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SOURCE-TYPE SOLUTIONS TO POROUS
MEDIUM EQUATIONS WITH CONVECTION II

PH. LAURENGCOT AND F. SIMONDON

ABSTRACT. Existence and uniqueness of nonnegative
source-type solutions to porous medium equations with con-
vection are investigated in one space dimension. We consider
the case when both diffusion and convection nonlinearities are
pure powers, namely, 7™, m > 1, and 79, ¢ € (1, m), respec-
tively. Results on the behavior of the source-type solution for
small times and estimates of its support are also provided.

1. Introduction. We investigate existence and uniqueness of
nonnegative source-type solutions to degenerate convection-diffusion
equations in one space dimension. More precisely, we consider the
following problem:

(1.1) u + (ul)y — (U™)gz =0 in R x (0,400),
with initial data
(1.2) u(0) = M6,

where M is a positive real number, § denotes the Dirac mass at = 0,
and ¢ and m are nonnegative real numbers satisfying

(1.3) m>1, ¢e€(l,m).

This paper is a continuation of [10], where existence and uniqueness
of the nonnegative source-type solution to (1.1)—(1.2) are proved for
m > 1 and ¢ > m, while the case m = 1 and ¢ > 1 is completely solved
in [3]. These investigations were motivated by the study of the long-
time behavior of the solutions to (1.1) with nonnegative and integrable
initial data ug satisfying |up|p1 = M. Indeed, when ¢ = m+1, the long-
time profile of these solutions is described by the source-type solution
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to (1.1)—(1.2) which turns out to be self-similar in this particular case,
[4, 11]. However, the methods used in [3] and [10] do not seem to apply
when (m, q) are in the whole range given by (1.3). It is the purpose of
this paper to prove existence and uniqueness of the source-type solution
to (1.1)—(1.2) when (m, ¢) satisfies (1.3).

We now state precisely the definition of a source-type solution to (1.1)
we use in this paper.

Definition 1.1. Let M be a positive real number. A source-type
solution of mass M to (1.1) is a function

u € C((0, +00), LYR))NC(R x (0,400)) N L*®(R x (1, +00)), 7 >0,

such that, for each 7 > 0, t — (¢t +7) is a mild solution to (1.1) in the
sense of the nonlinear semigroups theory in L'(R) and

(1.4 limy [ u(a,1)C(2) dz = MC(0),

for each ¢ € Cp(R) (here, Cp(R) denotes the space of bounded and

continuous functions in R).

Let M > 0 and consider a source-type solution u of mass M to (1.1)
in the sense of Definition 1.1. Then u(7) belongs to L*(R) N L*>°(R)
for each 7 > 0, and it follows from [2, Théoréme 2.2] that u satisfies
(1.1) in D'(R x (1,400)). This fact and (1.4) yield that

(1.5) /u(x,t) do=M, t>0.

In order to state our results, we need the following notation. For
M > 0, we denote by Ej; the source-type solution of mass M to the
porous medium equation, namely, the solution to

(1.6) Epre— (E%)ee =0 in R x (0, +00),

(1.7) m/mwmwm:m@,waw,

see [7] and the references therein.
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Our main result then reads

Theorem 1.2. Let M be a positive real number and (m,q) be real
numbers satisfying (1.3). There ezists a unique nonnegative source-type
solution Sy of mass M to (1.1). In addition,

(1.8) Lim .S (t) — Enr (8)] 12 = 0,
where Epy is given by (1.6)—(1.7).

Remark 1.3. In fact, (1.8) also holds true for m > 1 and ¢ € [m, m+1),
see Corollary 3.4 below. As far as we know, the behavior as ¢ — 0 of
the source-type solution to (1.1)—(1.2) is not known for m > 1 and
q > m+ 1. Nevertheless, some scaling arguments seem to indicate that
it is described by the source-type solution to the nonlinear conservation
law z; + (29), = 0.

Next, it follows from [5] that solutions to (1.1) with compactly sup-
ported nonnegative initial data remain compactly supported through
time evolution. Our last result gives an estimate of the size of the
support of nonnegative source-type solutions to (1.1).

Proposition 1.3. Let M be a positive real number and (m,q) real
numbers satisfying (1.3). We denote by Sy the unique nonnegative
source-type solution of mass M to (1.1), and put

gi(t) = lnf{m € Ra SM(m’t) > 0})
fs(t) = sup{ac € Ra SM(xat) > 0}

There exist positive real numbers 1 and v depending only on m, q and
M such that, fort >0,
(1.9)

—’yltl/(m+1) < &(t) <0< fs(t) < 72(t1/(m+1) + t(m+2—€1)/(m+1))‘

We now briefly describe the contents of the paper. In Section 2 we
recall some basic properties of (1.1) which we use in the sequel and
derive an L*-estimate for (u™~!),. In Section 3 we use a scaling
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method to prove that any nonnegative source-type solution of mass
M to (1.1) in the sense of Definition 1.1 satisfies (1.8). A similar
method was used in [8] to identify the behavior as ¢ — 0 of source-type
solutions to porous medium equations with absorption. Uniqueness
then follows, since (1.1) generates a nonlinear semigroup of contractions
in L'(R). The existence part of Theorem 1.2 is proved in Section 4,
and Proposition 1.3 in Section 5.

From now on, we assume that m and ¢ are given real numbers
satisfying (1.3).

2. Preliminaries. The well-posedness of the Cauchy problem for
(1.1) has been investigated by several authors. If u(0) € L!(R), (1.1)
has a unique mild solution u in the sense of the nonlinear semigroups
theory in L'(R) [2]. Existence and uniqueness of generalized solutions

o (1.1) have also been obtained when «(0) is a nonnegative continuous
and bounded function, see [6] and the references therein. In fact, both
notions of solution coincide, provided u(0) lies in a suitable class of
functions.

Hereafter, we shall work with mild solutions. The following result is
a consequence of [2].

Proposition 2.1. For each ug € L'(R), there is a unique mild
solution u € C([0, +00), LX(R)) to (1.1) in the sense of the nonlinear
semigroups theory with u(0) = wg, which we denote by t — Spug,
t > 0. Moreover, if ug € L*(R) N L®(R), t — Siug satisfies (1.1)
in D'(R x (0,400)), and
(2.1) /(Stuo)(x) dx = /uo(w) dz,

(2.2) |Stug|p= < |ug|Leo-

Finally, if up € L*(R) and 4o € L' (R), the following holds
(23) |(Stu0 - Stﬂ0)+|L1 S |(UO — ﬁ0)+‘L17 t Z 0,
where v = max(r, 0).

It follows from (2.3) that, if uy € L'(R) is nonnegative, S;ug > 0 for
t>0.
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We next recall an L*-estimate for mild solutions to (1.1) [11, Section
2.2].

Lemma 2.2. Let up be a nonnegative function in L*(R) and put
u(t) = Siug, t > 0. There exists a positive constant ko (Jug|rt)
depending only on m and |ug|p: such that

(24) 0 <u(z,t) < rolluo|p )t~ ™V (2,8) € R x (0, +00).

We next derive an L>-bound for (u™71),.
Lemma 2.3. Let ug be a nonnegative function in L*(R), and put
u(t) = Siup, t > 0. There exists a positive constant k1 (|uo|rr)
depending only on m, q and |ug|r such that, for t > 0,
(2.5)
—I€1(|UO|L1)tim/(m+1) S V(I,t)

< k1 (Jup| 1) (¢ ™/ (D) ¢ (a-D/(mt )y
for almost every x € R, where

m

m—1

Ve, = - (- (o),

and

(2.6)
\(um_l)z(t)\Lm < k1 (Juolpr) (1 + t(m+1—q)/(m+1))t—m/(m+1)’
(2.7)
(™o (8) Lo < Ra1(luopr)(1 4 ¢/ttt

The L*-estimate of (u™ 1), similar to (2.6) is well-known for the
porous medium equation, see, e.g., [1], and is obtained in [12] for (1.1)
when ¢ > m + 1. However, their proofs are different from the one we
give below.
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Proof of Lemma 2.3. The proof of (2.5) relies on a modification of the
Bernstein technique due to Bénilan, which has been further developed
in [6] and [14]. In the following, k. denotes any positive constant
depending only on m.

Step 1. We first consider a smooth and bounded nonnegative function
vo satisfying 0 < n < vy(z), z € R, for some n > 0. Classical
results then ensure the existence of a unique classical solution v to
(1.1), satisfying v(0) = vy and

0<n<wv(zt)<|vlre, (z,t)€ R x]0,+00).
We put

(V™) (2, t) — v¥(2, t)
k(v(z,t)) ’

where k(r) = 2|vo|T' r — ™, 7 > 0. Then k(v) > 0 and

w(z,t) =

(z,t) € R x [0,400),

Lw=0 in R x (0,400),
where £ is the parabolic operator given by
Lp = p; —mv™ Ypee — (2K (v) + (m — Dk(v)v )pp,
- <21}q%(v) +(m-1- q)vq_1>pac

_ k(’l))k”(v) vlfmp3 _ Ek//(v)vq+1fmp2
m m

k” (U) ,UZqulfmp
) .

mk(v
We first estimate w from above. For that purpose, we put
Wi(t) =Cit™Y2, Oy = (2(m — 1)|vo|7st) Y2

Since v, k(v), W7 are nonnegative and k" (v) is negative, the choice of
C} yields LW; > 0in R x (0, +00). Moreover, since Wi (0) = +oo, the
comparison principle yields

w(z,t) < Wi(t), (x,t) € R x (0,+00),
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hence, for (z,t) € R x (0, +00),

(2.8) < m (Um_l)m _ ,Uq—1> (I,t) < K*|U0|g&fl)/2t—1/2.

m—1
Next, let 7" > 0, and put

Wa(t) = —Cot=/2,
Cy = AT |wo| T + (m — 1) /2|y |L5™/2
Then, if t € (0,T), we have
LWy < %(1 +4Cy(m — )T Y2 — 202 (m — 1)v™ k(v))t3/2
C _
< 72(1 + 4Cy(m — 1)|vy| L2 TH/?
—2C%(m — 1)|vo|P=Ht3/2 < 0.
Since W5(0) = —o0, the comparison principle yields
w(z,t) > Wa(t), (x,t) e R x(0,T);

hence, for (z,t) € R x (0,T),

(e = o @)

m—1

> —h (T[]0 + Juo| (212,

Now, for t > 0, we choose T' = 4t > t. The above estimate then yields

m—1

29) (2@ o ()
> —k(Jvol2 + [vol gl VP12,

for z € R.

Step 2. We now consider a nonnegative function uy € L'(R)NL*®(R)
such that wf € W °(R) and ((uf). — ud) € WY'(R) and put
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u(t) = Siug. It follows from [2] that u is nonnegative, continuous
and bounded in R x [0, +00), and w is in fact the generalized solution
to (1.1) in the sense of [6].

Let 7 > 0. We consider the approximation of u(7) by the sequence
(uo,k)k>1 of nonnegative and smooth functions which is constructed in
[6, pp. 182-183]. Among other properties, (ug ) converges to u(r) in
C(R) and 0 < k™1 < wpy < 2Ju(r)|p=. We denote by uy the classical
solution to (1.1) with initial data ug . On the one hand, it follows from
[6] that (ug(z,t)) converges to u(x,t+ 7) for any (z,t) € R x [0, +00).
On the other hand, we infer from (2.8) and (2.9) that, for each k > 1,
it holds, for (z,t) € R x (0, +00),

— e (fu(r) |2+ Ju(r) | o D212

< (2l )

m—1)/2,_ m m— _
() [ 2112 (m(uk Y, ol 1)<x,t).

We then let & — 400 in the above estimate to obtain, for any ¢t > 7
and almost every = € R,

— e (fu()| %2+ Ju(r)| T D2 — )~V

< (- u ) @),

m—1

e Ui M [}

Finally, for t > 0, we take 7 = ¢/2 in the above formula and use (2.4)
to obtain (2.5). Then (2.6) and (2.7) are straightforward consequences
of (2.4) and (2.5).

Step 3. The general case ug € L'(R), up > 0, then follows from Step
2 and [2, Théoréme 1.3] by a density argument. O
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3. Behavior as ¢t — 0.

Proposition 3.1. Consider M > 0 and let u be a nonnegative
source-type solution of mass M to (1.1), in the sense of Definition 1.1.
Then,

(3.1) lim [u(t) = Enf(t) 12 =0,

where Ey is given by (1.6)—(1.7).

Proof of Proposition 3.1. For A € (0,1), we put
uy(z,t) = Mu(Az, "), (z,t) € R x (0, +00).
Then, for each 7 > 0, t — uy (¢t + 7) is the mild solution to
(3.2) une + A" (ud), — (ui)ee =0 in R x (0,+00)
with initial data uy(7) and satisfies, thanks to (1.5),
(3.3) lux(t)|pr =M, t>0.
In the following we denote by (C;);>1 any positive constant depending

only on m, ¢ and M. Additional dependence on other parameters will
be indicated explicitly.

Since A € (0,1), we infer from (1.3), Lemma 2.2 and Lemma 2.3 that
(3.4) 0 < up(z,t) < Cyt~ YD (18) € R x (0, 400),

(3.5)
(W) (8)| Lo < Ort (1 ¢(mHI-a/(mry oy 5 0,

We next use (3.5) and parabolic regularity results of [9] to obtain

Holder estimates in time in L _(R).

Lemma 3.2. For each ty > 0, ty € (t1,400) and R > 0, there exists
C2(R, t1,ts) such that, for each A € (0,1), h € (0,1) and t € [t1,t2—h],
the following holds

R
(3.6) / W (£ 4 h) — u (2, 8)] dz < Ca(R, b, t2) B/ Cm+D).
“R
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Proof of Lemma 3.2. We fix t; > 0, ta > t; and R > 0. We infer from
(3.5) that, for A € (0,1), h € R and ¢t € [t1, 2],

R
(3.7) / lur(2 + hy ) — un (2, 8)| dz < Ca(R, 1, t2) | B[/™.
R

Thanks to (3.3), (3.4) and (3.7), we are in a position to apply [9,
Theorem 2]. We thus obtain for A € (0,1), h € (0,1) and ¢ € [t1, t2],

R
/ lur (@, + B) — ur(z, 8)] dz < Ca(R, 1, t2)h/ @ HD).
R

The above estimate and (3.4) then yield (3.6). O

We next investigate the behavior of uy for large values of z. We fix
p € C°(R) such that 0 < p <1,

pl)=0 iflz[ <1,  p()=1 if[z] =2,

and put pg(z) = p(z/R), R > 0.

Lemma 3.3. There exists C3 > 0 such that, for each R > 1 and
A € (0,1) the following holds

(3.8) / ux(e, Don(a) de < (14 1),

Proof of Lemma 3.3. Let A € (0,1) and R > 1. For ¢t > 0, we have

/uA(m,t)pR(m) dx = /u(w,)\m+1t)pR(x/)\) dz.

Since z — pr(z/)\) € Co(R), we may let t — 0 in the above equality
and use (1.4) to obtain

(3.9) lim [ ux(z,t)pr(z)dx = 0.
t—0
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Now let t > 0 and 7 € (0,t). Since s — u(s + 7) is a mild solution to
(1.1) with initial data u(7) in L!(R) N L*>°(R), we have

[ wr@ Dor@)de = [ ur@r)pn(o) de
+ %/:/u;”(x,s)p”(%) dr ds
+ )\m;liq /Tt/ug{(a:, s)p'(%) dz ds.

It then follows from (1.3), (3.3) and (3.4) that

‘ [ (e pn(e)de — [ us e rpn(e) do

< %| plra.ce (12/(m41) 4 4lm42=0)/(met1))
We then let 7 — 0 in the above inequality and use (3.9) to obtain (3.8).
O

We are now in a position to complete the proof of Proposition 3.1.
We infer from (3.4), (3.5), (3.6), [13, Theorem 5] and the compactness
of the embedding of W,-?(R) in C(R) that (u}*) is relatively compact
in C([—R, R] X [t1,t2]) for each R > 0 and 0 < t; < ts.

Consequently there is a subsequence (uy/) of (uy) and a nonnegative
function v € C(R x (0,+400)) such that (u}}) converges to v uniformly
on any compact subset of R x (0, 400) as A’ = 0. Consequently, since
m > 1, it follows from the above analysis that, for ¢ > 0,

(3.10) un (t) — uso(t) in Li . (R),
where uy, = v¥/™ € C(R x (0,+00)). Owing to (3.4), (3.8) and (3.10),
we may apply the Vitali convergence theorem and obtain that, for each

t>0,

(3.11) un (t) — uso(t) in L'(R).

Now, let 7 > 0. Since ¢ — wy/(t+7) is the mild solution to (3.2) with
initial data uy/(7) and r — (\')™T1=9r converges to zero in C(R) as
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X — 0, we infer from (3.11) and [2, Théoréme 1.3] that ¢ — ueo(t + 7)
is the mild solution to the porous medium equation z; — (2™)zz = 0
with initial data ue (7).

Finally, consider ( € D(R). We infer from (1.4) that, for each
A€ (0,1),

(3.12) %gr(l] ux(z,t)¢(z) de = M((0).
Let t € (0,1) and 7 € (0,¢t). It follows from (3.2), (3.3) and (3.4) that

(3.13) ‘/u,\r z,t)¢ da:—/u,\r(ac,r)((ac) dx

< Cy¢|w e t?/ (mFL),

We first let 7 — 0 in (3.13) and use (3.12). We then let A’ — 0 in the
resulting estimate and use (3.11) to obtain

‘/um £, 1) () dz— MC(0 )‘ < CalClem /D),

Therefore, u.(0) = MJ, and uy is a nonnegative solution to
(1.6)—(1.7); hence u, = Epr [7]. Since the only possible limit of (uy(t))
as A — 0is Ejps(t) for t > 0, we conclude that in fact the whole sequence
(ux(t)) converges to Ejs(t) in L'(R) as A — 0 for ¢ > 0. Thus,

(3.14) lim |uy (1) — Ep(1)|2 = 0.
A—0

We put A = /"1 Since =1/ (D By (2t~ () 1) = Epr(x,t),
(3.14) yields (3.1). O

In fact, the above proof is valid when ¢ € (1,m + 1). Also, it follows
from [10] that (1.1) has a unique nonnegative source-type solution of
mass M when m > 1 and ¢ € [m,m + 1). We have thus obtained the
behavior as t — 0 of this source-type solution.

Corollary 3.4. Assume thatm > 1 and g € [m,m +1). Let M >0
and u be the nonnegative source-type solution of mass M to (1.1). Then

lim |u(t) — Epr(t)] 2 = 0.
t—0
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4. Proof of Theorem 1.2.

Uniqueness. Let M > 0 and u1,us be two nonnegative source-type
solutions of mass M to (1.1). It follows from (2.1) and (2.3) that, for
t >0 and 7 € (0,1),

|ur(t) — ua ()1 < Jur(7) — ua(7)[Le
< fur(7) = En(7) 2t + | Ea (1) — ua(7)[ L1
We then let 7 — 0 in the above estimate and use Proposition 3.1. This
gives
|U1(t) — u2(t)|L1 = 0,

hence u; = us.

Ezistence. Let ¢ € D(R) be a nonnegative function such that
0<¢<1,Suppy C (~1,+1) and |p|: = 1.

Let M > 0. For any integer n > 1, we put
uon(z) = Mnp(nz), =z €R,

and denote by u, the mild solution to (1.1) with initial data ug .

In the following we denote by (C;);>1 any positive constant depending
only on ¢, m and M. Additional dependence on other parameters will
be indicated explicitly.

Since |ugn|rr = M, we infer from Proposition 2.1, Lemma 2.2 and
Lemma 2.3 that
(4.1) lun(t)|: = M,
(4.2) 0 < up(z,t) < Crt~YmHD (2 4) € R x (0, +00),

(4.3)
(U)o ()| Lo < Oyt (1 4 ¢m @/ (mH)) -y 5 0,

We then proceed as in Lemma 3.2 to prove that, for each t; > 0,
ta € (t1,4+00) and R > 0, there exists Cy(R,t1,t2) such that, for each
n>1,h € (0,1) and t € [t;,ts — h|, the following holds

R
(4.4) /\mem—w@mmg@mm@wmwu
“R
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We next investigate the behavior of u,, for large values of z. We fix
p € C*(R) such that 0 < p <1,

pl)=0 iflz[ <1, p()=1 if[z] =2,

and put pgr(z) = p(z/R), R > 0. Proceeding as in Lemma 3.3, we
obtain that there exists C's > 0 such that, for each R > 1 and n > 1,
the following holds

(4.5) /un(x,t)pR(w) do < %(1 +1).

Arguing as in the proof of Proposition 3.1, we deduce from (4.1)—(4.5)
that there exists a subsequence of (uy,), which we still denote by (uy,),
and a nonnegative function Sy € C(R x (0,+00)) such that, for each
t>0,

(4.6) un(t) — Sy(t) in LY*(R),

and for each R > 0,

(4.7) u, — Sy in C([—R, R] X [1/R, R]).

Let 7 > 0. Since t — uy,(t + 7) is the mild solution to (1.1) with initial

data u,, (1), we infer from (4.6) and [2, Théoréme 1.3] that ¢ — Spr(¢+7)
is the mild solution to (1.1) with initial data Sy (7).

It remains to prove that Sps satisfies (1.4). We first consider ¢ €
D(R). Let t € (0,1). It follows from (1.1), (4.1) and (4.2) that, for
eachn > 1,

(4.8) ‘ / wn (2, £)C () da — / o (@)C () da

< Cyl¢lw et (MFD)

We let n — oo in (4.8) and use (4.6) to obtain

‘/SM(w,t)C(w) dz —M((O)‘ < C4|C\Wz,oot2/(m+1).
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Therefore, for any ¢ € D(R),

lim [ Sy (z,t)((x)dz = M((0).

t—0
The general case ( € Cp(R) then follows from (4.5) by a density

argument. Consequently, Sy, is a nonnegative source-type solution
of mass M to (1.1), and the proof of Theorem 1.2 is complete. O

5. Estimates of the support of Sj;. In this section we prove
Proposition 1.3. Let M > 0 and Sp; be the nonnegative source-type
solution of mass M to (1.1). We also consider a nonnegative function
¢ € D(R) such that 0 < ¢ <1, Supp ¢ = [-1,+1], |¢|r: =1 and
(5.1) sign (z¢'(z)) <0, z€R.

For any integer n > 1, we denote by w,, the mild solution to (1.1) with
initial data ug, given by

uon(z) = Mnp(nz), =z €R.

It follows from the proof of Theorem 1.2, see (4.7), and the uniqueness
of Sys that

(5.2) lim w,(z,t) = Sp(z,t), (z,t) € R x(0,+00).

n—-+o0o

Let n > 1. For t > 0, we put

P,(t) = {z € R,u,(z,t) > 0},
§'(t) = inf P(t),  &£0(t) = sup Po(t),

Vi(z,t) = ( n

p— 1(unm71)z — u?ll> (z,t), z€R.

Since ¢ is compactly supported, we infer from [5, Theorem 1] that, for
each t > 0,

—00 < &' (t) < €7 (t) < +o0.
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We also infer from (5.1) and [5, Theorem 4] that, for each t; > 0 and
ty > t1, the following holds

ta
/ liminf V,,(z,s) ds < £2(te) — €2(t1)
t1

z—E7(s)
TEPn(s)

to

g/ lim sup V,(z, s) ds.
t1 z—ET(s)
T€Pp(s)

Let ¢ > 0. It follows from (2.5) and (5.3) with ¢; = 0 and t; = ¢ that
there exists 72 depending only on m, ¢ and M such that

(4)  E()< 4/  mi2@/eni) g
n
In a similar way, we obtain
1
(5.5) () > == -t/ >0,
n

where 7v; depends only on m, ¢ and M.

Now let ¢t > 0, and consider zg > o(tY/(m+D) 4 ¢(m+2=a)/(m+1)),
It follows from (5.4) that, for n large enough, zy > £7(¢); hence,
un(20,t) = 0. Recalling (5.2), we obtain Sps(zg,t) = 0. Consequently,

(5.6) Eo(t) < o (#/mFD) 4 glmt2=a)/(m+1)y =y
Similarly, (5.5) and (5.2) yield
(5.7) Ei(t) > =t/ D 0.
Finally, let ¢ > 0 and 7 € (0,t). It follows from Theorem 1.2,
(5.6) and (5.7) that Sps(7) is a nonnegative and compactly supported

function in Cp(R). We then infer from [5, Theorem 2| that s — &;(s)
is nondecreasing on [, 4+00). This fact and (5.7) yield

Eo(t) > &5(7) = —y /D),

We let 7 — 0 in the above estimate to obtain that £(¢) > 0 for each
t > 0. The proof that &(t) < 0 for ¢ > 0 is similar. The proof of
Proposition 1.3 is thus complete. ]
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