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MEROMORPHIC FUNCTIONAL CALCULUS
AND LOCAL SPECTRAL THEORY

TERESA BERMUDEZ

ABSTRACT. We study the behavior of the local spectrum
of a bounded linear operator on the vectors of the range of
the meromorphic functional calculus. In particular we analyze
some relations of the restriction and coinduced operators of
the meromorphic functional calculus. We also obtain the local
spectral mapping theorem and conditions for the stability of
the single valued extension property (SVEP).

1. Introduction. Let X be a complex Banach space, let T, S €
L(X) be commuting continuous linear operators and let z € X. De-
noting by o(z,T) the local spectrum of T" at z, we have [5, Proposition
1.5] that

(1) o(Sz,T) C o(z,T).

Bartle [1] derived the following relations for n € N and S = (a—T)"
(2) o(Sz,T) C o(z,T) C o(Sz,T) U{a},

where « is a complex number. Similar results have been derived in [3]
for S, an operator given by the local functional calculus (see [4] for
further details).

In this paper we study this problem when S is given by the meromor-
phic functional calculus. We observe that this operator is closed and
unbounded, in general.

As an application we derive some properties of the meromorphic
functional calculus such as: relations of the restriction and coinduced
operators of the meromorphic functional calculus, the local spectral
mapping theorem (with a different proof from the usual one for the
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holomorphic functional calculus) and the stability of the single valued
extension property.

2. Preliminaries. Let X be a complex Banach space. We denote by
L(X) the class of all (bounded linear) operators on X and by C(X) the
class of all closed linear operators with domain D(A) and range R(A)
in X. We say that a closed subspace Y C X is an invariant subspace
under A € C(X), in symbols, Y € Inv(T), if A(Y N D(A4)) C Y.
An invariant subspace Y produces two operators: the restriction A|Y
defined in D(A)NY by A|Yy = Ay and the coinduced operator A/Y
on the quotient space X/Y, defined by and (A/Y)(z+Y) = Az +Y
on

D(A)Y) ={z+Y e X/Y:(x+Y)ND(A) # o}.

Given an operator A € C(X), a complex number A belongs to the
resolvent set p(A) of A if there exists R(\, A) := (A — A)~! € L(X).
We denote by o(A) := C\ p(A) the spectrum of A. The resolvent map
R(.,A): p(A) — L(X) is analytic.

Moreover, given an arbitrary closed linear operator A : D(A) C X —
X and z € X, we say that a complex number A belongs to the local
resolvent set of A at z, denoted p(z, A), if there exists an analytic
function w : U C C — D(A), defined on a neigborhood U of A, which
satisfies

(3) (b= Aw(p) =z,
for every u € U. The local spectrum set of A at z is o(z,A) :=
C\ p(z, 4).

Since w is not necessarily unique, a complementary property is needed
to prevent ambiguity. A linear operator A satisfies the single valued
extension property, hereafter referred to as SVEP, if for every analytic
function h : U — D(A) defined on an open U C C, the condition
(A — A)h(A) = 0 implies h = 0. If A satisfies the SVEP, then for every
z € X there exists a unique analytic function 4 defined on p(z, A)
satisfying (3), which is called the local resolvent function of A at x.

We denote also by C, the one-point compactification of the complex
field C. Given A € C(X) and z € X, then 00 € poo(z,A) =
Coo \0oo(, A), if there exist an open neighborhood Uy, and an analytic
function u : Uy, — D(A) such that (p — A)u(p) =z for p € Uy, N C.
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For every subset H C C, X(A,H) = {z € X : o(z,A) C H} is a
linear manifold of X. If X (A, F) is closed for all closed sets F, we say
that A has property (C). If T € L(X) satisfies property (C), then T
has the SVEP, as proved in [11, Theorem 2.3].

For T € L(X), the holomorphic functional calculus is defined as
follows [12]. Let f be an analytic function defined on an open set
A(f) containing (7). The operator f(I') € L(X) is defined by the
“Cauchy formula”

_ 1
T om

(1) / FOVR(OLT) dA,

where I' is the boundary of a Cauchy domain D such that o(T) C D C
D C A(f).

The definition of the holomorphic functional calculus was extended
to meromorphic functions by Gindler [8]. Let T € L(X), let f be a
meromorphic function on an open set Qr(f) containing ¢(T") and let
ai,...,ar be the poles of f in o(T), with multiplicities ny,... ,ng,
respectively. We assume that the poles of f are not eigenvalues of T',
and consider the polynomial p()\) = Hle(a,- — )™,

The function g(\) := f(A)p(A) is analytic on a neighborhood of o(T).

So we can define the operator f{T'} of the meromorphic functional
calculus by

T} = g(T)p(T) 7,

obtaining a closed operator f{T'}. Obviously, the meromorphic calculus
is an extension of the holomorphic calculus.

We denote, by M(T), the class of the admissible functions of the
meromorphic functional calculus for T'.

3. Main results. Before analyzing relations between f{T'} , f{T|Y}
and f{T/Y}, we need the definition of some classes of closed invariant
subspaces.

Recall that, given A € C(X), an invariant subspace Y of A is said to
be a v-space of A if c(A|Y) C o(A) [6, Definition 4.1]. And Y is said
to be an A-absorbent space if, for any y € Y and all A € o(A[|Y), the
equation (A — A)z = y has all solutions x € Y [6, Definition 4.17].
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It is clear that if Y is an A-absorbent space then it is a v-space [6,
Proposition 4.18].

Lemma 1. Let T € L(X). IfY is a T-absorbent space, then
Y € Inv (p(T)) N Inv(p(T)™ 1) and

p(T)7Y = (p(T)/Y) ™

where p is a polynomial such that its zeros are not eigenvalues of T'.

Proof. 1t is clear that if Y is a T-absorbent space then Y is invariant
of p(T) and p(T)~!. Moreover,

@)Y (p(Mz+Y)=z+Y = (p(T)/Y) ' (p(T)z+Y). O

Theorem 1. Let T € L(X) and f € M(T). IfY is a T-absorbent
space, then the following properties hold:

(i) f € M(T|Y) and F{T}Y = f{T|Y}.
(i) f € M(T/Y) and F{T}/Y = F{T/Y}.

Proof. (i) It is clear that f € M(T|Y), since if « is a pole of f on
o(T|Y), then « is a pole of f on o(T). Let f(A\) = g(A\)p(\)~1, where g
is an analytic function on ¢(T") and p is the polynomial of the poles on
o(T) defined as p(A) = [];_,(a; — A)™. And let f(A) = h(A\)g(A) !,
where h is an analytic function on o(7'|Y") and ¢ is the polynomial of
the poles on o(T'|Y') defined as g(A\) = [T~ (ak, — A)™ with m < k.
It is clear by [9] that

k
D(HTYH)NY = |J R(a; ~T) nY

Let y € D(f{T|Y}). By using [2, Theorem 2.9] and basic properties of
the meromorphic functional calculus we obtain that

HTIY Yy = MTY)q(TIY) 'y = g(T)p(T) 'y = f{T}y.
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This concludes the proof of (i).
(ii) Suppose that there exists an eigenvalue « of T'|Y’, which is a pole
of f. Hence there exists x +Y € X/Y such that
(a=T/Y)(xz+Y)=0.

Then (oo — T)x € Y. By considering that Y is a T-absorbent space,
then z € Y, ie.,, f € M(T/Y). Applying Lemma 1 and [2, Theorem
4.4], we have

HT/Y}=p(T/Y) g(T/Y) = (o(T) 'g(T))/Y. O

In order to show the connection between the meromorphic functional
calculus and the local spectrum, the following results will be useful.

The content of the following proposition is the same as that of [3,
Corollary 1] but we give a different proof.

Proposition 1. Assume T € L(X) has the SVEP and p is a
polynomial such that the zeros are not eigenvalues of T. Then

(4) o(p(T)z,T) = o(z,T),

forallz € X.

Proof. In order to prove equation (4) it is enough to prove it for
p(T) = a—T where « is not an eigenvalue of T'. By using the following
inclusion from [1]

o((a=T)z,T) Co(z,T) Co((a = Tz, T) U {a},

it is sufficient to prove that if a € o(z,T), then o € o((a — Tz, T).
Suppose that o € p(y,T) where y = (a — T')z, then by [6, Theorem
2.2] there exist a number R > 0 and a sequence {yx}3>, C X such that
(a—=T)yo =y, (a = T)yr = yr_1 for k > 1 and ||yx|| < R* for k > 0
and, moreover, §r(\) = Yoo, yr(a — A)*. Hence, the analytic function

u(A) ==Y k(o — )
k=0
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satisfies the following equality
A=—THhu(A) ==

in a neighborhood of a. Then a € p(z,T). o

Proposition 2. Assume T € L(X) has the SVEP and f € M(T).
Then the following properties hold:

(i) If S € L(X) commutes with T, then S commutes with f{T'}.
(i) If z € D(f{T}), then o(f{T}z,T) C o(,T).
(ii) If x € D(f{T}), then

o(z,T) = o(f{T}z, T) U Zo(f,T),

where Z,(f,T) denotes the set of all zeros of f in o(x,T).

Proof. (i) Obvious from the definition of the meromorphic functional
calculus.

(ii) By applying [9] we obtain that, if z € D(f{T}) = R(p(T)), then
x = p(T)y for some y € X. Then by [5, Proposition 1.5] we obtain
that

o(f{T}z,T) = o(9(T)p(T) ', T) = o(g(T)y,T) C o(y,T),

since g(T) € L(X) and commutes with T. Moreover by Proposition 1
we have that

o(z,T) =o(p(T)y,T) = o(y, T).
Hence o(f{T}z,T) C o(x,T), for all x € D(f{T}).
(iii) By using [3, Proposition 6] and Proposition 1 we have that
o(x,T) C o(g(T)z, T) U Zo(f,T) = o(g(T)p(T) ", T) U Z,(f,T).

The other inclusion is obvious. O
Remark 1. (a) Notice that part (ii) and (iii) of the above proposi-

tion are similar versions of equations (1) and (2) respectively for the
meromorphic functional calculus.
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(b) If we assume in part (ii) that f is an analytic function on A(f)
which is identically zero in no component of A(f) No(7'), then

o(z,T)=o(f{T}z, T)U{a€o(z,T)Nop(T): f(a) =0},

where 0, (T") denotes the set of all eigenvalues of T

Applying the ideas of [13], it is possible to prove the following theorem
for T € L(X) satisfying the SVEP. However, we give a different proof
for T € L(X) satisfying property (C) by using Proposition 2.

Theorem 2. (Local spectral mapping theorem). Assume T' € L(X)
has property (C), and let f € M(T). Then, for every z € X,

oo, f{T}) = f(o(,T)).

Proof. The proof of this theorem consists of three steps.

Step 1. f(o(z,T)) C 0oo(z, f{T}). Let us consider Ay € Qr(f) with
f(Xo) € poo(z, f{T'}), and let G be an open neighborhood of A\ such
that f(G) C peo(z, f{T}). Then, denoting by u, the resolvent function
of f{T'} at x, we have

(fFQ) = HTHu(f(N) = =,
for all A € G. Let u € G. Let us define the function g, : Qr(f) = C

" _JUQ) = f )/ A =p) HEXFEp
)= { F'On i\ = p.

Then g,(A\) = hu(N)gu(N) ™!, where h, is analytic on o(T) and g,
is the polynomial of the poles of g,, that are also poles of f. Then
(B =Ngu(X) = f(p) — f(A) for p € U, A € A(f) and A # p. Hence

(b= T)gu{T}u(f () = (f(w) = HTHu(f () = =,

and
(1= T)p(T)gu(T)Er (f (1)) = p(T)z,
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where p(T)g,(T)Zr(f()) is analytic in a neighborhood of Ay, hence
Xo € p(p(T)z,T). By applying Proposition 1 we obtain that Ay €
p(z,T).

Step 2. o(z, f{T}) = f(o(z,T)) for x € X such that o(z,T) C A(f).
Denoting by Y := X (T, F), where F := o(x,T). Considering Step 1,
it is enough to prove that

oz, [{TIY}) C f(o(e,T)),

since by part (ii) of Proposition 2 we have that o(f{T}y,T) C
o(y,T) C F,ie., Y is an invariant subspace of f{T'}, hence o(z, f{T})
C o(z, f{T}|Y). By applying part (i) of Theorem 1 and considering
that Y is a T-absorbent space, we have

o(z, [{T|Y}) = o(a, [{T}Y) = o(z, f{T}).

Moreover o(T|Y) C o(z,T) C A(f), hence f is analytic on a neigh-
borhood of o(T'|Y). Using the local spectral mapping theorem for the
holomorphic functional calculus we obtain that

oz, [{T}Y) = o(x, f(TY)) = f(o(2,T|Y)) = f(o(z,T)).

Step 3. 0o € o(z, f{T'}) if and only if there exists at least one point
a € o(z,T) such that f(a) = co. It is enough to give the proof for f
with only one pole a.

=-. This is clear by Step 2.

<. Suppose that co € p(z, f{T}). By Step 1, we have that
oo ¢ f(o(z,T)), hence a ¢ o(z,T). O

Corollary 1. Assume T € L(X) has the SVEP, f € M(T) and Y
1s a T-absorbent space. Then the following assertions hold:

(i) oy, H{THY) = f(o(y, T))-
(ii) o(z + Y, f{T}Y) = f(o(z + Y, T/Y)) C f(o(,T)).

Proposition 3. Let T € L(X), and let F be a closed subset of C. If
feM(T), then

X(H{T}, F) = X(T, f7H(F)).
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Proof. If v € X(f{T},F), then o(z, f{T}) = f(o(z,T)) C F,
by Theorem 2. Then o(z,7) C f!(F). The opposite inclusion is
established in a similar fashion. o

Using the ideas from [7] and [11], we derive the following theorem
which shows that the SVEP is stable under meromorphic functional
calculus.

Theorem 3. (Stability of the SVEP). If T € L(X) satisfies the
SVEP, then for each f € M(T), the operator f{T} satisfies the SVEP.
Conversely, if f € M(T) is constant in no component of its domain

and f{T'} satisfies the SVEP, then T satisfies the SVEP.

Proof. Let us assume that f{T'} satisfies the SVEP and T does not.
Then there is an analytic function w : D — X such that

A=T)w(A) =0 forall \e D with w(\) #D0.
For A € D (fixed) and &£ € A(f), we define the following function

(FQ) = fE)/A=&) €#A
') =X

It is clear that g, is a meromorphic function on A(f) and analytic on
D. Using the properties of the meromorphic functional calculus we
obtain that

FQ) = HTr = (A =T)g{T},
then
(f) = HTHwA) = A = T)ga{T}w(N).
Since (A — T)gr{T}w(A) = gr{THA — T)w(A), then

(FQA) = HTHwA) = g {THA = T)w(A) = 0.

Hence as f # 0, there exists Ao € D such that f'(Ag) # 0. Then there
is a sufficiently small 7, such that f~! exists on f(Dy) where Dy is
given by

Dy:={AeC A= X| <1}
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We denote h(p) := w(f1(u)) on f(Dp). Then

(n = F{THh(p) = 0;

consequently, h(u) = 0 for p € f(Dy); hence, w(X\) =0 for A € Dy.

Conversely, let h : A(h) — D(f{T}) C X be an analytic function
such that

(b= F{T})R(p) = 0.

Let us prove that h(u) € X (f{T}, {p})NX(f{T}, C\A(h)). If X # u,
then h(u)/(\ — p) is an analytic function that satisfies

0= (722) = - (321 ) ),

Hence o(h(p), f{T}) C {p} for p € A(f). Moreover o(h(p), f{T}) C
C\ A(f), for all p € A(f), since A € A(h). Then (A — f{T})h()) =0,

hence aT) (M) — h(u),

©w—A
and we obtain o(h(u),T) C C\ A(h), for all 4 € A(h). Then
h(p) € X(f{T}, C\A(h))NX(f{T},{n}) and using Proposition 3 and
[11, Proposition 2.5], we obtain that h(x) € X (T, f~*{u} N f~1(C\
A(h))) = X(T,2) = {0}, that is, h(p) = 0. This concludes the proof.
]
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