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ON THE SIMULTANEOUS BEHAVIOR OF
THE DEPENDENCE COEFFICIENTS ASSOCIATED
WITH THREE MIXING CONDITIONS

RICHARD C. BRADLEY

ABSTRACT. For strictly stationary random sequences,
there are certain basic, elementary restrictions on the simulta-
neous behavior of the dependence coefficients associated with
the strong mixing, p-mixing and “interlaced p-mixing” condi-
tions. Here a class of strictly stationary random sequences is
constructed in order to show that in a certain sense there are
“almost” no other restrictions on the simultaneous behavior
of these dependence coefficients.

1. Introduction. Suppose (€2, F, P) is a probability space. For any
two o-fields A and B C F, define the following measures of dependence

a(A,B) :=sup |P(AN B) — P(A)P(B)|,
(1.1) A€ A, BeB;

p(A, B) := sup |Corr (£, 9)|
where the latter supremum is taken over all pairs of square-integrable
random variables f and g such that f is .A-measurable and g is B-
measurable. The quantity p(A, B) is the “maximal correlation” [13, 15]

between the o-fields A and B. The following inequalities are elementary
and well known:

(1.2) 0 <4a(A,B) <p(A,B) <1.
For any family (W, k € S) of random variables on this probability

space (0, F, P), let o(Wy, k € S) denote the o-field of events generated
by this family.

Suppose X := (X, k € Z) is a strictly stationary sequence of random
variables (on the probability space (2, F, P)). For each positive integer
n, define the following dependence coefficients

a(n) = a(X,n) = a(c(Xg, k <0),0(Xk, k > n));
(1.3) p(n) = p(X,n) := p(o(Xk, k < 0),0(Xk, k = n));
p*(n) =p"(X,n) :=supp(o(Xk, k€ 595),0(Xy,k €T)),
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where this last supremum is taken over all pairs of nonempty disjoint
sets S and T' C Z such that

(1.4) dist (S,T) := min |j — k| > n.
JjeSs
keT

Obviously, by (1.2), one has that, for each positive integer n,

(1.5) 0 <4a(n) < p(n) < p*(n) <1.

Also, obviously, one has that

a(2)
p(2)

a(3)

>a(3) >
>p(3) > s

(1.6) p(1)

and

p* (1) =2 p"(2) 2 p"(3) = -+~

The (strictly stationary) sequence X is “strongly mixing” [25] if
a(n) — 0 as n — oo and “p-mixing” [18] if p(n) — 0 as n — .
The origin of the mixing condition p*(n) — 0 seems hard to trace; that
condition has been popular in the broader context of random fields,
see, e.g., [4, 9, 12, 19, 24, 26].

The purpose of this note is to prove the following theorem:

Theorem 1.1. Suppose (ay,az,as,...), (b1,ba,bs,...) and (cy,cq,
¢s,...) are each a nonincreasing sequence of numbers such that, for
each positive integer n,

(1.7) 0<4da, <b,<c, <1

Suppose (dyi,da,ds,...) is a sequence of positive numbers. Then
there exists (on some probability space) a strictly stationary sequence
(Xk,k € Z) of random variables such that, for each positive integer n,

(18) an < a(n) < ap +dy;
(1.9) p(n) = by;
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and
(1.10) p*(n) = cp.

In [1, Theorem 6], a similar result was proved which had Equations
(1.8) and (1.9) but did not involve the dependence coefficients p*(n).
That sequence will (indirectly) be a major component of the construc-
tion here, but most of it will have to be redone here (in a considerably
simpler manner) in order to keep track of the dependence coefficients
p*(n). Another major component of the construction here will be a
piece (in a substantially extended form) of a construction in [2].

The construction for Theorem 1.1 will be given in Section 3; it
will involve putting together pieces developed in Section 2. The rest
of Section 1 here will be devoted to several remarks connected with
Theorem 1.1.

Remark 1.2. This theorem shows (at least for strictly stationary ran-
dom sequences that are not m-dependent) that “essentially” the only
restrictions on the simultaneous behavior of the dependence coefficients
a(n), p(n) and p*(n) are the basic, elementary inequalities in (1.5) and
(1.6). (See also Remark 1.10.)

Remark 1.3. In Theorem 1.1, for any positive integer n such that
4a, = by, (1.8) can be replaced by the equation «(n) = a,. This is a
consequence of (1.5) (or (1.2)).

Remark 1.4. A careful examination of the random sequence (Xj)
constructed (in Section 3) for Theorem 1.1 will show that it has the
property that the “marginal” o-field o(Xj) is purely nonatomic. Hence,
for a given v > 0, one can have in Theorem 1.1 the additional property
that E|Xo|” < oo and E| X" = oo for alle > 0. (To accomplish this,
one can replace each X}, in Theorem 1.1 by ¢(Xj) where ¢ : R — R is
a well chosen strictly increasing function.)

Remark 1.5. If a strictly stationary random sequence (Xi,k € Z)
satisfies EXg =0, 0 < EXZ < 00, a(n) — 0 as n — oo, and p(1) < 1,
then E(X; + --- + X,)? — o0 as n — oo. This is a well-known
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consequence of a theorem of Leonov given in [17, Theorem 18.2.2].
(It can also be seen from [6, Theorem 2].) This will be important for
the next remark.

Remark 1.6. Theorem 1.1 is motivated by two central limit theorems
of Magda Peligrad, stated together here:

Theorem A (Peligrad). Suppose (Xi,k € Z) is a strictly stationary

2

sequence of random variables such that EXy = 0, EX2 < oo, 02 =

E(Xi1+---+Xp,)? — 00 asn — oo, and a(n) — 0 as n — co. Suppose
also that at least one of the following two conditions holds:
(1) p*(n) <1 for somen >1, or

(2) for some & € (0,1], E|Xo)*T® < oo and R := lim, . p(n)
satisfies

[2(1 + (5(1+ 8)/2) R/ +D) 4 (1 4 §) R/ (2+9))]1/(2+9)

(1.11) ERIRE

<1

Then (X1 + -+ Xpn)/on — N(0,1) in distribution as n — oco.

Theorem A with assumption (1) is taken from [22, Corollary 2.3]
(and is extended in [23] to a weak invariance principle under the same
hypothesis), and with assumption (2) it is taken from [20, Corollary
2.2] (also a weak invariance principle). In the broader context of
random fields, Perera [24, Proposition 2.4] gave a result closely related
to Theorem A with assumption (1).

By Theorem 1.1 (and Remark 1.4), there exists a strictly stationary
random sequence (X) such that (say) EXy = 0, 0 < EX2 < oo,
E|Xo|**? = oo for all § > 0, a(n) ~ (loglogn)~! as n — oo, and
p(n) = p*(n) = .97 for all n > 1. For such a random sequence,
the partial sums are asymptotically normally distributed. This fact
can be derived from Theorem A(1) (and Remark 1.5), but it cannot
be derived either from Theorem A(2) or from standard central limit
theorems under strong mixing or p-mixing with a higher order moment
assumption and/or a mixing rate assumption, see, e.g., [11, Theorem
1, 16, Theorems 2.1 and 2.2, 17, Theorems 18.5.3 and 18.5.4], or the
result of M.I. Gordin [14] discussed in [3, Theorem 2.2].
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By Theorem 1.1 (and Remark 1.4), for a given § € (0,1] and a given
R € (0, 1], there exists a strictly stationary random sequence (X}) such
that (say) EXy = 0, E|X,|**® < 0o, E|Xo|” = oo for all v > 2+,
a(n) ~ (loglogn)~! as n — o0, p(n) = R for all n > 1, and p*(n) = 1
for all n > 1. Thus, Theorem A(2) covers some strictly stationary
sequences that are not covered by Theorem A(1), by the standard
CLT’s in [11, 14, 16, 17] alluded to above, or by an earlier version
of Theorem A(2) in [1, Theorem 5] in which (1.11) was replaced by a
more stringent restriction on R := lim,,_, ., p(n).

Remark 1.7. For a given strictly stationary sequence X := (X, k €
Z), one might consider defining for each positive integer n the depen-
dence coefficient

a*(n) :=supa(o(Xk,k € 5),0(Xk,k €T))

where the supremum is taken over all pairs of nonempty disjoint sets
S and T C Z such that (1.4) holds. However, if X is mixing in the
ergodic-theoretic sense, in particular, if X is strongly mixing, then for
alln > 1,

(1.12) 40 (n) < p*(n) < 2ma*(n)

by (1.2) and [5, Theorem 1 and Remark 3]. Consequently, there is not
much motivation to keep track of both of the mixing coefficients a*(n)
and p*(n).

Remark 1.8. In connection with Remark 1.7, let us mention some
information provided by Igor Zhurbenko [28]. In the 1980’s, some
probabilists (faculty and students) at Moscow State University became
aware of a possible connection, such as in [5], between “strong mixing”
and “p-mixing” types of conditions for random fields. Apparently they
never published anything on that. According to Zhurbenko [28], there
appeared to be a little uncertainty about the statements or proofs.
(The work in [5] was done independently.)

Remark 1.9. It was shown in [4, Theorem 5] that if (say) a strictly
stationary nondegenerate random sequence (X, k € Z) is such that
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EXZI(]Xo| < ¢) is slowly varying as ¢ — oo, EXp = 0, p*(1) < 1 and
p*(n) — 0 as n — oo, then a, = (7/2)Y2E|X; +--- + X,| = oo as
n — o0, and (X7 + -+ -+ X,,)/a, — N(0,1) in distribution as n — co.
After seeing a preprint of that work, Magda Peligrad [21] pointed
out that in that result the assumption p*(n) — 0 can be replaced by
a(n) — 0. Her comment (and also Theorem A(1) in Remark 1.6) were
based partly on (a preprint of) the work of Bryc and Smolenski [8].
The result in [4, Theorem 5], and Peligrad’s [21] comment on it, were
in fact in the broader context of random fields (X, k € Z¢), with the
dependence coefficients defined as in, e.g., [4, 5]. (Also, in that context,
in [4, Theorem 5] the assumption p*(1) < 1 can also be replaced by a
weaker assumption, p'(1) < 1 in the terminology of [7].) For related
results on random fields, see also Miller [19] and Perera [24].

Remark 1.10. Theorem 1.1 (and Remark 1.3) can be extended to
include a particular class of m-dependent sequences. That is, under
the extra restriction that b,, = ¢, for all n > 1, Theorem 1.1 still holds
with the first inequality in (1.7) replaced by 0 < 4a,, thus allowing
b, = ¢, = 0 for some n. The proof of this extra (m-dependent)
case is simply part of the argument in Sections 2 and 3 (essentially
the construction in [1, Theorem 6])—using only Lemmas 2.1-2.5, not
Lemmas 2.6-2.7, parts (1) and (2), not part (3), of Lemmas 3.1-3.2
(with r, = 0 allowed in Lemma 3.2 (1)(2)), and the random sequences
U and V, not W, in the final argument. The details are left to the
reader.

2. Preliminaries. This section consists of seven lemmas. Lemmas
2.1-2.3 give useful basic facts. Then Lemmas 2.4-2.5 give (in a
simplified form) a class of building blocks from the construction in
[1, Theorem 6]. Finally, Lemmas 2.6-2.7 give (in an extended form)
a class of building blocks from the construction in [2]. In Section 3,
these two classes of building blocks will be put together to construct
the random sequence for Theorem 1.1.

Lemma 2.1. Suppose A and B are o-fields. Then

IE(f]B)]l2

B) =su
p(A, B) = sup 17
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where this supremum is taken over all A-measurable random variables

f such that Ef =0 and Ef? < co.

Here 0/0 is interpreted to be 0. This lemma is well known. Its proof
is an elementary exercise, left to the reader.

Lemma 2.2. Suppose A1, Az, As,... and By, Bz, Bs, ... are o-fields,
and the o-fields (A, V B,), n =1,2,3,... are independent. Then

(2.1) a<5_71 An, (7 Bn> < ia(An,Bn),

n=1 n=1

(2.2) p< §7 An, (7 Bn> = sup p(An, By).

Equation (2.1) is taken from [1, Lemma 8]. Equation (2.2) is due to
Csaki and Fischer [10]; a short proof of it is given by Witsenhausen
[27, Theorem 1].

Lemma 2.3. Suppose X and Y are random variables, each of which
takes only two values. Then

(23) a(o(X),0(Y)) = [P(X =2,Y =y) = P(X =) - P(Y = y)|

where x, respectively y, is either one of the two values taken by the
random variable X, respectively Y ; and

(2.4) p(o(X),o(Y)) = |Corr (X, Y)|.

Proof. To prove (2.3), note that in the definition of a(A, B) in (1.1),
one can restrict to events A and B whose probabilities are neither 0
nor 1. Also, the number |P(A N B) — P(A)P(B)| does not change if
either A or B is replaced by its complement. Equation (2.3) follows.
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Equation (2.4) follows from the fact that any function of the random
variable X, respectively Y, can be expressed as an affine function of
X, respectively Y.

Lemma 2.4. Suppose 0 < ¢ < 1 and 0 < r < 1. Suppose V and
W are random variables which take only the values 0 and 1, and their
joint distribution is as follows:

PV=0W=0)=1-7r)(1—-q)*+r(—q),
PV=0,W=1)=(1-r)q(1-q),
P(V=1,W=0)=(1-r)q(l-q),

and
PV=1,W=1)=(1-7r)¢+rq.
Then a(o(V),c(W)) =rq(l — q) and p(a(V),c(W)) =r.

This follows from Lemma 2.3 and simple arithmetic.

In the proofs of Lemmas 2.5 and 2.7 below, the following notation
will be used. If S is a subset of Z and j is any integer, then
S—ji={keZ:j+keS}

Lemma 2.5. Suppose 0 < g <1 and 0 < r < 1. Then there exists
a strictly stationary 1-dependent sequence X := (X, k € Z) of random
variables such that

(2.5) a(X,1) =rq(1 - q),
(2.6) p(X,1) =r,

and

(2.7) P (X,1)=r.

Proof. Let ((Vi,0,Vi1),k € Z) be a sequence of independent, iden-
tically distributed random vectors such that each Vj; takes only the
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values 0 and 1, and for each k € Z the joint distribution of (V. g, Vi.1)
is the same as that of the random vector (V, W) in Lemma 2.4 (with
the same ¢ and 7).

Define the (strictly stationary) random sequence X := (X, k € Z)
as follows. For all k € Z,

Xi = 2Vio+ Vi-1,1-

It is easy to see that, for each k € Z, o(Xx) = 0(Vk,0, Ve—1,1). For
any nonempty set S C Z, one therefore has that

(2.8) o(Xp, k€ 8) =\ a(Vis,l € (S —35)n{0,1})
j€Z
where, for a given j € Z, o(Vj;,1 € (S — j) N{0,1}) is interpreted to
be {2, ¢} if the set (S —j) N {0,1} is empty.
The sequence X is clearly 1-dependent. We just need to verify (2.5),
(2.6) and (2.7).

Suppose S and T are any two nonempty disjoint subsets of Z. By
(2.8) and Lemma 2.2, Equation (2.2),

plo(Xg, k€ S),0(Xy, keT))

(2.9) = j‘ég[ﬂ(a(vj,lal € (§—34)n{0,1}),

o(Viu,l € (T —35)n{0,1}))].
For a given j € Z, the sets S — j and T — j are disjoint, and hence
the term in the brackets in the righthand side of (2.9) is either 0 (if
(S—j4)n{0,1} or (T —j)N{0,1} is empty) or r (if S —j and T — j
each have one of the elements 0,1) by Lemma 2.4. It follows that the
two sides of (2.9) are 0 or r. Hence,

(2.10) P (X,1) <

Now consider the choice of sets S = {...,—-2,—-1,0} and T =
{1,2,3,...}. From (2.9) we have that

2.11)  plo(Xk, k <0),0(X, k = 1)) = p(o(Vo,0),0(Vou)) =7
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by Lemma 2.4 again. Hence, p(X,1) = r, which is (2.6). Now by (2.10)
and (1.5), one has that (2.7) holds as well.

By an argument similar to that of (2.11) but using (say) Lemma 2.2
(Equation (2.1)) and Lemma 2.4, one has that

a(o(Xg, k <0),0(Xg, k> 1)) = a(c(Voo),o(Vo1)) =rg(l —q).

That is, (2.5) holds. This completes the proof of Lemma 2.5. O

Lemma 2.6. Suppose € > 0 and 0 < r < 1. Then there exists a
random vector (X,Y, Z) with the following properties:

(2.12) p(c(X,Y),0(2)) <e,
(2.13) p(o(X),0(Y,Z)) <e,
and

(2.14) p(o(X,2),0(Y)) =r.

Proof. Without loss of generality, we assume 0 < & < 1.

Let ((Vi,Wi),k = 1,2,3,...) be a sequence of independent, iden-
tically distributed random vectors, with each Vj and each W} taking
only the values 1 and —1, such that

(2.15)
PVi=W1=1)=PVi=W,=-1)=(1+¢)/4

and
PVi=1W,=-1)=PWVi=-1,W;=1)=(1-¢)/4

Let T, T* and U be independent random variables, with the random
vector (T, T*,U) being independent of (Vi, W,k > 1), with T and T*
taking only the values 1 and —1 and U taking only the values 0 and 1,
such that

(2.16)
P(T=1)=P(T=-1)=P(T*=1)=P(T* = -1) =1/2
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and
PU=0)=1-r and PU=1)=r.

Define the random sequences

(2.17) V=W, VoT, V5T, . ..)
and

W .= (Wl,WQ, Wg, . )

(Note the role of the random variable T in the definition of the sequence
V)

Claim 1. The random ordered quintuple (V,W,T,T*,U) has the
same distribution (on {—1, 13N x {—1,1}N x {-1,1} x {-1,1} x {0,1})
as the random ordered quintuple (W,V,T,T*,U).

Proof. The random vectors (V,W,T) and (T*,U) are independent.
Hence, it suffices to show that the random ordered triplets (V, W, T)
and (W, V,T) have the same distribution.

From (2.15), it is easy to see that the distribution of the random
vector (V1,W7) is “symmetric,” in the sense that it is the same as the
distribution of the random vector (Wy, V7). In the same sense one also
has that the distribution of the random vector (—V;, Wy) is symmetric.
Hence, for each t € {—1,1}, conditional on the event {T" = ¢}, one has
that the random vectors (V3 T,Wy), k = 1,2,3,... are independent,
identically distributed and symmetric. Hence, for each ¢ € {—1,1},
conditional on the event {I'" = t}, the random ordered pairs (V, W)
and (W, V) have the same distribution on {—1, 1} x {—1,1}N. Hence
the random ordered triplets (V,W,T) and (W,V,T) have the same
distribution. This completes the proof of Claim 1. O

Claim 2. One has that

plo(V),ec(W,T,T",U)) = p(c(W),o(V,T,T*,U)) < &.
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Proof. The first equality here is an elementary consequence of
Claim 1. To prove the latter inequality (... < €), first note that, for
each k > 1,

p(o(Vi),o(Wi)) = [Corr (Vi, Wi)| = e,

by Lemma 2.3 and a simple calculation, and then apply Lemma 2.2
(Equation (2.2)) to the pairs of o-fields (o(W}),0(Vi)), k =1,2,3,...,
({Q, ¢}, 0(T,T*,U)). Thus, Claim 2 holds. O

Next, define the random variable Y by

(2.18) Y =T -I(U=1)+T"-I(U =0).

Claim 3. p(a(V,W),o(Y)) =r.

Proof. By (2.16) and simple arithmetic, the random variable Y takes
just the two values 1 and —1, with probability 1/2 each. In particular,
EY = 0. If f is a o(Y)-measurable random variable with mean 0,
then, by a trivial argument, f = c¢Y for some constant c. Hence, by
Lemma 2.1,

(o (V, W), a(v)) = IEX oV, W))lla.
haE

Clearly ||Y||]2 = 1. Hence, to prove Claim 3, it suffices to show that

(2.19) IEY eV, W)z = 7.

By a simple calculation, EViW; = ¢. By the strong law of large
numbers, n’lzzzl ViW, — € almost s. as n — oo. Hence,
n~t 3 (ViT)Wy — €T almost s. as n — oo. Since ¢ > 0, it follows
that T is equal almost s. to a random variable which is o(V, W)-
measurable. Since (T*,U) is independent of (V, W, T), we have that

EY|o(V,W))=rT as.

by (2.18) and a simple calculation. Since ||T||z = 1, by (2.16), Equation
(2.19) follows. This completes the proof of Claim 3. o
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Now let us complete the proof of Lemma 2.6. Let ¢: {-1,1}N - R
be a bimeasurable isomorphism. (The existence of such a function ¢ is
well known.) Define the random variables X and Z by X := ¢(V) and
Z := ¢(W). Equations (2.12) and (2.13) hold by (2.18) and Claim 2.
Equation (2.14) holds by Claim 3. This completes the proof of Lemma
2.6. |

Lemma 2.7. Suppose 0 < ¢ < r < 1. Then there exists a strictly
stationary 2-dependent sequence X := (X, k € Z) of random variables
such that

(2.20) p(X,1) <e,
(2.21) (X 1) =,
and

(2.22) p*(X,2) <e.

Proof. Applying Lemma 2.6, let ((Wk,0, Wk,1, Wi,2),k € Z) be a
sequence of independent, identically distributed random vectors such
that, for each k € Z,

(223) p(U(Wk,Oa Wk,l)a O-(Wk,Q)) < &,
(2.24) ple(Wio0),0(Wk 1, Wi 2)) <,
and

(2.25) p(oWio, Wi 2),o(Wg1)) =r.

Let A: R X R Xx R — R be a bimeasurable isomorphism. Define the
random sequence X := (X, k € Z) as follows. For all k € Z,

(226) Xk = A(Wk,O;kal,I;Wk72,2)-

Clearly the random sequence X is strictly stationary and 2-dependent.
Our task is to verify (2.20), (2.21) and (2.22).
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First, note that, for any nonempty set S C Z, one has that

o(Xp, ke 8) =\ oWl € (S—3)n{0,1,2}),
JEZ
where o(W;;,1 € (S—3)N{0,1,2}) := {Q, ¢} if the set (S—5)N{0,1,2}
is empty.

Hence, for any two nonempty disjoint sets S,T C Z, by Lemma 2.2
one has that

p(o( Xy, k€ 8),0(Xg, keT))

(2.27) = sup p(o(Wjy, 1 € (S —7)N{0,1,2}),
JEZ

oc(Wji,l e (T —j)n{0,1,2})).

Proof of (2.20). Let S := {...,-2,—1,0} and T := {1,2,3,...}.
Then (2.27) reduces to the equation

p(X, 1) = max{p(c(W_1,0,W_1,1),0(W_12)),
p(c(Wo),a(Wo,1, Wo2))}

The righthand side is < ¢ by (2.23) and (2.24). Thus, (2.20) holds.
]

Proof of (2.21). First note that

p(o(X_1,X1),0(Xo))
p(e(W_1,0,W_12),0(W_11))

by (2.25). Now we need to prove that p*(X,1) < r. Let S and T be
arbitrary fixed nonempty disjoint subsets of Z. To complete the proof
of (2.21), it suffices to prove that p(o(Xy,k € S),0(Xk, k € T)) < r.
By (2.27), it suffices to prove that, for each j € Z,
(2.28)

pleW;,l e (S—35)n{0,1,2}),0(W;,;,l € (T —35)N{0,1,2})) <.
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Suppose j € Z. The sets (S —j)N{0,1,2} and (T'—J)N{0,1,2} are
(possibly empty) disjoint subsets of {0,1,2}. Hence, by (2.23), (2.24),
(2.25) and the hypothesis ¢ < r (in the statement of Lemma 2.7),
Equation (2.28) holds. This completes the proof of (2.21). O

Proof of (2.22). Let S and T be any two nonempty disjoint subsets
of Z such that dist (S,7) > 2. It suffices to prove that p(o(Xy,k €
S),0(Xk,k € T)) < e. By (2.27), it suffices to prove that, for each
J €1,

(2.29)
po (Wil € (S 3)N{0,1,2)),0(Wl € (T~ j)n{0,1,2})) <.

Suppose j € Z. Now dist (S — j,T — j) > 2. Hence, either one of the
two sets (S —3j)N{0,1,2} or (T —j)N{0,1,2} is empty; or else these
two sets are (in either order) {0} and {2}, and (2.29) reduces to the
equation p(o(W,yp),0(W;2)) < e. This last equation holds by (2.23)
(or (2.24)). This completes the proof of (2.22), and of Lemma 2.7. o

3. Proof of Theorem 1.1. Starting with the random sequences
described in Lemmas 2.5 and 2.7 as building blocks, we shall proceed
to the construction of the random sequence for Theorem 1.1. This
construction will require two further intermediate stages, given in
Lemmas 3.1 and 3.2 below.

Lemma 3.1. Suppose n is a positive integer. Then the following
three statements hold.

(1) For any r € (0,1], there exists a strictly stationary n-dependent
random sequence X := (Xy, k € Z) such that

(3.1) p*(X,1) = p(X,n) = 4a(X,n) = 7.

(2) For any r € (0,1] and any € > 0, there exists a strictly stationary
n-dependent random sequence X := (X, k € Z) such that

(3.2) p*(X,1) =p(X,n)=r
and

(3.3) a(X,1) <e.
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3) For any r € (0,1] and any € > 0, there exists a strictly stationary
(2n)-dependent random sequence X := (X, k € Z) such that

(34) p*(X’ ]-) = p*(Xv n) =T,
(3.5) pr(X,n+1) <e,

and

(3.6) p(X,1) <e.

Proof. The proofs of the three statements are similar. We shall first
give the proof of statement (3), and then indicate the changes for the
proofs of (2) and (1), in that order. O

Proof of (3). Applying Lemma 2.7, let W := (Wy, k € Z) be a strictly
stationary 2-dependent random sequence such that

(3.7) prW,1) =,
(3.8) p*(W,2) <e,
and

(3.9) p(W,1) <e.

Let X := (X, k € Z) be a (strictly stationary) random sequence with
the following two properties: (a) Foreachl =0,1,... ,n—1, the random
sequence X := (X;;nk,k € Z) has the same distribution (on RZ)
as the sequence W. (b) These sequences X0 x® X1 are
independent of each other. (Of course, (b) is vacuous if n = 1.)

If S and T are any two nonempty disjoint subsets of Z, then, by (3.7)
and Lemma 2.2,

(3.10) p(o(Xg, k€ S),0(X,keT))

= ogr}lgag{flp(g(Xk’ k€ S,k =1modn),

0(Xg, k € T,k =1 mod n))
<p'(W,1)=r.
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Hence p*(X,1) < 7. On the other hand, p*(X,n) > p*(W,1) = r (by
(3.7) again). From these two facts, (3.4) follows.

By similar arguments, using (3.8) and (3.9) and Lemma 2.2, one has
that p*(X,n + 1) = p*(W,2) < ¢ and p(X,1) = p(W,1) < e. Thus
(3.5) and (3.6) hold, and the proof of statement (3) is complete. o

Proof of (2). Proceed as in the proof of statement (3), but with
W := (Wi, k € Z) chosen via Lemma 2.5 (with ¢ very small there) to
be a strictly stationary 1-dependent random sequence satisfying

(3.11) (W,1) = p(W,1) = 7
and
(3.12) a(W,1) < e/n

(instead of (3.7), (3.8) and (3.9)). Using (3.11) and arguing as in (3.10),
we get p*(X,1) < r; and, on the other hand, p(X,n) > p(W,1) = r.
Equation (3.2) follows. Also, by (3.12) and Lemma 2.2, a(X,1) <
n-a(W,1) <e. Thus, (3.3) holds, and statement (2) is proved. O

Proof of (1). Proceed as in the proof of statement (3), but with
W := (W, k € Z) chosen via Lemma 2.5 (with ¢ = 1/2 there) to be a
strictly stationary 1-dependent random sequence satisfying

(3.13) o (W,1) = p(W, 1) = da(W, 1) =
Then, as in the proof of statement (2), one has that p*(X,1) =
p(X,n) = r. Also, a(X,n) > a(W,1) = r/4 by (3.13). Hence (3.1)

holds by (1.5) (or (1.2)). Thus, statement (1) holds, and the proof of
Lemma 3.1 is complete. ]

Lemma 3.2. Suppose ri,ra,r3,... 1S a nonincreasing sequence of
numbers in (0,1] and e1,€e9,€3,... is a sequence of positive numbers.
Then the following three statements hold:

(1) There exists a strictly stationary random sequence X = (Xy, k €
Z) such that, for each n > 1,

(3.14) p"(X,n) = p(X,n) =4a(X,n) =r,.
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(2) There exists a strictly stationary random sequence X := (Xg, k €
Z) such that, for each n > 1,

(3.15) o (X,m) = p(X, ) =
and
(3.16) a(X,n) < ey,

(3) There exists a strictly stationary random sequence X := (X, k €
Z) such that, for each n > 1,

(317) p*(X, ’I’L) =Tn
and
(3.18) p(X,n) <e,.

Proof. Again, the proofs of the three statements are similar. We shall
first give the proof of statement (3) and then indicate the changes for
the proofs of (1) and (2). O

Proof of (3). Applying Lemma 3.1(3), for each positive integer j, let
X0 .= (X,EJ),k: € Z) be a strictly stationary (2j)-dependent random
sequence such that

(3.19) pr (X, 1) = p* (XY, j) = rj,
(3.20) P (XD j+1) < ryy,

and

(3.21) p(XD 1) < minf{eq, e,... ,69;}-

Further, let these sequences X (1), X2 X®3) . be independent of each
other.
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Let ¢ : RN — R be a bimeasurable isomorphism. Define the (strictly
stationary) random sequence X := (Xj,k € Z) as follows. For all
ke Z,

X= o0, 67, X0,

Of course, for each k € Z, o(X}) = U(Xlgl),X,gZ),X]ES), o)
Suppose n is a positive integer. By Lemma 2.2,

(3.22) p*(X,n) = sup p* (XD n).
j=1

For any j such that 1 < j < n/2, p*(X¥),n) = 0, since X is (25)-
dependent. For any j such that n/2 < j < n,

p*(X(J)an) S p*(X(])v.] + 1) S 25 S Tn

by (3.20) (and the assumption that the sequence r1,79,73,... is non-
increasing). Also, by (3.19), p*(X(™,n) = r,; and, for each j > n + 1,
p*(XU) n) =r; <r,. Hence, by (3.22), Equation (3.17) holds.

Similarly, by Lemma 2.2,
(323) o(X,m) = sup p(X ), ).
j=1
For any j such that 1 < j < n/2, p(X“%,n) = 0. For any j > n/2,

p(XW) n) < g, by (3.21). Hence, (3.18) holds by (3.23). This
completes the proof of statement (3). o

Proof of (1). Proceed as in the proof of statement (3), but (applying
Lemma 3.1(1)) with X&) := (XY k € Z) being a strictly stationary
j-dependent random sequence such that

p (XD 1) = p(XD, j) = 4a(XD, j) =

(instead of (3.19), (3.20) and (3.21)). Then, by (1.5) and an argument
somewhat similar to the proof of statement (3), one obtains, for each
n>1,

da(X,n) < p(X,n) =p*(X,n) =r,

as well as a(X,n) > (X n) = r,/4. Equation (3.14) follows, and
thus statement (1) holds. o
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Proof of (2). Proceed as in the proof of statement (3), but (applying
Lemma 3.1(2)) with X)) := (X,EJ),k € Z) being a strictly stationary
j-dependent random sequence such that

(X 1) = p(XD,j) =1
and
(XYW 1) <277 . min{ey, e9,... 65}
(instead of (3.19), (3.20) and (3.21)). As in the proof of statement (1),

one obtains Equation (3.15) for each n > 1. Also, by Lemma 2.2, for
eachn > 1,

a(X,n) < Za(X(J),n) =0+ Za(X(j),n)
j=1 j=n
<> 270,
j=n
<en

Thus, (3.16) holds. This completes the proof of statement (2), and of
Lemma 3.2. O

Proof of Theorem 1.1. Let the sequences (a,), (bn), (cn) and (d,)
of numbers be as in the statement of Theorem 1.1. Without loss of
generality, assume that, for each n > 1,

(3.24) dy < ap.

Applying Lemma 3.2(1), let U := (Ug, k € Z) be a strictly stationary
random sequence such that, for each n > 1,

(3.25) p"(U,n) = p(U,n) = 4a(U,n) = 4a,,.

Applying Lemma 3.2(2), let V := (Vi, k € Z) be a strictly stationary
random sequence such that, for each n > 1,

(3.26) p*(Vin) = p(V,n) = by,
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and

(3.27) a(Vin) <d,/2.

Applying Lemma 3.2(3), let W := (W, k € Z) be a strictly stationary
random sequence such that, for each n > 1,

(3.28) p(Wyn) =cy
and
(3.29) p(Wyn) < dp.

Further, let these random sequences U,V and W be independent of
each other.

Let ¢ : R x R x R — R be a bimeasurable isomorphism. Define the
(strictly stationary) random sequence X := (X, k € Z) as follows. For
all k € Z,

Xk = ¢(Uk7 Vk7 Wk)
Of course, for each k € Z, 0(Xy) = o (U, Vi, Wg).
By (3.25), Lemma 2.2, (3.27), (3.29) and (1.5), for each n > 1,

an, = a(U,n) < a(X,n)
< a(Un) + a(V, ) + a(W,n)
<ap+d,/2+d,/4
< an +dy,.

Thus, (1.8) holds.

Similarly, by Lemma 2.2, (3.24), (3.25), (3.26), (3.28), (3.29) and
(1.7), for each n > 1,

p(X,n) = max{p(U,n), p(V,n), p(W,n)} = by,
and

p*(X,n) = max{p*(U,n), p*(V,n), p"(Wyn)} = cp.



414 R.C. BRADLEY

Thus, (1.9) and (1.10) hold. This completes the proof of Theorem 1.1.
]

REFERENCES

1. R.C. Bradley, Central limit theorems under weak dependence, J. Multivariate
Anal. 11 (1981), 1-16.

2. A bilaterally deterministic, p-mixzing stationary random sequence,
Trans. Amer, Math. Soc. 204 (1986), 233—241.

3. , On some results of M.I. Gordin: A clarification of a misunderstanding,
J. Theoret. Probab. 1 (1988), 115-119.

4. , On the spectral density and asymptotic normality of weakly dependent
random fields, J. Theoret. Probab. 5 (1992), 355-373.

5. ———, FEquivalent mizing conditions for random fields, Ann. Probab. 21
(1993), 1921 1926.

6. , On the dissipation of partial sums from a stationary strongly mizing

sequence, Stochastlc Process. Appl. 54 (1994), 281-290.

7. R.C. Bradley and S.A. Utev, On second order properties of mizing random
sequences and random fields, in Probability theory and mathematical statistics (B.
Grigelionis, J. Kubilius, H. Pragarauskas and V. Statulevicius, eds.), VSP Science
Publishers, Utrecht, and TEV Publishers Service Group, Vilinius, 1994.

8. W. Bryc and W. Smolenski, Moment conditions for almost sure convergence of
weakly correlated random variables, Proc. Amer. Math. Soc. 119 (1993), 629-635.

9. A. Bulinskii, Limit theorems under weak dependence conditions, Moscow Univ.
Press, Moscow, 1989.

10. P. Csaki and J. Fischer, On the general notion of mazimal correlation, Magyar
Tud. Akad. mat. Kutato Int. Kozl. 8 (1963), 27-51.

11. P. Doukhan, P. Massart and E. Rio, The functional central limit theorem for
strongly mizing processes, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), 63—82.

12. V.F. Gaposhkin, Moment bounds for integrals of p-mizing fields, Theory
Probab. Appl. 36 (1991), 249-260.

13. H. Gebelein, Das statistische Problem der Korrelation als Variations- und
FEigenwert-problem und sein Zusammenhang mit der Ausgleichungsrechnung, Z.

Angew. Math. Mech. 21 (1941), 364-379.

14. M.I. Gordin, Central limit theorems for stationary processes without the as-
sumption of finite variance, Abstracts of Communications, T. 1: A-K, International
Conference on Probability Theory and Mathematical Statistics, June 25-30, 1973,
Vilnius (in Russian).

15. H.O. Hirschfeld, A connection between correlation and contingency, Proc.
Camb. Phil. Soc. 31 (1935), 520-524.

16. I.A. Ibragimov, A note on the central limit theorem for dependent random
variables, Theory Probab. Appl. 20 (1975), 135-141.

17. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of
Random Variables, Wolters-Noordhoff, Groningen, 1971.



DEPENDENCE COEFFICIENTS 415

18. A.N. Kolmogorov and Yu.A. Rozanov, On strong mizing conditions for
stationary Gaussian processes, Theory Probab. Appl. 5 (1960), 204-208.

19. C. Miller, Three theorems on p*-mizing random fields, J. Theoret. Probab.
7 (1994), 867-882.

20. M. Peligrad, Invariance principles under weak dependence, J. Multivariate
Anal. 19 (1986), 299-310.

21.

22, , On the asymptotic normality of sequences of weak dependent random
variables, J. Theoret. Probab. 9 (1996), 703-715.

23. , Mazimum of partial sums and an invariance principle for a class of
weak dependent random variables, (1998).

, private communication, 1992.

24. G. Perera, Geometry of Z% and the central limit theorem for weakly dependent
random fields, J. Theoret. Probab. 10 (1997), 581-603.

25. M. Rosenblatt, A central limit theorem and a strong mizing condition, Proc.
Nat. Acad. Sci., U.S.A. 42 (1956), 43-47.

26.

27. H.S. Witsenhausen, On sequences of pairs of dependent random variables,
SIAM J. Appl. Math. 28 (1975), 100-113.

28. I.G. Zhurbenko, private communication, 1995.

, Stationary sequences and random fields, Birkhauser, Boston, 1985.

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, IN 47405
E-mail address: bradleyr@indiana.edu



