t - W)) m(t)r.

1+¢2

For b > 0 and |z| < b, we have that \,(¢t) < b/(1 +¢?) € L*(I). Then
Corollary 1 can be applied and we obtain

i) For any £ € C and ty > 0 big enough, there exists a bounded
solution z of (15), defined on [ty — 7,00), satisfying the asymptotic
formula z(t) = £ + O([,” ds/(1 + s?) as t — oo.

ii) Any bounded solution z of (15), defined on [ty — 7, 00) satisfies
the asymptotic formula z(t) = £+ O([,” ds/(1+ s?) as t — oo for some
£ eC.

5. Consider the equation

1

#(t) = et — 1) —2(0)]

Here M\y(t) = p(t)pemp(t) = (1/(t + 1))(1/t) for t > 1. We have
Ay € L0, +00] and

¢ b ds t+1
'ybt:/ usds:/ :10g<—>
(®) t—mp(t) (#) -1 5+1 t
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satisfies vy (¢) — 0 as t — oco. So Theorem 2 is applicable.
Given ¢ € C and tg > 1 such that

(16) le|] 4+ 2bvp (1) + 2b Ap(8) ds < b,
to+1

then, for any ¢ € Cy, » with ¢(to) = ¢, the problem

: 1
(17) o(t) = ;-1 —2@)] t=to

I(t):¢(t), to*lﬁtﬁto,

has a solution z, continuous on [ty — 1, +00), satisfying |z(t)| < b for
t > to and, for some &,

x(t)=§+o<1og@>, t — oo.

In this particular case, condition (16) becomes |c|+4blog((to+2)/(to+
1)) < b showing explicitly the condition satisfied by t, for which
problem (17) has a solution on [ty — 1, +00).

6. Let
~ oyl 7x2(t)+l .
L s Bs) )
1
+ ol = 1) = (o)

be an equation with two lags, where ry : I x [=b,b] — C is defined by
ri(t,z) = (@2 +1)/(t* + 1) and ro : I x [=b,b] — C by ra(t,z) = 1.

Here A\y(t) = AL(t) + A7 (¢) and A}(t), A(¢) are as in Examples 3 and
5. Thus, A\}(t) < K/(t> + 1) and A3(t) = 1/(t(t + 1)) for t > 1. It
follows that A, € L'(I) and so Theorem 4 can be applied:

i) For any & € C, |{| < b and t( big enough, there exists a solution
z of (18), defined on [ty — 7, +0), (7 = K), satisfying |z(t)| < b and

m(t)—ﬁ—i—O(/tm%), t — oo.
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(We remark that \y(t) = O(1/(1 + t%)).)
ii) Any solution z of (18) such that |z(t)| < b, satisfies

* d
w(t):§+0</t 1+552>’ t — oo,

for some |£] <.
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