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SOME QUESTIONS AND CONJECTURES
IN THE THEORY OF UNIVALENT FUNCTIONS

JIAN-LIN LI AND H.M. SRIVASTAVA

ABSTRACT. The main object of this paper is first to
answer a question of Campbell and Singh in the affirmative,
and then to show that Komatu’s conjecture and Thomas’s
conjecture are false at least in some cases.

1. Introduction. Let S denote the class of normalized analytic
functions

flz)=z+ Zanz",
n=2

which are univalent in the open unit disk /. Also let Sg denote its
subclass consisting of functions with real coefficients. The set of all
odd functions in S is denoted by S(2).

A function f € S is said to be starlike of order «, denoted by
f eSS (a),if

%{zféz)}>a, 0<a<l, z€el.

Let
S§*(0)=8* and K={f:z2f'(2) e S}

In this paper we first answer a question of Campbell and Singh [1]
in the affirmative. We then show that Komatu’s conjecture [5] and
Thomas’s conjecture [7, p. 166] are false at least in some cases.

2. A question of Campbell and Singh. Let

f(z):z—t—ianz" €S

n=2
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and

g(z) =z + anz" €S.
n=2

Define their integral convolution f ® g by

F(z) = (f@9)() =2+ 3 anb

n .

Campbell and Singh [1] asked the following question:

Do there exist univalent functions f(z) and g¢(z) such that the
coeflicients of

F(2)=(f®9)(2) =2+ a2 +c32° + -+

satisfy
lc3 — 3| > 17

Here we give an explicit example which leads to an affirmative answer
to this question.

Let a be a real number with 0 < |a| < (1/2)m. It is known that the
function

(1) f(2) = 2(1 — 2) 2 e

is a-spirallike but not close-to-convex [2, p. 72].

Consider the rotation of the function (1), and set
(2) f(Z) — Z(]. _ e—iﬁz)—Zei"‘ cos o

Now choose )
a=g arg(15 + 8i)

and

(3) 6 = arg(15 + 8i),
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and expand the corresponding function (2) in powers of z; we thus
obtain

32 8 688 444
4 = — - — 2 - — —— 3 e
@ fGE)=2+ <17 17l>z i <289 289’>Z *

We consider the integral convolution of the function (4) with itself, that
is,

F(Z):(f®f)(2):Z+8222+c3z3+...;

then 39
= —_— ]_ — 3
2 289( 5 — 8i)
and
(5) = 10 (17963 - 381843)
“ = 950563 '
Therefore,
1
— %= ———|218384 — 12 | =1. s> 1.
(6) e — 3 = 5oz (21838 6336i| = 1.0069 - - - >

We denote the set of all a-spirallike functions by SP(a)(—(1/2)7 <
a < (1/2)m). It is known that the class of close-to-convex functions and
Sk are not closed under the operation ® [2, p. 247]. In contrast with
Ruscheweyh and Sheil-Small’s proof, cf. [8], of the Pélya-Schoenberg
conjecture that $* = SP(0) is closed under the operation ®, we should
like to point out that the above discussion yields the following result.

Theorem 1. For each o (@ # 0;]a| < o = 0.3138---(=
17.986 - - - degrees)), there exist functions f(z) and g(z) in the class
SP(a) such that the coefficients of

F(2)=(f®9)(2) =2+ a2 + 325 4+ -+

satisfy
les — 2] > 1,

where
(tanag)? = 0.1054 - - -
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is the smallest positive root of the equation:

(7) 923 + 362 + 53z — 6 = 0.

In fact, if we let f(z) = g(z) be the function given by (2) with § = 2«
and v = tan «, then

An2 4 (1 + 3-142)211/2
(8 oy - = QA3 DT
(1+9?)

and the assertion of Theorem 1 is readily established by letting v2 = x.

3. A conjecture of Komatu. Let

f(z):z—i—ianz” €S

n=2

and define the function f)(z) by

(9) Hz)=z+ Z a,n”" 2",
n=2

Komatu [5] proved that, if f € S, then fy € S§* at least for A > Ao,
where Ao € (3,4) is the unique root of the equation (A —2) = 2 (¢
being the Riemann zeta function), and conjectured that

(i) If f € S, then f) € S at least for A > 1;

(i) If f € K (or, more generally, f € §*), then f) € K at least for
A>1.

Lewis [6] showed that Conjecture (ii) is true. In the case A = 1,
Conjecture (i) reduces to the Biernacki conjecture which is false [2,
p. 257]. We shall show that Conjecture (i) is also false in the case
A = 2. Further remarks on Komatu’s conjectures can be found in the
work of Srivastava and Owa [9, p. 82].

Theorem 2. There exists a function f € S such that fi1(z) and
fa(2) € S.
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Proof. For the function (1), one can obtain
—2ia —e2ix

= e **{exp(—e**log(l — 2)) — 1}.

The geometric property of exp(3log(l — z)) shows that fi(z) is univa-

lent in U/ if and only if 3 is either in the closed disk |8 — 1| <1 or in

the closed disk |8+ 1| <1, cf. [3, Vol. 2, p. 150].

Since 8 = —e?*®, we deduce that, if
m T
11 — —

then f1(2) ¢ S.
From the definition (9), we have
(12) 2f3(2) = fi(2).

For the function (1) with a = 7/4, we have

2f3(2) = f(z) = —i{(1 - 2) 7" = 1}.
Hence
Zofé(ZO) =0 at z20 = 1-— 6721‘— euU.

This shows that f2(z) ¢ S, which completes the proof of Theorem 2.
O

4. A conjecture of Thomas. Let

f(z)= z—i—ianzn €Ss.

n=2

The Hankel determinant of the coefficients of f(z) is denoted by Hy(n),
where
Hi(n) = ananta — ai_H.

For f € S, Thomas [7, p. 166] conjectured that

|Hi(n)| <1, n=2,3,4,....
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It follows from this conjecture that, if

(13) h(z) =2+ Z Cgk+122k+1 € SgN 8(2),
k=1

then

|C2k+1| S 1 and ‘02k+102k+3| S l, k= 1,2,3,. e

Recently, Jakubowski [4] proved that, if h € SpNS?), then |c3cs| < 1.
However, the elementary counterexample of Shaeffer and Spencer [2,
p. 107] shows that, for h € Sg N 8@, the above conclusion is false in
the cases when k£ > 2. Therefore, Thomas’s conjecture is also false in
the cases when n > 4.
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