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SUFFICIENT CONDITIONS FOR
ASYMPTOTIC STABILITY OF

LINEAR AUTONOMOUS IMPULSIVE SYSTEMS

RAÚL NAULIN

ABSTRACT. This paper studies the asymptotic stability of
the linear impulsive system with constant coefficients x′ = Ax,
x(t+

k
) = Cx(tk). It proves that, if i(s, t), the counting

function of impulsive times on the interval (s, t), satisfies
|i(s, t) − p(t − s)| ≤ K, where p and K are positive constants
and the matrices A and C are diagonalizable, then there
exists a positive number ρ such that this linear system is
asymptotically stable if the eigenvalues of the diagonal matrix
Λ + p(ρI + Ln N) have negative real parts, where Λ and N
are matrices of eigenvalues of A and C, respectively. For
general matrices A and C, an algorithm to find a bound for
parameter p is given. These theorems extend the known result
of asymptotic stability when A and C commute.

1. Introduction. The theory of differential equations is a
formidable tool in the study of the evolution of phenomena in ecology,
social behavior, economy, electronics, etc. Frequently, the modelling of
these phenomena is accomplished by an ordinary differential equation

(1) x′ = f(t, x).

The qualitative study of this equation allows one to predict the evolu-
tion of the observed phenomenon, and from this prediction, the possibil-
ity of designing appropriate control policies is obtained. These controls
can be of a distinct nature: a massive vaccination of the population, a
prohibition of certain fishing practices, an abrupt growth of prices in
the market, the administration of specific medicinal drugs, etc. These
controls have a common feature: they carry out in a very short period

Received by the editors on November 15, 1995, and in revised form on November
15, 1996.

1991 AMS Mathematics Subject Classification. Primary 34A37, Secondary
34A30.

Key words and phrases. Impulsive systems, constant coefficients, asymptotic
stability.

Research supported by Consejo de Investigación, UDO, Project CI-025-00730/95.

Copyright c©1998 Rocky Mountain Mathematics Consortium

1391



1392 R. NAULIN

of time, so short (compared with the time scale being used) that it is
possible to consider that the effect of these controls is instantaneous
and causes an abrupt collapse in the evolution of the phenomenon un-
der equation (1); at the time tk of application of a control, the position
x(tk) of a solution x(t) undergoes a jump and is transferred to a new
position g(tk, x(tk)) from where the observed phenomenon continues its
course. Mathematically, these situations can be described by differen-
tial equations with impulsive effect

(2)
x′ = f(t, x), t �= tk, t ≥ t0,

x(t+k ) = g(tk, x(tk)),

a new branch of research in differential equations, whose foundations
are partially exposed in [1, 4, 5, 10].

The present paper concerns the problem of asymptotic stability of a
linear impulsive system

(3)
x′ = Ax, t �= tk, t ≥ t0

x(t+k ) = Cx(tk),

where A and C are constant matrices with complex coefficients and the
invertibility of the matrix C is assumed

Definition 1. We say that the linear system (3) is asymptotically
stable if and only if

lim
t→∞X(t) = 0,

where X(t) is the fundamental matrix of system (3), that is,

(4)
X(t) = eA(t−tk)CeA(tk−tk−1) · · · eA(t2−t1)CeA(t1−t0),

if t ∈ [t0, tk+1].

Since the solutions of Equation (3) define a finite dimensional vector
space, then (4) implies the stability of the solutions of this equation
[1].

For the ordinary differential equation

(5) x′ = Ax, A = constant,
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the question of asymptotic stability has been completely solved. A
similar situation we find in the theory of a linear system of difference
equation

(6) x(n+ 1) = Cx(n).

This is not the case of the impulsive system (3), for which this problem
has interesting features; it is known that the ordinary stability of matrix
A (we mean that all eigenvalues of matrix A have negative real parts)
and the discrete stability of matrix C (all eigenvalues of matrix C are
contained in the disk |z| < 1) are not enough to assure the asymptotic
stability of (3); in this problem the location of the impulsive times
{tk}∞k=0 will play an important role [8]. An algebraic criterion involving
the eigenvalues of matricesA and C and the sequence of impulsive times
{tk}∞k=0, giving necessary and sufficient conditions for the asymptotic
stability of system (3), has not been obtained yet. Maybe the closest
results to this aim are given by Theorem 4.4 in [1], see also [10], and
[8, Theorem 2]. Let us recall these results. We make precise some
previous terminology. The sequence of impulsive times {tk}∞k=0 (we
purposely define the first number of this sequence as t0) is assumed
to be strictly increasing; let i(s, t) denote the number of impulses in
the interval (s, t). We assume that this function satisfies the following
condition

Hypothesis (C). There exist positive numbers p and K such that

|i(s, t) − p(t− s)| ≤ K, s < t.

We will assume that the solutions of Equation (3) are C1 functions
on each interval (tk, tk+1], are left continuous at the impulse times tk
with righthand side limit at each point tk denoted by x(t+k ).

Theorem A. Let us assume that matrices A and C commute. Then,
under Hypothesis (C), a necessary and sufficient condition for the
asymptotic stability of system (3) is that Reλ < 0 where λ is any
eigenvalue of

(7) Λ = A+ pLnC.
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The condition of commutativity of this theorem restricts the class
of impulsive systems that can be considered in applications. In [8], a
fair generalization of this theorem is given by considering that matrices
A and C can be reduced simultaneously to an upper triangular form
(commuting matrices certainly satisfy this condition):

Theorem B. If matrices A and C can simultaneously be reduced to
an upper triangular form, then, under condition (C), a necessary and
sufficient condition for the asymptotic stability of system (3) is that
Reλ < 0, where λ is any eigenvalue of (7).

In this paper we consider the problem for general matrices. Our
results show that the asymptotic stability of system (3) cannot be
established by the eigenvalues of matrix (7). If matrices A and C can
be reduced to diagonal matrices Λ and N , respectively, by nonsingular
matrices S and T , then we show that system (3) is asymptotically
stable if the real parts of the eigenvalues of the matrix

Λ + p(2|Ln (S−1T )|I + LnN)

are negative. A similar result is true for general matrices A and C.

The present work relies on the method of quasidiagonalization; in a
few words, it consists of reducing a matrix to an almost diagonal form
(we refer to [1, Corollary of Theorem 6]). The development of this
method started with [9] in connection with the problem of existence
for periodic solutions of ordinary systems with a small parameter in
the derivative; later it was applied in [6] to the problem of existence
of exponential dichotomies for linear singularly perturbed systems.
Recently the method of quasidiagonalization has been adapted for the
nonautonomous linear systems [7],

x′ = A(t)x,
x(t+k ) = Ckx(tk).

That paper does not include the method of quasidiagonalization for the
impulsive system with constant coefficients, an important particular
case where simpler and more precise estimates and conclusions can
be obtained; in particular, [7] does not study the asymptotic stability
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of the nonautonomous impulsive system. In this paper we show that
this method can successfully be applied to the problem of asymptotic
stability for linear impulsive system (3).

2. Notation and preliminaries. Before we go ahead, we introduce
some notation. In this paper V denotes the n-dimensional vector space
Cn with norm |x| = max{|xj | : 1 ≤ j ≤ n}. For an n × n matrix A,
|A| is the corresponding matrix norm. J denotes the interval [t0,∞)
and N is the set of integers {0, 1, 2, . . . }. For a function x : J → V we
denote |x|∞ = sup{|x(t)|; t ∈ J}. The function [t] is established on the
set of real numbers R by [t] = k if t ∈ [k, k + 1) where k is an integer.

For an n×n matrix A, there exists a nonsingular matrix L such that
L−1AL has a Jordan form. This means that

L−1AL = diag {A1, A2, . . . , Am},

where each matrix Aj is a Jordan block of dimensions nj × nj . Let us
define α(A) = max{nj : 1 ≤ j ≤ m}. Moreover, for each matrix Aj we
define the nj ×nj matrix S(nj , σ) = diag {1, σ, . . . , σnj−1}. Finally, let

S(A, σ) = diag {S(n1, σ), S(n2, σ), . . . , S(nm, σ)}.

We emphasize the following norm formulas and notations

p(A, σ) := |S(A, σ)| = max{1, σα(A)−1},(8)

q(A, σ) := |S−1(A, σ)| = max{1, σ−α(A)+1}.(9)

It is clear that

(10) (LS(A, σ))−1ALS(A, σ) = Λ +G(A, σ),

where |G(A, σ)| = r(A, σ) and r(A, σ) is defined as

r(A, σ) =
{
σ if α(A) > 1,
0 if α(A) = 1.

The following assertion is a known result [3].
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Lemma 1. There exist nonsingular matrices L and M such that

(LS(A, σ))−1ALS(A, σ) = Λ +G(A, σ),(11)
(MS(C, σ))−1CMS(C, σ) = N +G(C, σ),(12)

where Λ is a diagonal matrix of the eigenvalues of A and N is a diagonal
matrix of the eigenvalues of C.

In the statement of Lemma 1, an important fact is omitted, namely,
in what order are the eigenvalues of matrices A and C along the main
diagonal of Λ and N written, respectively. This question may become
crucial in the analysis of asymptotic stability of system (3). We discuss
this situation in Example 2 of our paper.

3. Quasidiagonalization. In what follows, we denote I = [0,∞).
Let us define the function a : I → J by

a(t) = tk + (t− k)(tk+1 − tk), t ∈ [k, k + 1], k ∈ N.

It is easy to see that this function is continuous on I and is C1 on each
interval (k, k+1) where a′(t) = tk+1−tk. Under condition (C) we obtain
that the distance between impulsive times is less than p−1(K + 1).
Therefore, for a′ we obtain the estimate

(13) 0 < a′(t) ≤ p−1(K + 1), ∀ t ∈ I\{N}.

Since a(t) has a continuous inverse, for x(t), a solution of Equation (3),
the function y(t) = x(a(t)) satisfies

(14)
y′ = a′(t)Ay, t �= k, t ≥ 0,

y(k+) = Cy(k).

Let us consider the C1-function

δ(t) =

⎧⎨
⎩

0 |t| ≥ 1,
(1 + t)2 t ∈ (−1, 0),
(1 − t)2 t ∈ [0, 1).
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For σ > 0, according to Lemma 1, there exist nonsingular matrices
L and M , reducing matrices A and C to the form (11) and (12),
respectively. Let us define on the interval I the function

ψk(t, σ) = δ(2k(t− k))Ln ((LS(A, σ))−1MS(C, σ)).

Outside of the interval Ik = [k− 2−k, k+ 2−k] this function equal zero.
Let us consider the C1 matrix function

T (t, σ) = LS(A, σ) exp
{ ∞∑

k=1

ψk(t, σ)
}
.

Using (8) and (9), we easily obtain that T (t, σ) and T−1(t, σ) are
bounded on I:

(15)
|T (·, σ)|∞ ≤ p(A, σ)|L| exp{|Ln ((LS(A, σ))−1MS(C, σ)|},

|T−1(·, σ)|∞ ≤ q(A, σ)|L−1| exp{|Ln ((LS(A, σ))−1MS(C, σ))|}.

The change of variable y = T (t, σ)z in (14) reduces this equation to

(16)
z′ = (a′(t)T−1(t, σ)AT (t, σ)

− T−1(t, σ)T ′(t, σ))z, t �= k,

z(k+) = T−1(k, σ)CT (k, σ)z(k).

From the definition of T (·, σ), we obtain

(17)
T−1(t, σ)T ′(t, σ) =

∞∑
k=1

2kδ′(2k(t− k))

· Ln ((LS(A, σ))−1MS(C, σ)).

Lemma 2.

∫ t

0

|T−1(s, σ)T ′(s, σ)| ds ≤ 2[t+ 1]|Ln ((LS(A, σ))−1MS(C, σ))|.
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Proof. From (8) and (17), we obtain∫ t

0

|T−1(s, σ)T ′(s, σ)| ds ≤ |Ln ((LS(A, σ))−1MS(C, σ))|

·
[t+1]∑
k=1

∫
Ik

|2kδ′(2k(s− tk))| ds.

The symmetrical definition of function δ implies∫
Ik

|2kδ′(2k(s− tk))| ds = 2.

Now the result sought easily follows.

System (16) can be written in the form

(18)
z′ = a′(t)(Λ +G(A, σ) + F (t, σ))z

− T−1(t, σ)T ′(t, σ)z, t �= k,

z(k+) = (N +G(C, σ))z(k),

where
F (t, σ) = T−1(t, σ)AT (t, σ)− Λ −G(A, σ).

We emphasize that F (·, σ) is zero outside ∪∞
k=1Ik; therefore, we obtain

Lemma 3. The function F (t, σ) has the following integral estimate:

(19)
∫ ∞

0

|F (s, σ)| ds ≤ µ(σ),

where µ(σ) is a constant.

Proof. Using (15), it follows from the definition of the function F (·, σ)
and the interval Ik that∫ ∞

0

|F (s, σ)| ds ≤
∞∑

k=1

∫
Ik

|T−1(s, σ)AT (s, σ)− Λ −G(A, σ)| ds

≤
∞∑

k=1

∫
Ik

(p(A, σ)q(A, σ)|L||L−1|

· |Ln (L−1M)|2|A| + |Λ| + r(A, σ)) ds
= µ(σ),
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where

µ(σ) = 2p(A, σ)q(A, σ)|L||L−1||Ln (L−1M)|2|A| + |Λ| + r(A, σ),

(fortunately this complicated constant will not play an essential role).

4. Asymptotic stability. We will consider that system (18) is a
perturbation of system

(20)
w′ = a′(t)Λw, t �= k, t ≥ 0

w(k+) = Nw(k),

whose fundamental matrix is

W (t) = exp{(a(t) − a(0))Λ + j(0, t)LnN},
where j(0, t) is the counting function on the interval (0, t) of the
impulsive times of system (20) (we point out that, for a positive integer
k, the formula j(0, k) = k − 1 is valid); the branch of function Ln is
appropriately defined according to the location of eigenvalues of C.
From the variation of constants formula [1], we obtain that the solutions
of (18) satisfy the integral equation

(21)

z(t) = W (t)z0 +
∫ t

0

W (t)W−1(s)(a′(s)G(A, σ)

+ a′(s)F (s, σ)− T−1(s)T ′(s))z(s) ds

+
∑

k∈(0,t)

W (t)W−1(k+)G(C, σ)z(k+).

Let

ν(t) = max{Re ((a(t) − a(0))λj + [t] lnµj) : 1 ≤ j ≤ n},
and

θ(t) = |e−ν(t)z(t)|.
From (21) and the estimate j(0, t) ≤ [t], we obtain

θ(t) ≤ |z0| +
∫ t

0

(a′(s)|G(A, σ)|

+ a′(s)|F (s, σ)| + |T−1(s, σ)T ′(s, σ)|)|θ(s)| ds
+

∑
k∈(0,t)

|G(C, σ)|θ(k+).
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The Gronwall inequality for piecewise continuous functions [2] and (21)
imply

θ(t) ≤ |z0|(1 + r(C, σ))[t] exp
{ ∫ t

0

[a′(s)(|G(A, σ)|

+ |F (s, σ)|) + |T−1T ′|] ds
}
.

Applying the estimate given by Lemma 3, we obtain

θ(t) ≤ K|z0|(1 + r(C, σ))[t] exp
{ ∫ t

0

(a′(s)r(A, σ)

+ |T−1(s, σ)T ′(s, σ)|) ds
}
,

where K = exp{(K + 1)µ(σ)p−1}. Lemma 2 allows us to write the
inequality

θ(t) ≤ K|z0|(1 + r(C, σ))[t] exp{r(A, σ)(a(t)− a(0))
+ 2[t+ 1]Ln ((LS(A, σ))−1MS(C, σ))|}.

Modifying the definition of constant K, we can write

θ(t) ≤ K|z0|(1 + r(C, σ))[t] exp{r(A, σ)(a(t)− a(0))
+ 2[t]Ln ((LS(A, σ))−1MS(C, σ))|}.

The definition of function θ(t) implies

|z(t)| ≤ K|z0| exp{ν(t) + r(A, σ)(a(t)− a(0)) + [t] ln(1 + r(C, σ))
+ 2[t]Ln ((LS(A, σ))−1MS(C, σ))|}.

Finally, from the definition of ν(t), we obtain

(22) |z(t)| ≤ K|z0| exp{g(t, σ)}
where the function g(t, σ) is defined by

(23)
g(t, σ) = max{Re ((a(t) − a(0))(λj + r(A, σ))

+ [t](2|Ln ((LS(A, σ))−1MS(C, σ))|
+ ln(1 + r(C, σ)) + lnµj)) : 1 ≤ j ≤ n}.
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Now the problem of the asymptotic stability of system (3) is equivalent
to the requirement

(24) lim
t→∞ g(t, σ) = −∞,

for some value of σ. Let us define the number

(25)
λ = max{Re (λj + r(A, σ)

+ p(2|Ln ((LS(A, σ))−1MS(C, σ))|
+ ln(1 + r(C, σ)) + lnµj)) : 1 ≤ j ≤ n}.

Theorem 1. Let ε be a positive number. Then, under condition (C),
if L and M satisfy (11) and (12), then the fundamental matrix X(t) of
system (3) has the exponential estimate

(26) |X(t)| ≤ Ke(λ+ε)(t−t0), t ≥ t0

where the constant K = K(ε) does not depend on t0.

Proof. From the identity

[t] = i(0, a(t)),

condition (C) gives
|[t] − pa(t)| ≤ K,

implying
[t] = (p+ o(1))(a(t) − a(0)),

where o(1) denotes a function satisfying limt→∞ o(1) = 0. Therefore,

g(t, σ) = (a(t) − a(0)) max{Re (λj + r(A, σ)
+ (p+ o(1))(2|Ln ((LS(A, σ))−1MS(C, σ))|
+ ln(1 + r(C, σ)) + lnµj)); 1 ≤ j ≤ n}

= (a(t) − a(0))(λ+ o(1)).

This last identity implies the estimate

|z(t)| ≤ K|z0| exp(λ+ε)(a(t)−a(0)),
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where the constant K = K(ε) is independent of t0. Since solutions
z(t) of system (16) and solutions y(t) of system (14) are related by
the formula y = T (t, σ)z, then (15) implies for Y (t), the fundamental
matrix of (14) (with a new constant K) the estimate (with some new
constant K)

|Y (t)| ≤ K(ε)|y0| exp(λ+ε)(a(t)−a(0)) .

The identity Y (t) = X(a(t)) and a(0) = t0 implies (26).

From (26), follows

Theorem 2. Let condition (C), (11) and (12) be satisfied; if λ < 0,
then system (3) is asymptotically stable.

Example 1. Let us consider (3), where matrices A and C are defined
by

A =
(−3 1

0 −3

)
, C =

(
2 0
1 2

)
.

In this case we have

L = I, M =
(

0 1
1 0

)
, S(A, σ) = S(C, σ) =

(
1 0
0 σ

)
;

therefore,

S−1(A, σ)Ln (L−1M)S(C, σ) = 2−1

(
1 −σ

−σ−1 1

)
,

implying

|S−1(σ)Ln (L−1M)S(σ)| = 2−1πmax{1 + σ, 1 + σ−1}.

The number λ defined by (25) is

λ = −3 + σ + p{πmax{1 + σ, 1 + σ−1} + ln(1 + σ) + ln 2}.

For any σ contained in the interval (0, 3), from the condition λ < 0, we
obtain a bound for the parameter p; by a computational calculation, a
larger bound for p, given by the method of quasidiagonalization with
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this particular choice of matrices L and M , is p = 0.2639 . . . obtained
for σ = 0.8516 . . . ; the system considered in the present example is
asymptotically stable for any p ∈ (0, 0.2639 . . . ).

5. Matrices A and C are diagonalizable. An important case in
applications occurs if matrices A and C can be reduced to a diagonal
form

(27) L−1AL = Λ, M−1CM = N.

Under this condition r(A, σ) = r(C, σ) = 0 and S(A, σ) = S(C, σ) = I;
the respective calculation of number λ in (25) yields the following

Theorem 3. Under condition (C) and (27), the system (3) is
asymptotically stable if the real parts of the eigenvalues of matrix

(28) Λ + p(2|Ln (L−1M)|I + LnN),

are negative.

If M = L, then Ln (L−1M) = 0; henceforth, for simultaneously
diagonalizable matrices, we infer

Corollary 1. If (27) holds with L = M , then system (3) is
asymptotically stable if the real parts of the eigenvalues of matrix (7)
are negative.

This corollary is also a particular case of Theorem B.

Example 2. Let us consider (3), where matrices A and C are defined
by

A =
(−2 4

3 2

)
, C =

(
1 0
0 a

)
, 0 < a < 1.

Matrix A has the eigenvalues λ1 = −4 and λ2 = 4. In this example
the matrix A can be reduced to a diagonal form Λ = diag {−4, 4} by
means of

L =
(

2 2
−1 3

)
.
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We first assume that M = I. Let ρ = 2|LnL| > 0. The eigenvalues of
the matrix (28) are λ1 = −4 + pρ and λ2 = 4 + p(ρ+ ln a). If a < e−2ρ

the condition on p

− 4
ρ+ ln a

< p <
4
ρ

can be satisfied. Under this condition both eigenvalues λ1 and λ2 are
negative and the asymptotic stability for system (3) is obtained. But
the relevance of this example consists of the following remark. Let
us calculate µ± the eigenvalues of matrix (7). Denoting α = ln a, we
obtain

µ± =
pα± √

(pα)2 + 4(16 + 2pα)
2

.

We observe that, if p < −8/α, then one of the eigenvalues is positive.
But a < e−2ρ implies

− 4
ρ+ ln a

< − 8
ln a

<
4
ρ
.

Thus, for p ∈ (−4/(ρ + ln a),−8/ ln a), system (3) is asymptotically
stable, but this cannot be inferred from the eigenvalues of the matrix
(7), in other words, the negativity of the eigenvalues of the matrix (7)
is not a necessary condition for the asymptotic stability of system (3).

Let us assume now that matrices A and C are reduced to the diagonal
forms Λ = diag {−4, 4} and N = diag {a, 1} by means of matrices L
and

M =
(

0 1
1 0

)
.

Under these circumstances, the eigenvalues of matrix (28) are

λ1 = −4 + p(2| ln(L−1M)|) + ln a),
λ2 = 4 + 2p|Ln (L−1M)| > 0.

The eigenvalue λ2 implies that the requirements of Theorem 2 cannot
be accomplished. Thus, in Theorems 1 and 2, it is relevant the order we
write the eigenvalues of A and C along the main diagonal of matrices
Λ and N .
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