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DUALITY IN NOETHERIAN INTEGRAL DOMAINS

H. PAT GOETERS

A premier paper on torsion-free abelian groups was published by
Warfield [25], the duality aspect of which can be summarized as follows.
Given a torsion-free abelian group A of rank one, put C4 equal to
the class of torsion-free abelian groups M of finite rank such that
M embeds as an End (A) submodule of A™ for some n. Warfield
shows that a torsion-free abelian group M of finite rank satisfies
M =, Hom (Hom (M, A), A) exactly when M belongs to C4. In
functorial terminology, he shows that for any torsion-free rank one
group A, the map M — Hom (M, A) on C,4 defines a duality.

Reid was interested in extending Warfield’s result to more general
domains in an effort to classify his irreducible groups. Reid gave
sufficient conditions in [22] for an arbitrary integral domain to support
Warfield duality, conditions that will receive further attention below.
Given a general torsion-free abelian group of finite rank, in order to
understand when Hom (—A) : C4 — C4 defines a rank preserving
duality, one must know when End (A) supports Warfield duality [11,
12]. This enhances the desire to investigate extensions of Warfield
duality to Noetherian domains.

For an integral domain R and a torsion-free module A of rank one,
as above, let Cy4 represent the category of modules M isomorphic to
Endg(A)-submodules A™ for some n. Call a module M, A-reflezive,
if M >, Hom (Hom (M, A), A) (the unadorned Hom (M, A) will be
used when the ring R is prescribed). In [6], an integral domain R is
called a Warfield domain if, for any rank one module A, Hom (—, A) :
C4 — Cy4 defines a duality. It is shown in [9] that, when R is a
Noetherian domain whose integral closure is finitely generated over R,
then R is Warfield if and only if every ideal of R is two-generated. The
restriction on the integral closure in [9] was needed to show that, when
R is a local domain such that every ideal is two generated, and A is
a rank one R-module with endomorphism ring R, then A is finitely
generated over R.
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A keen description of the integral closure of a local domain R whose
ideals are two-generated is provided in [18] and was used in [6] to
circumvent the difficulties encountered in [9]. Bazzoni and Salce show
that a Noetherian domain is Warfield exactly when every ideal is two-
generated.

In Section 2 we show that any one-dimensional Noetherian domain
has the property that every rank one module is locally finitely generated
over its ring of endomorphisms. This allows us to give a direct and
simpler proof that a Noetherian domain is Warfield exactly when each
ideal is two-generated.

An issue related to the duality problem is, under what circumstances
is the functor Hom (—, A) exact on C4 whenever A is a rank one
module? That Hom (—, A) is exact on C4 when R = Z and A is rank-1
was first proven in [24] but seems to be implicated in results from [2].
We will show, for a Noetherian integral domain R, that Hom (—, A) is
exact on C 4 for every rank one module A if and only if every ideal of
R is two generated.

1. Integral domains. Throughout this section R will represent an
integral domain and @) the quotient field of R. Following the notation
of [22], given a torsion-free module A, set E4 = {a € Q | ¢A C A}. In
case A has rank one, E4 = Endg(A).

The category C 4 consists of the modules isomorphic to E4-submodules
of A™ for some positive integer n. Reid considered two conditions on a
ring R in his paper [22].

Condition Ry. For any two rank-1 modules A < B with Eg < Ejy,
Exty (A, B) is torsion-free.

Condition Ry. For any two rank-1 modules A < B with Eg < Ej,
A is B-reflexive.

We will consider these conditions and additionally two modifications
of R1 .

Modification Ry. For any rank-1 module A, Hom (—, A) is exact on
Ca.
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Modification R§. For any two rank-1 modules A < B with Fp < Ey,
Extp, (A, B) is torsion-free.

In [6], R is called a Warfield domain if the finite rank A-reflexive
modules are precisely the modules in C4, for any rank one module A
(it is an easy exercise in showing that any finite rank A-reflexive module
generally belongs to C4). Reid showed that the conditions Ry and Ry
on R imply that R is Warfield. His approach is to use Ry to establish
R;.

Proposition 1 [22]. R} + Ry implies R is a Warfield domain.

Proof. Let M € C4, and let A be a rank-1 module. We will show
that M is A-reflexive by induction on the rank of M. The rank-1 case
is the assertion Ry. Regard M as an E 4-submodule of A™ for some n.
By considering a projection 7 of A™ onto an appropriate component of

A™ and taking 7’ = 7|ps, we obtain a sequence 0 - K — M 5 B — 0

with B a nonzero F s-submodule of A and K = Ker m an F 4-submodule
of M.

From R7,
0—B*"— M*"— K*"—0
is exact, where we are using * to denote Hom (—, A). Clearly each of
the terms is an F4-module, and it is easy to see that each belongs to

C4. From condition R} again, the bottom row of the commutative
rectangle is exact:

0 K M B 0
0 K** M** B** 0‘

By induction, the outer vertical maps are isomorphisms, and by dia-
gram chasing, so is the middle. O

We remind the reader of the following property.
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Lemma 2. Let S be a ring extension of R in @ and M and
N torsion-free modules which are S-modules. Then Hom (M,N) =
Hom s(M, N).

Submodules of a product, A!, of a rank-1 module A enjoy the
following property. The proof appears in [10] and also in [22].

Lemma 3. Let A be a rank-1 module and M a submodule of a
product of copies of A. If K is a finite rank pure submodule of M, then
M/K is A-torsionless, in that

N{Kerf|f: M/K — A} =0.

A consequence of Lemma 3 is that C 4 is closed under the formation
of torsion-free images.

Proposition 4. R; implies R} and Rf.

Proof. Assume that R; holds for R, and let A be a rank-1 module
with S = F4. By Lemma 2, two short exact sequences of S-modules
are equivalent, precisely when they are equivalent when viewed as
R-modules. This implies that Ext5(M,N) is an R-submodule of
Extk (M, N) when M and N are torsion-free S-modules, so R, clearly
implies RS.

To show that R} holds, we will show for each M € C4 that A is
injective with respect to any pure sequence 0 - K — M — B — 0,
and Ext},(M, A) is torsion-free by induction on rank M. Because of
R, this is true when rank M = 1. In general, given a sequence

0 —K—M-—B—0
with K and B of smaller rank than M, we obtain

0 — B* — M* — K* % ExthL(B, A)

where x = Hom (—, A).
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Lemma 3 implies B € C4. As argued in [22, Corollary 2.7], for any
N € Cy4, rankHom (N, A) = rank N, so by measuring ranks we find
that Im « is torsion. Because Extp (B, A) is torsion-free, Lemma 3 and
induction,

0—B*"—M"— K"—0
is exact. This leaves
0 — Extk(B, A) — Exti(M, A) — Exth(K, A)

exact. Thus, Exty(M, A) is torsion-free and induction is complete.
a

In [9] the condition Ry was shown to be equivalent to the condition
that R is Dedekind, while below we will show that R is equivalent to
the condition that every ideal of R is two-generated. For example, any
subring R of a quadratic number field satisfies R{ but only satisfies R;
when R is integrally closed [11, Example 2], so in general R$ need not
imply R;.

Theorem 5. R} s equivalent to RY.

Proof. First assume that R} holds, and let A and B denote rank-1
modules with A < B and Fg < E4. Suppose 0 > B—> M — A — 0
represents an element in Exty, (A, B)[r], for some 0 # r € Ep. (Here
we use the notation T'[r] to denote {x € T'|ra = 0} for a given module
T.) Then

0 B M A 0
® ]
0 rB M’ A 0

is commutative with split bottom row. Diagram chasing reveals an Eg-
module embedding of M into M’ < A@® B < B® B so that M € Cg.
By R}, Hom (—, B) is exact on the top row of (4), so the top row must
split. Consequently, Ext};B (A, B) is torsion-free.

Conversely, under condition R, let B be a rank-1 module and S =
Ep. Mimicking the proof of Proposition 4 allows us to conclude that
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Hom g(—, B) is exact on Cg. But Lemma 2 implies that Hom (—, B) =
Hom s(—, B) relative to Cp. Therefore, R} holds. O

We close this section by recalling a result from [9] relating the
importance of Warfield domains to module theory.

Proposition 6. The following are equivalent.
(1) R is a Warfield domain.

(2) For any rank-1 module A, the finite rank modules isomorphic to
some module of the form Hom (K, A) are precisely the members of C 4.

2. Noetherian integral domains. In this section the ring R will
represent a Noetherian integral domain. A ring R is called reflexive if
any finitely generated torsion-free R-module is R-reflexive. An elegant
summary of results obtained during the 60’s relative to the Noetherian
integral domains that are reflexive appears in [16], from which we
extract the following. We will represent the set of maximal ideals of R
by max(R).

Theorem [14]. Let R be a Noetherian integral domain. The follow-
ing conditions are equivalent.

(1) R is a reflexive ring.
(2) Every ideal of R is R-reflexive.
(3) Exty (M, R) = 0 for all finitely generated torsion-free modules M.

(4) R has Krull dimension 1 and P~ is two-generated for all mazimal
ideals P of R.

A beautiful theorem of Matlis, [16, Theorem 57|, which generalizes
Theorem 7.7 in [5] is the following.

Theorem [3]. Every ideal of an integral domain R can be generated
by two elements if and only if R is Noetherian and any finitely generated
ring extension of R in Q is reflexive.
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Let R denote the integral closure of R in its quotient field. When R is
one-dimensional and local, R fails to be finitely generated over R pre-
cisely when R/R has a nonzero divisible submodule [19]. Using Matlis’
development of divisible modules we can derive a result fundamental
to the study of rank one modules over one-dimensional Noetherian do-
mains, Theorem 8. First we need a lemma whose proof appears in [9,
page 245]. Recall that an integral domain is h-local if

(i) every nonzero element is contained in only finitely many maximal
ideals and

(ii) any nonzero prime ideal is contained in a unique maximal ideal.

In particular, every one-dimensional Noetherian domain is h-local.

Lemma 7. Let R be an h-local domain, A a rank one module, and
M < A™ for some n. Then, for any P € max(R), Homg(M,A)p =
HOIIIRP(MP,AP).

Theorem 8. Let R be a Noetherian domain of dimension one. If
A is a rank one R-module, then A is locally finitely generated over its
ring of endomorphisms.

Proof. By the Krull-Akizuki theorem, F 4 is one-dimensional Noethe-
rian, so there is no loss in generality in assuming that £4 = R. By
Lemma 7, Rp = E4, for any P € max(R), so we may assume that R
is local with £4 = R in order to show that A is finitely generated.

We may assume (up to isomorphism) that A contains R. In [20],
Matlis shows that, for a one-dimensional local domain R, the artinian
modules are precisely the submodules of €™ for some n where £ is the
injective envelope of P~1/R. Any finitely generated submodule T of
Q@/R has finite length [21], hence by induction on the length we may
show that T' contains a nonzero submodule 77 with PT' = 0. Then
T' < P7'/R and Q/R is an essential extension of P~!'/R. Thus Q/R
embeds in £ and thus A/R is artinian.

Let S/R denote the maximal divisible submodule of A/R. As
expected, A/S is reduced, [20, Theorem 1.9]. Because A/R is artinian,
Theorem 5.1 in [19] applies to show that A/S is finitely generated. In
as much as F4 = R, the proof is complete once we argue that S is a



526 H.P. GOETERS

ring and A is an S-module, for then S = R.

If0#s=t/resS, witht,r € R, then rS+ R = S since S/R is
divisible. But then, sS = tS + sR C S and S is a ring. Likewise,
if a = u/v € A with w,v € R, then vS + R = S implying that
aS =aR+uS C A. Thus, A is an S-module. O

Corollary 9. If R is local with every ideal two-generated and A is a
rank one module with E4 = R, then A = R.

Proof. By the Bass-Matlis theorem, R is reflexive so, by the Jans-
Bass-Matlis theorem, R is one-dimensional. Also, Proposition 7.2 in
[5] states that any ideal of R is projective over its endomorphism ring.
Assuming, without loss of generality, that R C A, we have shown in
the proof of Theorem 8 that A/R is finitely generated. Since A/R
is torsion, we conclude that A is isomorphic to an ideal of R. Since
E4, = R, A is projective over the local ring R. This yields A = R.
O

The equivalence of (1) and (2) in the theorem below was first es-
tablished in [9], under the assumption that the integral closure of R
is a finite ring extension of R, using the Bass-Matlis result. Due to
Theorem 8, the arguments used in [9] can go through to remove the
restriction on the integral closure of R.

Theorem 10. Let R be a Noetherian integral domain. The following
are equivalent.

(1) R is a Warfield domain.
(2) Every ideal of R is two generated.
(3) Each rank one module A is injective in the category Cy.

(4) For any rank one module A, Exty, (B, A) is torsion-free for any
E a-submodule B of A.

(5) Every ring extension of R in Q is a reflexive ring.

Proof. (1) — (5). If S is a ring extension of R in @, then every
member of Cg is S-reflexive. Consequently, S is a reflexive ring.
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(5) — (3). Since E4 inherits property (5), we may assume that
E4 = R. In order to establish that Hom (—, A) is exact relative to a
sequence

00— K —L—M—0,

we may consider the functor Hom (—, A) p where P belongs to max(R).
By the Jans-Bass-Matlis theorem, because R is reflexive, R is one-
dimensional. Lemma 7 applies and Hom (N, A)p = Hom g, (Np, Ap)
for any N € Cy4. So, establishing (3) for A is the same as checking
that Hom g, (—, Ap) is exact on

(e) 00— Kp—Lp— Mp —0.

Since every extension of Rp in () is necessarily reflexive, every ideal
of Rp is two-generated by the Bass-Matlis theorem. Because of this,
Corollary 9 implies that Ap = Rp. Also, as M € C4, M embeds in
A" for some n and, consequently, Mp embeds in A%. Therefore, Mp
is finitely generated torsion-free and, by the Jans-Bass-Matlis theorem,
Exty, (Mp, Ap) = 0. This shows that Ap is injective relative to (¢).

(3) <> (4). This is Theorem 5 for Noetherian domains.

(3) — (2). If S is any ring extension of R in @, and M is a finitely
generated S-module, then select a resolution

(o) 0 — K —8S"— M —0.

By (3) and Lemma 2, Hom g(—, S) is exact relative to (o) from which
we deduce that 0 — Ext}(M, S) — 0 is exact. By the Jans-Bass-Matlis
theorem, S is a reflexive ring. The Bass-Matlis theorem then affords
that every ideal of R is two-generated.

(2) = (1). Let A be a rank one R-module, and let M € C4. By the
theorems of Bass-Matlis and Jans-Bass-Matlis, R is one-dimensional. It
is enough to show by Lemma 7 that Mp = Hom (Hom (Mp, Ap), Ap)
and, since every ideal of Rp is two-generated, we may assume that R
is local.

As in the proof of Theorem 8, assuming that R C A, let S be the ring
extension of R in @ for which S/R is the maximal divisible submodule
of A/R. Recall that A is isomorphic to an ideal of S. We claim that S
is local and every ideal of S is two-generated.
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Let J be an ideal of S, and consider I = J N R and J' = SI. There
isa0=#r¢€ R for whichrS CJ. Then S=rS+RCJ +RCS, so
J=J +1CJ. Therefore, J = SI is two-generated, and if P is the
maximal ideal of R, then PS is the maximal ideal of S. As mentioned
in the proof of Corollary 9, since every ideal of S is two-generated,
Proposition 7.2 in [5] shows that A is projective over its endomorphism
ring E. But F is semi-local, so A = FE. By the Bass-Matlis theorem,
E is reflexive, implying that M is A-reflexive as desired. i

Corollary 11. A Noetherian integral domain R is a Warfield domain
if and only if Re holds for R.

Proof. Suppose Ry holds for R. Given any ring extension S of R in
Q, every ideal of S is S-reflexive. By the Jans-Bass-Matlis theorem, S
is a reflexive ring. Therefore, R is Warfield by Theorem 10. O
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