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THE AHLFORS MAP AND SZEGŐ
KERNEL FOR AN ANNULUS

THOMAS J. TEGTMEYER AND ANTHONY D. THOMAS

1. Introduction. In the case of an annulus, it is simple to find an
orthonormal basis for the Hardy space. This allows one to write both
the Szegő and Garabedian kernel functions as infinite series. These
series are classical. The Ahlfors map is a two-to-one branched covering
map of the annulus onto the unit disk and is given by the quotient of
the Szegő and Garabedian kernels. One of the two zeros of the Ahlfors
map arises from the pole of the Garabedian kernel. The other zero
corresponds to the zero of the Szegő kernel. In Section 5 it is shown
how to use the series for the Szegő kernel to find its zero.

The boundary values of the Garabedian kernel are given in terms of
those of the Szegő kernel. Hence, knowing the boundary values of the
Szegő kernel is tantamount to knowing those of the Ahlfors map. A
discovery of Kerzman and Stein provides an efficient numerical method
for computing the boundary values of the Szegő kernel for a smoothly
bounded, planar domain and hence the boundary values of the Ahlfors
map. Since the Ahlfors map is a holomorphic function smooth up to
the boundary, the Cauchy integral formula provides the interior values
of this map. Unfortunately, this integral formula has a singular nature
for interior points near the boundary. In Section 7 it is shown how
to alleviate this singular behavior for the annulus, and in Section 8
graphical examples are given for the Szegő and Garabedian kernels
and for the Ahlfors map.

2. Preliminaries. Suppose that Ω is a domain in C with C∞

smooth boundary. Let L2(bΩ) denote the space of square integrable
functions with respect to arc length measure on the boundary bΩ of Ω,
and let H2(bΩ) denote the subspace of L2(bΩ) consisting of functions
that extend to be holomorphic on Ω. An inner product 〈·, ·〉 is defined
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on L2(bΩ), and hence on H2(bΩ), via

〈u, v〉 =
∫

bΩ

u(z)v(z) dsz.

A norm ‖ · ‖ is also defined on L2(bΩ) via ‖ · ‖ =
√〈·, ·〉.

Now H2(bΩ) is a closed subspace of L2(bΩ) and the orthogonal pro-
jection P of L2(bΩ) onto H2(bΩ) is classically known as the Szegő pro-
jection. This projection is represented by the Szegő kernel SΩ(z, a) =
S(z, a) as follows:

Pϕ(a) =
∫

bΩ

ϕ(z)S(z, a)dsz

for all ϕ ∈ L2(bΩ) and for a ∈ Ω. It is known that S(z, a) extends to
become holomorphic in z and anti-holomorphic in a on Ω × Ω and is
of class C∞((Ω × Ω)\{(z, z) ∈ bΩ × bΩ}). Further, the Szegő kernel is
Hermitian symmetric, i.e., S(z, a) = S(a, z) for all z, a ∈ Ω.

The Garabedian kernel LΩ(z, a) = L(z, a) is defined for z ∈ bΩ and
a ∈ Ω via L(z, a) = iS(z, a)T (z). Here T is the complex unit tangent
vector to the boundary of Ω defined by T (z) = T (z(t)) = z′(t)/|z′(t)|
where z(t) parametrizes bΩ. We note that knowing the boundary values
of the Szegő kernel is equivalent to knowing the boundary values of the
Garabedian kernel.

It is known that L(z, a) extends meromorphically to Ω × Ω with a
single simple pole of residue 1/2π at z = a and further is of class
C∞((Ω×Ω)\{(z, z) ∈ Ω×Ω}). Also known is the fact that, if Ω is simply
connected and a ∈ Ω is fixed, then fa is the unique biholomorphism of
Ω onto the unit disk ∆ = {z ∈ C : |z| < 1} such that fa(a) = 0 and
f ′

a(a) > 0, i.e., the Riemann map, then fa = Sa/La where Sa ≡ SΩ(·, a)
and La ≡ LΩ(·, a).

For an n-connected domain Ω ⊂ C, and a point a ∈ Ω, the Ahlfors
map fa is a branched n-to-one analytic function mapping Ω onto
the unit disk, with fa(a) = 0. Further, the Ahlfors map takes each
component of the boundary of Ω one-to-one and onto the unit circle.
Among all analytic functions mapping Ω into the unit disk, fa is the
unique function with maximum positive derivative at a. If Ω has C∞-
smooth boundary, then the Ahlfors map can be written explicitly as the
ratio of the Szegő kernel and the Garabedian kernel, i.e., fa = Sa/La.
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All of the above facts can be found in [1].

3. The Szegő kernel. Another way to think about the Szegő kernel
is as follows. Let {ϕk(z)}∞k=1 be an orthonormal basis for H2(bΩ).
Then, given a point a ∈ Ω, the Szegő kernel can be written

(3.1) Sa(z) =
∞∑

k=0

ϕk(z)ϕk(a)

with absolute and uniform convergence on compact subsets of Ω [1].

Let Ω be the annulus {z : ρ < |z| < 1}. (We choose this class of
conformal equivalents for annuli in Sections 3, 4 and 5, as the results
there are easily translated to the case of an annulus {z : r2 < |z| < r1};
however, in Section 6 we use annuli of the form {z : r2 < |z| < r1}
as the formulas there are more complicated to translate.) A complete
orthogonal set for Ω is {zn}∞n=−∞. In order to construct an orthonormal
basis for H2(bΩ), we notice that

‖zn‖2 =
∫

bΩ

|z|2n dsz = 2π(1 + ρ2n+1).

Thus an orthonormal basis for H2(bΩ) is

(3.2)
{

zn√
2π(1 + ρ2n+1)

}∞

n=−∞
.

From this and (3.1), we get that the Szegő kernel for the annulus is

(3.3) Sa(z) =
1
2π

∞∑
n=−∞

(zā)n

1 + ρ2n+1
.

4. The Garabedian kernel. As with the Szegő kernel, there are
many ways to think about the Garabedian kernel. For our calculations,
we will use the fact [1] that for the Garabedian kernel, La(z), we have

La(z) = P⊥
(

1
2π

1
z − a

)
.
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Thus, if we have an orthonormal basis {ϕk(z)}∞k=1 for H2(bΩ), the
Garabedian kernel can be written

La(z) =
1
2π

1
z − a

− 1
2π

∞∑
k=1

〈
1

ζ − a
, ϕk(ζ)

〉
ϕk(z).

Let Ω be the annulus {z : ρ < |z| < 1}. We have an orthonormal
basis for H2(bΩ) in (3.2). Each inner product is evaluated by first
using the fact that dz = Tds and then applying the residue theorem.
Rearranging the resulting sum yields

(4.1) La(z) =
1
2π

1
z − a

+
1
2π

∞∑
n=0

ρ2n+1(z2n+1 − a2n+1)
(za)n+1(1 + ρ2n+1)

.

Using (3.3) and (4.1), we have an explicit formula for the Ahlfors map
for an annulus in

fa(z) =
Sa(z)
La(z)

.

Recall that fa is a branched, two-to-one map from the annulus onto
the unit disk. One zero, arising from the single, simple pole of the
Garabedian kernel, lies at the point z = a. We shall locate the zero of
the Szegő kernel, and hence the other zero of the Ahlfors map, in the
next section.

5. The zeros of the Szegő kernel. We saw above that, for the
annulus Ω = {z : ρ < |z| < 1}, the corresponding Szegő kernel is

Sa(z) =
1
2π

∞∑
n=−∞

(zā)n

1 + ρ2n+1
.

We know that for fixed a ∈ Ω this function has exactly one zero [1].
The question is, where is this zero?

Theorem 1. Sa(−ρ/ā) = 0.

Proof. First, note that

(5.1) Sa(−ρ/ā) =
1
2π

∞∑
n=−∞

(−(ρ/ā)ā)n

1 + ρ2n+1
=

1
2π

∞∑
n=−∞

(−ρ)n

1 + ρ2n+1
,
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so the problem reduces to showing that

∞∑
n=−∞

(−1)nρn

1 + ρ2n+1
= 0.

Since (5.1) converges absolutely, we can write

∞∑
n=−∞

(−1)nρn

1 + ρ2n+1
=

−1∑
n=−∞

(−1)nρn

1 + ρ2n+1
+

∞∑
n=0

(−1)nρn

1 + ρ2n+1

=
∞∑

n=1

(−1)nρ−n

1 + ρ−2n+1
+

∞∑
n=0

(−1)nρn

1 + ρ2n+1
,

and reindexing the second term gives us

∞∑
n=1

(−1)nρ−n

1 + ρ−2n+1
+

∞∑
n=0

(−1)nρn

1 + ρ2n+1

=
∞∑

n=1

(−1)nρ−n

1 + ρ−2n+1
+

∞∑
n=1

(−1)n−1ρn−1

1 + ρ2n−1

=
∞∑

n=1

(−1)nρ−n

1 + ρ−2n+1

ρ2n−1

ρ2n−1
+

∞∑
n=1

(−1)n−1ρn−1

1 + ρ2n−1

=
∞∑

n=1

(−1)nρn−1

1 + ρ2n−1
+

∞∑
n=1

(−1)n−1ρn−1

1 + ρ2n−1

= 0.

Theorem 2. Let Ω = {z : ρ < |z| < 1} be an annulus. Given a point
a ∈ Ω, the Ahlfors map fa of Ω onto the unit disk ∆ = {z ∈ C : |z| < 1}
has zeros exactly at the points z = a and z = −ρ/ā.

6. A numerical approach. Kerzman and Stein discovered [3]
that the Szegő kernel of a smoothly bounded, simply connected planar
domain satisfies an integral equation which is particularly amenable
to numerical solution. Indeed, this integral equation is a Fredholm
equation of the second kind with C∞ smooth kernel. This allows the



714 T.J. TEGTMEYER AND A.D. THOMAS

boundary values of the Szegő kernel, and hence the Riemann map,
of Ω to be numerically approximated. Indeed, examples of using this
method to calculate the Riemann map can be found in [4, 6, 7].

The Kerzman-Stein integral equation described above continues to
be valid for multiply connected domains [2] and hence can be used to
calculate the boundary values of the Szegő and Garabedian kernels,
and hence the Ahlfors map. If the interior values of these functions are
desired, then the Cauchy integral formula can be used since, for any
function f holomorphic on Ω and for all z ∈ Ω,

f(z) =
1

2πi

∫
ζ∈bΩ

f(ζ)
ζ − z

dζ.

For the Garabedian kernel, we notice that the Cauchy integral formula
must be applied to the function

La(z) − 1
2π

1
z − a

since this kernel is meromorphic on Ω with a single simple pole at z = a
with residue 1/2π.

The only problem with evaluating the Cauchy integral formula nu-
merically is that this integral is singular in nature whenever z ∈ Ω is
near bΩ. In the next two sections we shall show how to alleviate the
singular nature of this integral in the case of multiply connected planar
domains with circular boundary components. Indeed, representations
for the Szegő and Garabedian kernels in terms of integral formulas
whose singularities are at points lying strictly outside of Ω are given.
So, in this case, it is quite easy to numerically compute these kernels
and hence the Ahlfors map.

7. The case of an annulus. Let Ω = {z : r2 < |z| < r1} be an
annulus and fix a point a ∈ Ω. For ζ ∈ bΩ the Szegő kernel S(ζ) = Sa(ζ)
satisfies the Kerzman-Stein integral equation [3]

S(ζ) = g(ζ) −
∫

w∈bΩ

A(ζ, w)S(w) dsw

where g(ζ) = ga(ζ) = H(a, ζ), H(w, ζ) = (1/2πi)(T (ζ)/(ζ − w)) and

A(ζ, w) =
{

H(w, ζ) − H(ζ, w) w, ζ ∈ bΩ, w �= ζ,
0 w = ζ ∈ bΩ.
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Furthermore, the apparent singularities of A(ζ, w) cancel out so that
A(ζ, w) ∈ C∞(bΩ × bΩ). By an application of the Cauchy integral
formula, it follows that
(7.1)

S(z) =
1

2πi

∫
ζ∈bΩ

g(ζ)
ζ − z

dζ − 1
2πi

∫
ζ∈bΩ

∫
w∈bΩ

A(ζ, w)S(w)
ζ − z

dsw dζ

for all z ∈ Ω.

Let bΩ = γ1 ∪ γ2 where γ1 = {|ζ| = r1} and γ2 = {|ζ| = r2}
and parametrize bΩ by γ1 : ζ1(t) = r1e

it and γ2 : ζ2(t) = r2e
−it for

0 ≤ t < 2π. Then the complex unit tangent vectors are given by

T1(ζ) = ζ ′1(t)/|ζ ′1(t)| = iζ1(t)/r1

and

T2(ζ) = ζ ′2(t)/|ζ ′2(t)| = −iζ2(t)/r2.

The first integral in (7.1) is calculated as follows:

1
2πi

∫
ζ∈bΩ

g(ζ)
ζ − z

dζ =
1

2πi

∫
ζ∈γ1

g(ζ)
ζ − z

dζ

+
1

2πi

∫
ζ∈γ2

g(ζ)
ζ − z

dζ

=
1

2πi

∫
ζ∈γ1

i

2π

−iζ̄/r1

(ζ̄ − ā)(ζ − z)
dζ

+
1

2πi

∫
ζ∈γ2

i

2π

iζ̄/r2

(ζ̄ − ā)(ζ − a)
dζ

=
1

2πi

∫
ζ∈γ1

1
2π

r1

(r2
1 − āζ)(ζ − z)

dζ

− 1
2πi

∫
ζ∈γ2

1
2π

r2

(r2
2 − āζ)(ζ − z)

dζ

=
1
2π

r1

r2
1 − āz

− 1
2π

r2

r2
2 − āz

where the last equality follows by dint of the fact that

1
2π

r1

(r2
1 − āζ)

and − 1
2π

r2

(r2
2 − āζ)
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are holomorphic in {|ζ| < r1} and {|ζ| > r2}, respectively.

Next the second integral in (7.1) is calculated. We recall [3] that the
Kerzman-Stein kernel vanishes whenever ζ and w both lie on a circular
boundary component implying that A(ζ, w) ≡ 0 for (ζ, w) ∈ γj × γj ,
j = 1, 2. Therefore,

1
2πi

∫
ζ∈bΩ

∫
w∈bΩ

A(ζ, w)S(w)
ζ − z

dsw dζ

=
1

2πi

∫
ζ∈γ1

∫
w∈γ2

A(ζ, w)S(w)
ζ − z

ds2 dζ

+
1

2πi

∫
ζ∈γ2

∫
w∈γ1

A(ζ, w)S(w)
ζ − z

dsw dζ

=
1

2πi

∫
w∈γ2

S(w)
(∫

ζ∈γ1

A(ζ, w)
ζ − z

dζ

)
dsw

+
1

2πi

∫
w∈γ1

S(w)
(∫

ζ∈γ2

A(ζ, w)
ζ − z

dζ

)
dsw.

For w ∈ γ2, it follows that

∫
ζ∈γ1

A(ζ, w)
ζ − z

dζ

=
∫

ζ∈γ1

−(1/(2πi))((−ir1/ζ̄)/(ζ̄−w̄))−(1/(2πi))((−ir2/w)/(w−ζ))
ζ − z

dζ

= − i(r1 + r2)
w̄

1
2πi

·
∫

ζ∈γ1

(ζ − r1r2/w̄)
(ζ − z)(ζ − w)(ζ − r2

1/w̄)
dζ.

So we have the integral around γ1 of a function meromorphic on
{|ζ| < r1} with simple poles at ζ = z and ζ = w. Notice that the
apparent pole at ζ = r2

1/w̄ lies outside of {|ζ| < r1}. Indeed, it is
interesting to note that r2

1/w̄ is the reflection of w across the circle
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{|ζ| = r1}. Therefore, by the residue theorem,

∫
ζ∈γ1

A(ζ, w)
ζ − z

dζ = − i(r1 + r2)
w̄

·
(

(z − r1r2/w̄)
(z − w)(z − r2

1/w̄)
+

(w − r1r2/w̄)
(w − z)(w − r2

1/w̄)

)

=
ir1

(r2
1 − w̄z)

for w ∈ γ2. Similarly, we have
∫

ζ∈γ2

A(ζ, w)
ζ − z

dζ =
−ir2

(r2
2 − w̄z)

for w ∈ γ1. Therefore,

1
2πi

∫
ζ∈bΩ

∫
w∈bΩ

A(ζ, w)S(w)
ζ − z

dsw dζ =
∫

w∈γ1

− 1
2π

r2

(r2
2 − w̄z)

S(w) dsw

+
∫

w∈γ2

1
2π

r1

(r2
1 − w̄z)

S(w) dsw.

Hence, the following theorem has been proved.

Theorem 3. The Szegő kernel S(z) = Sa(z) for the annulus
Ω = {z : r2 < |z| < r1} satisfies

S(z) =
1
2π

r1

(r2
1 − āz)

− 1
2π

r2

(r2
2 − āz)

+
∫

w∈γ1

1
2π

r2

(r2
2 − w̄z)

S(w) dsw

−
∫

w∈γ2

1
2π

r1

(r2
1 − w̄z)

S(w) dsw.

Notice that in this representation of the Szegő kernel the integrals
do not have a singular behavior for z ∈ Ω near bΩ. Indeed, the only
singularity in the first integral occurs at z = r2

2/w̄ which is the reflection
of w ∈ γ1 across the circle {|ζ| = r2} and thus this singularity occurs
strictly outside Ω̄. A similar remark holds for the second integral. The
utility of this representation is the following. Once the boundary values
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of the Szegő kernel are computed using the Kerzman-Stein integral
equation, the interior values are given in terms of integrals which do
not exhibit the singular behavior of the Cauchy integral. Therefore the
computational difficulty associated with the Cauchy integral is avoided.

Since the Ahlfors map of a multiply connected domain is given by
fa = Sa/La, it would be nice to have a similar formula for the
Garabedian kernel of the annulus Ω = {z : r2 < |z| < r1}. Indeed,
it is now very easy to find such a formula for La. We recall [1] that
L = La satisfies

(7.2) L(z) +
∫

w∈bΩ

A(z, w)L(w) dsw = h(z)

for z ∈ bΩ where h(z) = ha(z) = (1/2π)(1/(z − a)). Now

L(z) − 1
2π

1
z − a

= L(z) − h(z)

extends to be holomorphic on Ω and continuous on Ω so that the Cauchy
integral formula and (7.2) imply that

L(z) − h(z) =
1

2πi

∫
ζ∈bΩ

L(ζ) − h(ζ)
ζ − z

dζ

=
−1
2πi

∫
ζ∈bΩ

∫
w∈bΩ

A(ζ, w)L(w)
ζ − z

dsw dζ

=
−1
2πi

∫
w∈bΩ

L(w)
(∫

ζ∈bΩ

A(ζ, w)
ζ − z

dζ

)
dsw.

Using the calculations for the Szegő kernel and the fact that La = iSaT
on bΩ, we have the following theorem.

Theorem 4. The Garabedian kernel L(z) = La(z) for the annulus
Ω = {z : r2 < |z| < r1} satisfies

L(z) =
1
2π

1
z − a

+
1
2π

∫
w∈γ1

r2w̄

r1(r2
2 − w̄z)

S(w) dsw

+
1
2π

∫
w∈γ2

r1w̄

r2(r2
1 − w̄z)

S(w) dsw.
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FIGURE 1. Absolute value of the Szegő kernel.

Again this shows that, once the boundary values of the Szegő kernel
are calculated via the Kerzman-Stein integral equation, the interior
values of the Garabedian kernel are easily computed without the
problem of the singular behavior of the Cauchy kernel. Hence, it follows
that both the interior and the boundary values of the Ahlfors map
fa = Sa/La of an annulus are easily computed.

8. Numerical examples. Here we use the Kerzman-Stein integral
equation followed by the formulas of Theorems 3 and 4 to compute the
Szegő and the Garabedian kernels for an annulus Ω = {z : ρ < |z| < 1}.
The algorithm used for solving the Kerzman-Stein integral equation
is outlined in [1]. The algorithm used to calculate the integrals in
Theorems 3 and 4 is Simpson’s Rule. Maple V [5] was used to do
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1

FIGURE 2. Absolute value of the Ahlfors map.

the computations and graphics. Thanks go to Matt Richey, St. Olaf
College, for helping to streamline our Maple V program.

Using the formula fa = Sa/La we have now computed the Ahlfors
map fa. Theorem 2 shows that the Ahlfors map has zeros exactly at
z = a and z = −ρ/ā. In what follows we take a ∈ Ω ∩ R+ since if a is
a complex number in Ω, then we can use a rotation to move a to the
positive real axis. In this case the zeros of the Ahlfors map are exactly
at z = a and z = −ρ/a. Further, we note that there is a case where the
zeros of the Ahlfors map are symmetric about the origin. Namely, if
we choose a > 0 in Ω such that a = −(−ρ/a). This says that if a =

√
ρ

then the zeros of the Ahlfors map are exactly at z = ±√
ρ.

Let Ω = {z : (1/10) < |z| < 1}. We start with the symmetric case
a = 1/

√
10. In Figures 1 and 2 we sketch the graph of the absolute

value of the Szegő kernel and the absolute value of the Ahlfors map,
respectively. The zero of the Szegő kernel at z = −1/

√
10 and the zeros

of the Ahlfors map at z = ±1/
√

10 are illustrated in these figures.
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FIGURE 3. Square grid over an annulus.
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FIGURE 4. Symmetric case.
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FIGURE 5. Non-symmetric case.

Next we look at the image in the unit disk of a square grid over the
annulus. In Figure 3 the grid over the annulus is sketched. Figure 4
shows the image of this grid in the symmetric case a = 1/

√
10. Figure 5

shows the image of this grid in the case a = 0.5. Notice how the
images of the branch points appear in the unit disk. Also notice how
the grid lines either wrap or deflect around the images of the branch
points as the grid lines in the annulus pass above/below or left/right
of the branch points. Further, these pictures show that the Ahlfors
map preserves the orientation of the outer boundary of the annulus and
reverses the orientation of the inner boundary of the annulus. This fact
can also be seen in a color version of Figure 2 where color represents
the argument of the Ahlfors map.
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