DUALITY IN NOETHERIAN INTEGRAL DOMAINS

H. PAT GOETERS

A premier paper on torsion-free abelian groups was published by Warfield [25], the duality aspect of which can be summarized as follows. Given a torsion-free abelian group A of rank one, put \mathbf{C}_A equal to the class of torsion-free abelian groups M of finite rank such that M embeds as an $\mathrm{End}(A)$ submodule of A^n for some n. Warfield shows that a torsion-free abelian group M of finite rank satisfies $M \cong_{\mathrm{nat}} \mathrm{Hom}(\mathrm{Hom}(M,A),A)$ exactly when M belongs to \mathbf{C}_A . In functorial terminology, he shows that for any torsion-free rank one group A, the map $M \mapsto \mathrm{Hom}(M,A)$ on \mathbf{C}_A defines a duality.

Reid was interested in extending Warfield's result to more general domains in an effort to classify his irreducible groups. Reid gave sufficient conditions in [22] for an arbitrary integral domain to support Warfield duality, conditions that will receive further attention below. Given a general torsion-free abelian group of finite rank, in order to understand when $\text{Hom}(-A): \mathbf{C}_A \to \mathbf{C}_A$ defines a rank preserving duality, one must know when End(A) supports Warfield duality [11, 12]. This enhances the desire to investigate extensions of Warfield duality to Noetherian domains.

For an integral domain R and a torsion-free module A of rank one, as above, let \mathbf{C}_A represent the category of modules M isomorphic to $\operatorname{End}_R(A)$ -submodules A^n for some n. Call a module M, A-reflexive, if $M \cong_{\mathrm{nat}} \operatorname{Hom}(\operatorname{Hom}(M,A),A)$ (the unadorned $\operatorname{Hom}(M,A)$ will be used when the ring R is prescribed). In $[\mathbf{6}]$, an integral domain R is called a Warfield domain if, for any rank one module A, $\operatorname{Hom}(-,A)$: $\mathbf{C}_A \to \mathbf{C}_A$ defines a duality. It is shown in $[\mathbf{9}]$ that, when R is a Noetherian domain whose integral closure is finitely generated over R, then R is Warfield if and only if every ideal of R is two-generated. The restriction on the integral closure in $[\mathbf{9}]$ was needed to show that, when R is a local domain such that every ideal is two generated, and A is a rank one R-module with endomorphism ring R, then A is finitely generated over R.

Received by the editors on August 7, 1996, and in revised form on July 21, 1997.

A keen description of the integral closure of a local domain R whose ideals are two-generated is provided in [18] and was used in [6] to circumvent the difficulties encountered in [9]. Bazzoni and Salce show that a Noetherian domain is Warfield exactly when every ideal is two-generated.

In Section 2 we show that any one-dimensional Noetherian domain has the property that every rank one module is locally finitely generated over its ring of endomorphisms. This allows us to give a direct and simpler proof that a Noetherian domain is Warfield exactly when each ideal is two-generated.

An issue related to the duality problem is, under what circumstances is the functor $\operatorname{Hom}(-,A)$ exact on \mathbf{C}_A whenever A is a rank one module? That $\operatorname{Hom}(-,A)$ is exact on \mathbf{C}_A when $R=\mathbf{Z}$ and A is rank-1 was first proven in [24] but seems to be implicated in results from [2]. We will show, for a Noetherian integral domain R, that $\operatorname{Hom}(-,A)$ is exact on \mathbf{C}_A for every rank one module A if and only if every ideal of R is two generated.

1. Integral domains. Throughout this section R will represent an integral domain and Q the quotient field of R. Following the notation of [22], given a torsion-free module A, set $E_A = \{\alpha \in Q \mid \alpha A \subseteq A\}$. In case A has rank one, $E_A = \operatorname{End}_R(A)$.

The category C_A consists of the modules isomorphic to E_A -submodules of A^n for some positive integer n. Reid considered two conditions on a ring R in his paper [22].

Condition \mathbf{R}_1 . For any two rank-1 modules $A \leq B$ with $E_B \leq E_A$, $\operatorname{Ext}^1_R(A,B)$ is torsion-free.

Condition \mathbf{R}_2 . For any two rank-1 modules $A \leq B$ with $E_B \leq E_A$, A is B-reflexive.

We will consider these conditions and additionally two modifications of \mathbf{R}_1 .

Modification \mathbf{R}_1^* . For any rank-1 module A, Hom (-, A) is exact on \mathbf{C}_A .

Modification \mathbf{R}_1^e . For any two rank-1 modules $A \leq B$ with $E_B \leq E_A$, $\operatorname{Ext}_{E_B}^1(A, B)$ is torsion-free.

In [6], R is called a Warfield domain if the finite rank A-reflexive modules are precisely the modules in \mathbf{C}_A , for any rank one module A (it is an easy exercise in showing that any finite rank A-reflexive module generally belongs to \mathbf{C}_A). Reid showed that the conditions \mathbf{R}_1 and \mathbf{R}_2 on R imply that R is Warfield. His approach is to use \mathbf{R}_1 to establish \mathbf{R}_1^* .

Proposition 1 [22]. $\mathbf{R}_1^* + \mathbf{R}_2$ implies R is a Warfield domain.

Proof. Let $M \in \mathbf{C}_A$, and let A be a rank-1 module. We will show that M is A-reflexive by induction on the rank of M. The rank-1 case is the assertion \mathbf{R}_2 . Regard M as an E_A -submodule of A^n for some n. By considering a projection π of A^n onto an appropriate component of A^n and taking $\pi' = \pi|_M$, we obtain a sequence $0 \to K \to M \stackrel{\pi'}{\to} B \to 0$ with B a nonzero E_A -submodule of A and $K = \operatorname{Ker} \pi$ an E_A -submodule of M.

From
$$\mathbf{R}_1^*$$
,
$$0 \longrightarrow B^* \longrightarrow M^* \longrightarrow K^* \longrightarrow 0$$

is exact, where we are using * to denote Hom (-,A). Clearly each of the terms is an E_A -module, and it is easy to see that each belongs to \mathbf{C}_A . From condition \mathbf{R}_1^* again, the bottom row of the commutative rectangle is exact:

By induction, the outer vertical maps are isomorphisms, and by diagram chasing, so is the middle. \Box

We remind the reader of the following property.

Lemma 2. Let S be a ring extension of R in Q and M and N torsion-free modules which are S-modules. Then $\operatorname{Hom}(M,N)=\operatorname{Hom}_S(M,N)$.

Submodules of a product, A^{I} , of a rank-1 module A enjoy the following property. The proof appears in [10] and also in [22].

Lemma 3. Let A be a rank-1 module and M a submodule of a product of copies of A. If K is a finite rank pure submodule of M, then M/K is A-torsionless, in that

$$\cap \{Ker f \mid f : M/K \longrightarrow A\} = 0.$$

A consequence of Lemma 3 is that C_A is closed under the formation of torsion-free images.

Proposition 4. \mathbf{R}_1 implies \mathbf{R}_1^* and \mathbf{R}_1^e .

Proof. Assume that \mathbf{R}_1 holds for R, and let A be a rank-1 module with $S=E_A$. By Lemma 2, two short exact sequences of S-modules are equivalent, precisely when they are equivalent when viewed as R-modules. This implies that $\operatorname{Ext}_S^1(M,N)$ is an R-submodule of $\operatorname{Ext}_R^1(M,N)$ when M and N are torsion-free S-modules, so \mathbf{R}_1 clearly implies \mathbf{R}_1^e .

To show that \mathbf{R}_1^* holds, we will show for each $M \in \mathbf{C}_A$ that A is injective with respect to any pure sequence $0 \to K \to M \to B \to 0$, and $\operatorname{Ext}_R^1(M,A)$ is torsion-free by induction on rank M. Because of \mathbf{R}_1 , this is true when rank M=1. In general, given a sequence

$$0\longrightarrow K\longrightarrow M\longrightarrow B\longrightarrow 0$$

with K and B of smaller rank than M, we obtain

$$0 \longrightarrow B^* \longrightarrow M^* \longrightarrow K^* \stackrel{\alpha}{\longrightarrow} \operatorname{Ext}^1_B(B,A)$$

where * = Hom(-, A).

Lemma 3 implies $B \in \mathbf{C}_A$. As argued in [22, Corollary 2.7], for any $N \in \mathbf{C}_A$, rank Hom $(N, A) = \operatorname{rank} N$, so by measuring ranks we find that Im α is torsion. Because $\operatorname{Ext}_R^1(B, A)$ is torsion-free, Lemma 3 and induction,

$$0 \longrightarrow B^* \longrightarrow M^* \longrightarrow K^* \longrightarrow 0$$

is exact. This leaves

$$0 \longrightarrow \operatorname{Ext}^1_R(B,A) \longrightarrow \operatorname{Ext}^1_R(M,A) \longrightarrow \operatorname{Ext}^1_R(K,A)$$

exact. Thus, $\operatorname{Ext}^1_R(M,A)$ is torsion-free and induction is complete. \square

In [9] the condition \mathbf{R}_1 was shown to be equivalent to the condition that R is Dedekind, while below we will show that \mathbf{R}_1^e is equivalent to the condition that every ideal of R is two-generated. For example, any subring R of a quadratic number field satisfies \mathbf{R}_1^e but only satisfies \mathbf{R}_1 when R is integrally closed [11, Example 2], so in general \mathbf{R}_1^e need not imply \mathbf{R}_1 .

Theorem 5. \mathbf{R}_1^* is equivalent to \mathbf{R}_1^e .

Proof. First assume that \mathbf{R}_1^* holds, and let A and B denote rank-1 modules with $A \leq B$ and $E_B \leq E_A$. Suppose $0 \to B \to M \to A \to 0$ represents an element in $\operatorname{Ext}_{E_B}^1(A,B)[r]$, for some $0 \neq r \in E_B$. (Here we use the notation T[r] to denote $\{x \in T | rx = 0\}$ for a given module T.) Then

$$(\delta) \qquad 0 \longrightarrow B \longrightarrow M \longrightarrow A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow rB \longrightarrow M' \longrightarrow A \longrightarrow 0$$

is commutative with split bottom row. Diagram chasing reveals an E_B -module embedding of M into $M'\cong A\oplus B \leq B\oplus B$ so that $M\in \mathbf{C}_B$. By \mathbf{R}_1^* , Hom (-,B) is exact on the top row of (δ) , so the top row must split. Consequently, $\operatorname{Ext}_{E_B}^1(A,B)$ is torsion-free.

Conversely, under condition \mathbf{R}_1^e , let B be a rank-1 module and $S = E_B$. Mimicking the proof of Proposition 4 allows us to conclude that

Hom $_S(-,B)$ is exact on \mathbf{C}_B . But Lemma 2 implies that Hom (-,B)= Hom $_S(-,B)$ relative to \mathbf{C}_B . Therefore, \mathbf{R}_1^* holds. \square

We close this section by recalling a result from [9] relating the importance of Warfield domains to module theory.

Proposition 6. The following are equivalent.

- (1) R is a Warfield domain.
- (2) For any rank-1 module A, the finite rank modules isomorphic to some module of the form $\operatorname{Hom}(K, A)$ are precisely the members of \mathbf{C}_A .
- 2. Noetherian integral domains. In this section the ring R will represent a Noetherian integral domain. A ring R is called *reflexive* if any finitely generated torsion-free R-module is R-reflexive. An elegant summary of results obtained during the 60's relative to the Noetherian integral domains that are reflexive appears in [16], from which we extract the following. We will represent the set of maximal ideals of R by $\max(R)$.

Theorem [14]. Let R be a Noetherian integral domain. The following conditions are equivalent.

- (1) R is a reflexive ring.
- (2) Every ideal of R is R-reflexive.
- (3) $\operatorname{Ext}_R^1(M,R) = 0$ for all finitely generated torsion-free modules M.
- (4) R has Krull dimension 1 and P^{-1} is two-generated for all maximal ideals P of R.

A beautiful theorem of Matlis, [16, Theorem 57], which generalizes Theorem 7.7 in [5] is the following.

Theorem [3]. Every ideal of an integral domain R can be generated by two elements if and only if R is Noetherian and any finitely generated ring extension of R in Q is reflexive.

Let \overline{R} denote the integral closure of R in its quotient field. When R is one-dimensional and local, \overline{R} fails to be finitely generated over R precisely when \overline{R}/R has a nonzero divisible submodule [19]. Using Matlis' development of divisible modules we can derive a result fundamental to the study of rank one modules over one-dimensional Noetherian domains, Theorem 8. First we need a lemma whose proof appears in [9, page 245]. Recall that an integral domain is h-local if

- (i) every nonzero element is contained in only finitely many maximal ideals and
- (ii) any nonzero prime ideal is contained in a unique maximal ideal. In particular, every one-dimensional Noetherian domain is h-local.

Lemma 7. Let R be an h-local domain, A a rank one module, and $M \leq A^n$ for some n. Then, for any $P \in \max(R)$, $\operatorname{Hom}_R(M,A)_P = \operatorname{Hom}_{R_P}(M_P, A_P)$.

Theorem 8. Let R be a Noetherian domain of dimension one. If A is a rank one R-module, then A is locally finitely generated over its ring of endomorphisms.

Proof. By the Krull-Akizuki theorem, E_A is one-dimensional Noetherian, so there is no loss in generality in assuming that $E_A = R$. By Lemma 7, $R_P = E_{A_P}$ for any $P \in \max(R)$, so we may assume that R is local with $E_A = R$ in order to show that A is finitely generated.

We may assume (up to isomorphism) that A contains R. In [20], Matlis shows that, for a one-dimensional local domain R, the artinian modules are precisely the submodules of \mathcal{E}^n for some n where \mathcal{E} is the injective envelope of P^{-1}/R . Any finitely generated submodule T of Q/R has finite length [21], hence by induction on the length we may show that T contains a nonzero submodule T' with PT' = 0. Then $T' \leq P^{-1}/R$ and Q/R is an essential extension of P^{-1}/R . Thus Q/R embeds in \mathcal{E} and thus A/R is artinian.

Let S/R denote the maximal divisible submodule of A/R. As expected, A/S is reduced, [20, Theorem 1.9]. Because A/R is artinian, Theorem 5.1 in [19] applies to show that A/S is finitely generated. In as much as $E_A = R$, the proof is complete once we argue that S is a

ring and A is an S-module, for then S = R.

If $0 \neq s = t/r \in S$, with $t,r \in R$, then rS + R = S since S/R is divisible. But then, $sS = tS + sR \subseteq S$ and S is a ring. Likewise, if $a = u/v \in A$ with $u,v \in R$, then vS + R = S implying that $aS = aR + uS \subseteq A$. Thus, A is an S-module. \square

Corollary 9. If R is local with every ideal two-generated and A is a rank one module with $E_A = R$, then $A \cong R$.

Proof. By the Bass-Matlis theorem, R is reflexive so, by the Jans-Bass-Matlis theorem, R is one-dimensional. Also, Proposition 7.2 in [5] states that any ideal of R is projective over its endomorphism ring. Assuming, without loss of generality, that $R \subseteq A$, we have shown in the proof of Theorem 8 that A/R is finitely generated. Since A/R is torsion, we conclude that A is isomorphic to an ideal of R. Since $E_A = R$, A is projective over the local ring R. This yields $A \cong R$.

The equivalence of (1) and (2) in the theorem below was first established in [9], under the assumption that the integral closure of R is a finite ring extension of R, using the Bass-Matlis result. Due to Theorem 8, the arguments used in [9] can go through to remove the restriction on the integral closure of R.

Theorem 10. Let R be a Noetherian integral domain. The following are equivalent.

- (1) R is a Warfield domain.
- (2) Every ideal of R is two generated.
- (3) Each rank one module A is injective in the category C_A .
- (4) For any rank one module A, $\operatorname{Ext}_{E_A}^1(B,A)$ is torsion-free for any E_A -submodule B of A.
 - (5) Every ring extension of R in Q is a reflexive ring.

Proof. (1) \rightarrow (5). If S is a ring extension of R in Q, then every member of \mathbb{C}_S is S-reflexive. Consequently, S is a reflexive ring.

 $(5) \rightarrow (3)$. Since E_A inherits property (5), we may assume that $E_A = R$. In order to establish that $\operatorname{Hom}(-,A)$ is exact relative to a sequence

$$0 \longrightarrow K \longrightarrow L \longrightarrow M \longrightarrow 0$$
,

we may consider the functor $\operatorname{Hom}(-,A)_P$ where P belongs to $\max(R)$. By the Jans-Bass-Matlis theorem, because R is reflexive, R is one-dimensional. Lemma 7 applies and $\operatorname{Hom}(N,A)_P = \operatorname{Hom}_{R_P}(N_P,A_P)$ for any $N \in \mathbf{C}_A$. So, establishing (3) for A is the same as checking that $\operatorname{Hom}_{R_P}(-,A_P)$ is exact on

$$(\varepsilon) 0 \longrightarrow K_P \longrightarrow L_P \longrightarrow M_P \longrightarrow 0.$$

Since every extension of R_P in Q is necessarily reflexive, every ideal of R_P is two-generated by the Bass-Matlis theorem. Because of this, Corollary 9 implies that $A_P \cong R_P$. Also, as $M \in \mathbf{C}_A$, M embeds in A^n for some n and, consequently, M_P embeds in A_P^n . Therefore, M_P is finitely generated torsion-free and, by the Jans-Bass-Matlis theorem, $\operatorname{Ext}_{R_P}^1(M_P, A_P) = 0$. This shows that A_P is injective relative to (ε) .

- $(3) \leftrightarrow (4)$. This is Theorem 5 for Noetherian domains.
- $(3) \rightarrow (2)$. If S is any ring extension of R in Q, and M is a finitely generated S-module, then select a resolution

$$(\sigma) \qquad 0 \longrightarrow K \longrightarrow S^n \longrightarrow M \longrightarrow 0.$$

By (3) and Lemma 2, $\operatorname{Hom}_S(-,S)$ is exact relative to (σ) from which we deduce that $0 \to \operatorname{Ext}^1_S(M,S) \to 0$ is exact. By the Jans-Bass-Matlis theorem, S is a reflexive ring. The Bass-Matlis theorem then affords that every ideal of R is two-generated.

 $(2) \to (1)$. Let A be a rank one R-module, and let $M \in \mathbf{C}_A$. By the theorems of Bass-Matlis and Jans-Bass-Matlis, R is one-dimensional. It is enough to show by Lemma 7 that $M_P \cong \operatorname{Hom} (\operatorname{Hom} (M_P, A_P), A_P)$ and, since every ideal of R_P is two-generated, we may assume that R is local.

As in the proof of Theorem 8, assuming that $R \subseteq A$, let S be the ring extension of R in Q for which S/R is the maximal divisible submodule of A/R. Recall that A is isomorphic to an ideal of S. We claim that S is local and every ideal of S is two-generated.

Let J be an ideal of S, and consider $I = J \cap R$ and J' = SI. There is a $0 \neq r \in R$ for which $rS \subseteq J'$. Then $S = rS + R \subseteq J' + R \subseteq S$, so $J = J' + I \subseteq J'$. Therefore, J = SI is two-generated, and if P is the maximal ideal of R, then PS is the maximal ideal of S. As mentioned in the proof of Corollary 9, since every ideal of S is two-generated, Proposition 7.2 in [5] shows that A is projective over its endomorphism ring E. But E is semi-local, so $A \cong E$. By the Bass-Matlis theorem, E is reflexive, implying that E is A-reflexive as desired.

Corollary 11. A Noetherian integral domain R is a Warfield domain if and only if \mathbf{R}_2 holds for R.

Proof. Suppose \mathbb{R}_2 holds for R. Given any ring extension S of R in Q, every ideal of S is S-reflexive. By the Jans-Bass-Matlis theorem, S is a reflexive ring. Therefore, R is Warfield by Theorem 10. \square

REFERENCES

- 1. D.M. Arnold, Finite rank torsion-free Abelian groups and rings, Lecture Notes in Math. 931 (1982).
- 2. D.M. Arnold, B. O'Brien and J.D. Reid, Quasi-pure injective and projective torsion-free abelian groups of finite rank, Proc. London Math. Soc. (3) 38 (1979), 532–544.
- 3. Hyman Bass, Injective dimension in Noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.
- 4. ——, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962), 319–327.
 - 5. ———, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
- 6. Silvani Bazzoni and Luigi Salce, Warfield domains, J. Algebra, to appear.
- 7. Robert Gilmer and William J. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ. 7-2 (1967), 133-149.
- 8. —, On Jonsson algebras over a commutative ring, J. Pure Appl. Algebra 49 (1987), 133–159.
- 9. H. Pat Goeters, Warfield duality and module extensions over a Noetherian domain, in Abelian groups and modules, Math. Appl., Kluwer Acad. Publ., Dordrecht, 1995
- 10. ——, Cobalanced torsion-free abelian groups, Comm. Algebra 21 (1993), 2715–2726.
- 11. ——, An extension of Warfield duality for Abelian groups, J. Algebra 180 (1996), 848–861.

- 12. ——, Duality and self-reflexive torsion-free groups, J. Pure Appl. Algebra, to appear.
- 13. William Heinzer, Integral domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164-170.
- ${\bf 14.}$ J.P. Jans, Duality~in~Noetherian~rings, Proc. Amer. Math. Soc. ${\bf 12}~(1961),$ 829–835.
 - 15. ——, Rings and homology, Holt, New York, 1964.
- 16. Eben Matlis, Torsion-free modules, The University of Chicago Press, Mathematics Series, 1972.
 - 17. ——, Reflexive domains, J. Algebra 8 (1968), 1-33.
- 18. _____, The two-generator problem for ideals, Michigan Math. J. 17 (1970), 257-265.
- 19. ——, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Math. 327 (1973).
- 20. ——, Injective modules over noetherian rings, Pacific J. Math. 8 (1958), 511–528.
- 21. H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1980.
- 22. J.D. Reid, Warfield duality and irreducible groups, Contemp. Math. 130 (1992), 361–370.
- 23. Joseph Rotman, An introduction to homological algebra, Academic Press, New York, 1979.
- 24. C.I. Vinsonhaler and W.J. Wickless, Projective and injective classes of completely decomposable groups, in Abelian group theory, Lecture Notes in Math. 1006 (1982/83), 144–163.
- 25. R.B. Warfield, Homomorphisms and duality for abelian groups, Math. Z. 107 (1968), 189–212.
- 26. ——, Extensions of torsion-free abelian groups of finite rank, Arch. Math. (Basel) 23 (1972), 145–150.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, AL 36849-5310 $E\text{-}mail\ address:}$ goetehp@mail.auburn.edu