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APPROXIMATIONS OF UPPER SEMICONTINUOUS
MAPS ON PARACOMPACT SPACES

DUSAN REPOVS, PAVEL V. SEMENOV AND EVGENIJ V. SCEPIN

ABSTRACT. We prove theorems on graphic approxima-
tions of upper semi-continuous mappings which are natu-
ral analogues of Michael’s selection theorems for lower semi-
continuous mappings. Our convex-valued approximation the-
orem gives a generalization of Cellina’s theorem in the sense
that we omit the metrizability hypothesis. We also introduce a
weakening of upper semi-continuity, the so-called quasi upper
semi-continuity, and we show that approximation theorems
are also valid for the class of quasi upper semi-continuous map-
pings. We obtain a finite-dimensional version of Kakutani’s
fixed-point theorem as a corollary of our finite-dimensional
approximation theorem.

1. Introduction. In the theory of continuous selections of multi-
valued lower semi-continuous maps, the key results are the following
four theorems of E. Michael: the convez-valued, the 0-dimensional, the
compact-valued and the finite-dimensional selection theorem. Recall
that a selection of a multi-valued map F : X — Y is a (multi-valued)
map G : X — Y such that, for every z € X, G(x) C F(z). The four
theorems are summarized in Table 1.

In general, continuous selections do not exist for upper semi-continu-
ous maps. Nevertheless, it makes sense to ask in this case about the
existence of approximations of the given upper semi-continuous map
F by a map whose graph is “close” to the graph of the map F. The
following is known to be true [1-4], [12]:

Received by the editors on November 11, 1995, and in revised form on February
10, 1997.

The first author supported in part by the Ministry of Science and Technology of
the Republic of Slovenia, grant No. J1-7039-0101-95.

The second and third authors supported in part by the Russian Basic Research
Foundation grant No. 96-01-01166A.

AMS (MOS) Mathematics Subject Classifications (1991 Revision). Primary
54C60, 54C65, Secondary 54C10, 54F35.

Key words and phrases. Upper (lower) semi-continuous multivalued maps,
selections, approximation, paracompact spaces.

Copyright ©1998 Rocky Mountain Mathematics Consortium

1089



1090 D. REPOVS, P.V. SEMENOV AND E.V. SCEPIN

Theorem 1.1. Let F : X — Y be an upper semi-continuous map of
a metric space (X, p) into a normed space (Y, || ||) with convex values.
Then, for every ¢ > 0, there exists a continuous single-valued map
f:X =Y such that, for every point p = (x,y) of the graph T of the
map f, there exists a point ¢ = (z',y') of the graph T'r of the map F
such that p(z,z') < e and ||y —y'|| <e.

TABLE 1.
Type of the Hypotheses on | Hypotheses on Hypotheses on | Conclusions
selection X Y F(z) concerning the
theorem existence of

selections

convez-valued

theorem

paracompact

space

Banach space

closed convex

0-dimensional

0-dimensional

theorem paracompact
space

compact-valued | paracompact

theorem space

finite-dimen-
sional

theorem

(n + 1)-dimen-
sional
paracompact

space

completely

metrizable space

single-valued
continuous

selection

closed compact-valued
semi-continuous
selections

closed single-valued

n-connected,
{F(z)} equi-
n-connected

continuous

selection

This theorem is an analogue of the Michael convez-valued selection
theorem, although not completely since the hypothesis on X is stronger.
It turns out that Theorem 1.1 can be generalized to the case when X
is paracompact and Y is a (nonmetrizable) topological vector space.
Moreover, the same kind of analogous theorems also exist for other
selection theorems mentioned above. In order to state them, we must
first introduce a generalized concept of an e-approximation of a multi-
valued map.

Definition 1.2. Let F : X — Y be a multi-valued map between
topological spaces X and Y, the values F'(z) are nonempty, I'r C X xY
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the graph of the map F' and a some open cover of I'p in X X Y. A
multi-valued map G : X — Y is said to be an a-approzimation of F if
for every point p € ', there exists a point ¢ € I'rp such that p and ¢
lie in some common element of the cover a.

If X and Y are metric spaces and the cover « consists of the Cartesian
products of £ /2-balls in X and Y, then the a-approximation in the sense
of Definition 1.2 above is the usual e-approximation. Hereafter, open
coverings of the space X XY which consist of the Cartesian products of
the elements of the cover €2 of X and the cover A of Y, will be denoted
by © x A. In the case when Y is a topological vector space and V is
an open neighborhood of the origin O € Y, we shall denote the cover
Qx{y+V}yey, by @ x V.

Theorem 1.3. Let F': X — Y be an upper semi-continuous convez-
valued map of a paracompact space X into a topological vector space Y .
Then, for every open cover  of X and every convex open neighborhood
V CY of O €Y, there exists a continuous single-valued (2 x V)-
approzimation of the map F.

Analogs of zero-dimensional and compact-valued selection theorems
are true for multi-valued mappings without continuity-type restrictions.

Theorem 1.4. Let F : X — Y be a mapping of a 0-dimensional
paracompact space X into a topological space Y. Then, for every cover
Q of X, there exists a continuous single-valued mapping f : X — Y
such that the graph of f is a subset of the union U{U x F(U) | U € Q}.

Theorem 1.5. Let f: X — Y be a mapping of a paracompact space
X into a topological space Y. Then, for every cover Q of X there exists
a compact-valued upper semi-continuous mapping G : X — Y and a
compact-valued lower semi-continuous selection H of G such that the
graphs of G and H are subsets of the union U{U x F(U) | U € Q}.

We shall prove the analogue of the finite-dimensional selection theo-
rem with some additional assumptions on the mapping F', namely, the
*-paracompactness of F.
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Theorem 1.6. Let F : X — Y be an upper semi-continuous map of
an (n + 1)-dimensional paracompact space X into a topological space
Y, and suppose that all values F(z), x € X, are UV™ subsets of Y.
Let F be a *-paracompact mapping. Then, for every cover 2 of X and
for every cover A of Y, there exists a continuous single-valued (2 x A)-
approzrimation of the map F'.

We recall, see [11], that A is said to be a UV™-subset of Y if, for
every open U D A, there exists an open V such that U DV D A and
every continuous mapping g : S¥ — V can be extended to a continuous
mapping § : B¥*! — U. Here B**! denotes the (k + 1)-dimensional
closed ball in R™*! and S* denotes its boundary, ¥ < n. (A is a
PC™-subset in Y in terminology of [2].)

As usual, we denote F_(Z) = {x € X | F(z) C Z}, and the upper
semi-continuity of F' means that F_;(U) is open for every open U.

Definition 1.7. Let F': X — Y be an upper semi-continuous multi-
valued mapping. Then

(a) A family A = {L,},cr of open subsets of Y is said to be
an F-covering if the sets F_;(L,) are nonempty for all v € I' and
F_1(A) = {F_1(Ly)}yer is a covering of X;

(b) F is said to be #-paracompact if, for every F-covering A and
for every star-refinement (2 of the covering F_;(A) there exists an F-

covering A such that Q is a refinement of F_;(A) and F_;(A) is a
star-refinement of F_;(A).

A simple example of a *-paracompact mapping is an open upper
semi-continuous mapping F, i.e., a mapping with the property that
the image of every open subset of X is an open subset of Y. In fact,
one can then put A = F(12) in the definition 1.7 (b). As a special case,
one can consider the quotient mapping of a continuous decomposition
into UV™ subsets. Another example is provided by any upper semi-
continuous mapping theorem between compact metric spaces X and Y
compact values.

Some remarks concerning the proofs of these theorems. The proof
of Theorem 1.3 is similar to that of Theorem 1.1; the only difference
is due to the fact that one must substitute the triangle inequality
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by the star-refinement of the necessary locally finite covers. Similar
substitution was made, for example, in [17]. But here we in fact prove
Theorem 1.3 for the class of quasi upper semi-continuous mappings,
see Definition 1.9 and Theorem 1.10 below. Theorem 1.5 follows from
Theorem 1.4 by an application of our earlier theorem [18].

Theorem 1.8. For every paracompact space X there exists a 0-
dimensional paracompact space Z and a perfect inductively open map
m:7Z — X of Z onto X.

Here the perfectness of the map m implies the compactness of the
values and the upper semi-continuity of its inverse m~! : X — Z,
whereas the inductive openness of m is equivalent to the existence of
a lower semi-continuous compact-valued selection of the inverse map
m~1: X — Z. In fact, the surjection m : Z — X is also a Milyutin
map, and this fact was used in [18] for a proof that the convex-valued
selection theorem follows from the 0-dimensional selection theorem.
Nevertheless, in the case of the upper semi-continuous maps which we
have, one cannot derive Theorem 1.3 from Theorem 1.4 in such a way,
because the Milyutin property uses essentially the integration of vector-
valued functions.

We prove Theorem 1.6 by induction on skeletons of the nerve N of
some suitable covering of the domain X. So, a desired approximation
f is constructed as the composition of a canonical mapping from X
into the nerve N and a mapping from N into Y. In [5, 2, 6], such an
approximation f was obtained in the case n = oo via a technique of
domination of X by finite polyhedra.

Finally, we introduce the notion of quasi upper semi-continuous
mappings which extends the notion of upper semi-continuity.

Definition 1.9. Let F : X — Y be a multi-valued mapping from
a topological space X into a metric space (Y,p), respectively into
a topological vector space Y. We say that F' is quasi upper semi-
continuous, g.u.s.c., at a point x € X if, for each of its neighborhoods
W (z) and for each £ > 0, respectively for each convex neighborhood
V' of the origin O € Y, there exists a point ¢(z) € W(x) such that
z € Int F_1(B(F(q(z)),e)), respectively z € Int F_; (F(q(z)) + V)). F
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is said to be a quast upper semi-continuous mapping if it is quasi upper
semi-continuous at each point of its domain.

As usual, we denote the open e-neighborhood of the set F'(¢(x)) in
the metric space (Y, p) in this definition by B(F(¢(x)),¢). Clearly each
upper semi-continuous mapping F' is a quasi upper semi-continuous
mapping. It suffices to put g(z) = x. The converse is false. Indeed, let
A be a dense subset of X with X\ A # &, and let, for a fixed yo € Y,

_ J{w} ze X\A4,
F(x)_{YO z € A.

Then F' is upper semi-continuous at points of A and F' is quasi upper
semi-continuous (and non upper semi-continuous) at points of X\ A.

Theorem 1.10. Theorems 1.3 and 1.6 also hold if, instead of upper
semicontinuity of the mapping F', one assumes the quasi upper semi-
continuity of F.

Theorem 1.11. Ifn = 0, i.e., if X is one-dimensional para-
compactum, then Theorem 1.6 is true without the assumption of -
paracompactness of F'.

2. Proofs. For the proofs of main results, we shall need the following
properties of regular spaces [10, pp. 156, 171].

Proposition 2.1. Let X be a regular space. Then the following
statements are equivalent.

a) X is paracompact,

b) Every open cover Q of X is unique, i.e., there exists in the diagonal
of X x X an open neighborhood A such that the covering of X by the
sets A(z) = {y | (z,y) € A} is finer than Q, and

c) For every open cover Q2 of X there exists an open star-refinement

V.

Proof of Theorem 1.10. We first prove a generalization of Theo-
rem 1.3. Solet F': X — Y be a quasi upper semi-continuous convex-
valued mapping from a paracompact space X into a topological vector
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space Y. Let 2 be an open covering of X, and let V be a convex neigh-
borhood of the origin O € Y. For each z € X, fix an arbitrary element
W (x) € Q such that z € W(z).

(1) Using the q.u.s.c. of F, find for each € X a point ¢(z) € W(z)
and a neighborhood U(x) C W(x) such that F(z) C F(g(x)) + V for
all z € U(z).

(2) Find a unique covering {G(z)},cx which is a star refinement of
the covering {U(z)},ex of X.

(3) Using q.u.s.c. of F once more, find for each z € X a point ¢'(z) €
G(z) and a neighborhood U’ (z) C G(z) such that F(z) C F(¢'(z))+V
for all z € U'(z).

(4) Let {eq}aca be a locally finite continuous partition of unity
inscribed into the covering {U’(z)},cx of X. For each @ € A we can
choose =, € X such that supp e, C U'(z,), and we fix yo € F(¢'(za)),
and

(5) Finally, put f(z) = . eq(2)ys where the sum is taken over all
a € A with e, (z) > 0.

Let us check that f is the desired (Q x V)-approximation of F. For
a fixed zy € X we have that
xo € St {Zo, {supp ea}aeA} C St {m07 {Ul(x)}zeX}
C St{zo, {G(x)}sex} CU(z") C W(z')
for some z' € X. According to the Definition 1.9 of quasi upper semi-

continuity, we have that ¢(z') € W(z'). Hence the points zy and ¢(z')
are ()-close.

Analogously, if e (z9) > 0, then 2y € G(z,) and ¢'(z4) € G(z4), see
(3) above. Hence, ¢'(z4) € St {zo, {G(z)}rex} C U(z'). Therefore,

Ya € F(d'(za)) C Flq(2') +V

ie, Yo —vo € V for some v, € F(g(z')). But then, for v =
> eq(xo)ve € F(q(z')), we have that

f@o) —v =" ea(@0)(Ya — va) € V-

Hence, the point (zo, f(zo)) € Ty is (2 x V)-close to the point
(q(z"),v) € Tp. O
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Proof of Theorem 1.4. Let {Vz}gep be a disjoint open cover of X
which refines the cover Q. Choose yg € F (V) for each 8 € B and
define f: X =Y by flv, = yz. O

Proof of Theorem 1.5. Given a paracompact space X, let m: Z — X
be a perfect, inductively open map of a 0-dimensional paracompact
space Z onto X. The existence of m and Z is guaranteed by Theo-
rem 1.8. Apply Theorem 1.4 for the map Fom : Z — Y, the open
cover m~1(Q) of Z.

Let ¢ : Z — Y be a single-valued continuous mapping with the graph
', being a subset of the union U{V x (F om)(V) |V = m~*(U) for
some U € Q}. Set G = pom ™! and H = po S, where S is a compact-
valued lower semi-continuous selection of the upper semi-continuous
mapm~': X = Z.

Let us verify that the graph I'¢ of G is a subset of the union
U{U x F(U) | U € Q}. In fact, we have (z,y) € g =y € G(z) =y €
p(m Ya)) = (z,y) €T, for some z e m™ 1 C Z = 2 € m }(U) and
y € (Fom)(m™Y(U)) for some U € Q = z =m(z) € m(m~(U)) =U
and y € F(U) = (z,y) € U x F(U). The compactness of values of G
and H and their semi-continuity is obvious. O

Second proof of Theorem 1.5 (E. Michael). Let {Vz}gcp be a
locally finite, open star-refinement of 2. Choose yg € F(Vp) for
each f € B and define H and G by H(z) = {yg | « € Vg} and
G(z) = {yp | « € closure (V3)}. Note that in this proof H and G are
finite-valued mappings. ]

Proof of Theorem 1.6. We denote by A > B the fact that the open

covering B refines the open covering A. We denote by A < B the fact
that B is a star-refinement of A. Also, for any two F-coverings A and

B we denote by A < B the fact that for every B € B there exists A € A
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such that the inclusion B C A is null-homotopic in all dimensions < n.
Note that the assumption F(z) € UV™(Y), # € X, implies that for

every F-covering A there exists an F-covering B such that A S B. We
shall now define a sequence

~ n ~ n n ~
An+1>An>An>An71>"'>A1>A0

of F-coverings in the space Y and a sequence

Vast SUn SV SUp 1> >U > Vo S W

of open coverings of the paracompact space X.

We define the F-covering A, 11 as {St (F(w),A) | w € Q} and V, 41
as the covering of X consisting of all nonempty intersections of

and F_1(A,41). Then we find an arbitrary F-covering A, such that

An+1 S A, and we let U,, be a covering of X which refines V,,;; and
F_1(A,,) simultaneously.

Due to the paracompactness of X, we can choose a star-refinement
Q,, of the covering U,, and use *-paracompactness of the mapping F' to
find an F-covering A, such that Q,, refines F,l(An) and F,l([&n) =V,
is a star-refinement of U,,. Next, we repeat this procedure, starting
from A,. At the end of this procedure we find an open covering W of
X which is a locally finite star-refinement of Vy of order n + 2. Let
W = {Ws}aca and N = N(W) be the nerve of the covering W. We
define an (2 x A)-approximation f : X — Y of the mapping F as the
composition g o p of the canonical mapping p : X — N(W) and some
suitable mapping g : N'(W) — Y. Let N = N'#(W) be the i-skeleton of
N. By induction on i € {0,1,... ,n+ 1}, we shall define the mappings
gi : N* — Y such that g;,; is an extension of g; and such that, for
every i-dimensional simplex A € N with vertices Way, Way, - -+ , Way,
there exists an element f/’A S A,-H such that

(a;) Ui_gWa, C F_y(Li) and

(b (&) € L.

To begin the inductive proof, let i = 0. Here N = A and, for
every a € A we simply define ¢°() to be any element of F(W,). We

have Vo > W. Thus, W, C V2 for some V? € Vy. By construction,
V9 =F 4(L%), for some LY € Ag. Hence, we obtain that
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(ap) Wo C VO = F_1(LY) and

(bo) 9°(a) € F(W,) C F(V?) c LO.

Suppose now inductively that the mappings ¢°,g',...,g" have al-
ready been constructed with properties (ap),---,(ai), (bo),---,(b;).

We now define a mapping ¢g'*! : A*! — Y over every (i + 1)-
dimensional simplex A of the nerve A/. More precisely, we define g’Jrl
as an extension of the mapping g ‘lan, where A is the boundary of A,
and we set g't!|a = g, for every (i + 1)-simplex A.

Let Wy, ... , Wa,,, be all the vertices of A, and let V; be the face of

A with vertices Wags oo s Way o F\M{Wa, }- Applylng (al) to each V;,
j€{0,1,...,i+1}, we conclude that

i+1
@ # () Wy C |J Wa, €V,
k=0 k=0
k#j
z+1

for some VV € Vi. Hence, N;Z i, # @. Due to the property

Uit S Vi, we can find U“rl which contains the union UZ+1 Vv
Applying (b;) to each V;, j € {0,1,...,i+ 1}, we conclude that

(Dlv ) UF (Ve,) CF<UVV ) C F(ULM).

By construction, F(UL™) is a subset of an element of the covering

Az+1 Applying the assumption Az+1 < A;+1 we can find an extension
gA A — LHl of the mapping g*|ga for some L’: € Az+17 i.e., the
property (b,+1) holds. Finally,

i+1 i+1
Uwa, c W, UL c Fou(LE),
j=0 j=0

i.e., (a;4+1) holds, too.

Then the (n+1)th star of the point z under “W” lies in some element
w of the covering  and f(z) = ¢g*(p(x)) C LK c L™ = St (F(w),A).
Hence, for some 2’ € w and 3y’ € F(2') we have that f(z) and y’ are
A-close. O



UPPER SEMICONTINUOUS MAPS 1099

Proof of Theorem 1.11. Here we use UV *-property in some “centered”
sense. Precisely, let A = {A(y)}yey and, for every z € X, let
V(z) = U{Ay) | y € F(z)} be an open neighborhood of F(z).
Find an open neighborhood of F(z),V(z) D Vh(z) DO F(x) where
inclusion V(z) O V() is null-homotopic in dimension 0. Finally,
let U = {Us}aca be a locally finite open covering of X of order 1
which star-refines the covering {F_1(Vo(z)) N W (z)}zex. (We assume
that Q = {W(2)}zex.) As in the proof of the previous theorem, we
construct a mapping g : N'(U) — Y where N (U) = N =1(U) is the nerve
of the covering U. For a € N°(U) we define g(a) to be an element of
F(U,). For [a,B] € N (U) we have that & # U, N U C U, UUs C
F_1(Up(zap)) N W(zapg) for some z,53 € X. Hence, {g(a),g(8)} C
Vo(zag), and we can find a path gog C V(zap) with ends g(o) and
g(B). So, let f = gop where p : X — N'(U) is the canonical
mapping, and let x € X. Then, for some «a,83 € A we have that
£(@) = 9(p(@)) € 9([B) = gas © V(wag) = 1A®) | y € Flaap)}.
Hence, f(z) is A-close to a point y € F(z.3). But we also have that
z €Uy NUg C W(zap), i.e., = is Q-close to zqga. O

3. Epilogue. The construction in the proof of Theorem 1.11 does
not work in dimension 2 because for the 2-simplex [, 3, 7] in N2(U) the
paths gag, gavy, gsy are A-close to values which are in general different,
F(zag), F(®ay), F(z3y) and an extension from dimension 1 is thus not
possible.

As a standard application of Theorem 1.6, we get the following finite-
dimensional version of the Kakutani fixed-point theorem [9], see also
[8, Theorem 1.2].

Corollary 3.1. Let X be a compact metric AR with dim X < n-+1,
and let F be an upper semi-continuous mapping of X into itself with
closed UV™ values. Then there exists © € X such that © € F(z).

The notion of quasi upper semi-continuity is derived from the notion
of upper semi-continuity via the analogy with the derivative of quasi
lower semi-continuity from the lower semi-continuity of multivalued
mappings, see [7, 16].
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Question 3.2. Is the paracompactness of the domain a necessary
assumption in Theorem 1.37 More precisely, let X be a topological
space such that each upper semi-continuous mapping F' : X — Y into
a topological vector space Y admits continuous single-valued (2 x V)-
approximations. Is then X always a paracompact space?

Question 3.3. Is it possible to prove a theorem which unifies the
convex-valued Theorem 1.3 and the zero-dimensional Theorem 1.4 in
the spirit of the union of the convex-valued and the zero-dimensional
selection theorems for lower semi-continuous mappings, see [15]7
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