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1. Introduction. Many natural phenomena can be represented by
real-valued functions of the form

(1.1a) G(t) =
I∑

j=−I
αje

i2πfjt, I ∈ N,

where t denotes time (sec.), the frequencies fj are in cycles per sec
(Hertz) and the complex amplitudes αj satisfy

(1.1b) α0 ≥ 0 �= αj = ᾱ−j , fj = −f−j , for j = 1, 2, . . . , I

and

(1.1c) 0 = f0 < f1 < f2 < · · · < fI .

The frequency analysis problem (FAP) consists of determining the
unknown frequencies fj by using N values of “observed data”

(1.2) G(tm), m = 0, 1, . . . , N − 1, where tm := m∆t, ∆t > 0.

For convenience we introduce normalized frequencies

(1.3a) ωj := 2πfj∆t, j = 0,±1,±2, . . . ,±I,

with the restrictions imposed by

(1.3b) 0 = ω0 < ω1 < ω2 < · · · < ωI < π
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and define an N -truncated discrete signal {xN (m)}∞m=−∞ by

(1.4) xN (m) :=



G(tm) =

I∑
j=−I

αje
imωj m = 0, 1, 2, . . . , N − 1

0 otherwise.

A consequence of (1.3b) is that

(1.5) 0 < fj <
1

2∆t
for j = 1, 2, . . . , I,

which means that frequencies fj greater than or equal to (1/2∆t)
cannot be determined with a time interval ∆t. With this terminol-
ogy the FAP consists of determining unknown normalized frequencies
ω1, ω2, . . . , ωI using the discrete signal {xN (m)}∞m=−∞.

Among various methods that have been used for frequency analysis
(see, e.g., [4, pp. 379 386], [17], [20], [23], [24]) the one investigated
in the present paper (referred to hereafter as the N -process) is a re-
formulation of Wiener-Levinson linear prediction ([10], [18], [31]) in
terms of Szegö polynomials and positive Perron-Carathéodory contin-
ued fractions (PPC-fractions). Recent research on the N -process and
its extensions can be found in [6], [7], [10] [15], [19], [22], [25] [28].

Starting with the signal {xN (m)}, the N -process uses an absolutely
continuous distribution function ψN (θ) defined by

(1.6) ψ′
N (θ) :=

1
2π

∣∣∣∣
N−1∑
m=0

xN (m)e−imθ
∣∣∣∣
2

, −π ≤ θ ≤ π.

In [7] the distributions (1/N)dψN (θ) were shown to converge in the
weak star sense,

(1.7)
1
N
dψN (θ) ∗−→ dψ(θ), as N → ∞,

where dψ(θ) is a discrete distribution with mass |αj |2 located at θ = ωj
for −I ≤ j ≤ I. The distribution function ψ(θ) is a nondecreasing
step function with jump |αj |2 at θ = ωj , −I ≤ j ≤ I. Therefore,
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the unknown frequencies ωj can be determined by finding ψ(θ) or,
equivalently, its Herglotz transform

(1.8) H(ψ; z) :=
∫ π

−π

eiθ + z
eiθ − z dψ(θ) =

I∑
j=−I

|αj |2 e
iωj + z
eiωj − z .

The purpose of the present paper is to investigate the convergence to
H(ψ; z) as N → ∞, of the approximants

R2m(ψN ; z) and R2m+1(ψN ; z)

(of order 2m and 2m+ 1, respectively) of the PPC-fraction associated
with ψN (θ). In [10, Theorem 3.4], it was shown that, for

(1.9) m ≥ n0 := 2I + L where L :=
{
0 if α0 = 0
1 if α0 > 0,

lim
N→∞

1
N
R2m(ψN ; z) = H(ψ, z) for |z| < 1(1.10a)

and

lim
N→∞

1
N
R2m+1(ψN ; z) = H(ψ; z) for |z| > 1,

(1.10b)

the convergence in both cases being locally uniform on the given re-
gions. Truncation error bounds for (1.10a) were derived in [15, The-
orem 1]. In the main theorem of the present paper (Theorem 3.1)
the result described by (1.10) is extended to include regions obtained
by removing neighborhoods of all frequency points eiωj , −I ≤ j ≤ I,
from certain disks on the Riemann sphere. Our proof of Theorem 3.1
makes use of known information concerning the location of the poles
of the rational functions Rm(ψN ; z) (Theorem 2.1), knowledge about
the structure of the Rm(ψN ; z) derived from recurrence relations,
Lemma 3.3, and properties of normal families of the holomorphic func-
tions Rm(ψN ; z). Example 4.1 in Section 4 illustrates possibilities for
poles of the Rm(ψN ; z) to be dense in certain subsets of C, suggesting
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that the convergence regions in Theorem 3.1 may be best in a certain
sense. In order to render the present paper self-contained, Section 2
is used to summarize definitions, notation and results that are subse-
quently used.

2. PPC-fractions and Szegö polynomials. This section is used
to summarize basic properties of PPC-fractions and Szegö polynomials
associated with ψN (θ) and ψ(θ). Proofs of these results can be found
in [8] [10], [14] and [22]. Moments with respect to ψN (θ) are defined
by

(2.1) µ(N)
m :=

∫ π

−π
e−imθ dψN (θ), m ∈ Z

and can be computed by the autocorrelation formulas

(2.2) µ(N)
m =



N−m−1∑
k=0

xN (k)xN (k+m) m = 0, 1, 2, . . . ,

µ
(N)
−m m = −1,−2,−3, . . . .

Since the trigonometric moment problem (TMP) for {µ(N)
m }(∞)

m=−∞ has
a solution ψN (θ) which has infinitely many points of increase, the
sequence {µ(N)

m } satisfies

(2.3a) µ
(N)
k = µ(N)

−k and T
(0)
k+1(ψN ) > 0 for k = 0, 1, 2, . . . ,

where the Toeplitz determinants T (m)
k (ψN ) are defined by

(2.3b)
T

(m)
0 (ψN ) := 1, T

(m)
k (ψN ) := det (µ(N)

m−µ+ν)
k−1
µ,ν=0, k≥1, m∈Z.

Hence {µ(N)
m }∞m=−∞ is said to be Hermitian positive definite.

Moments µm with respect to the step function ψ(θ) are given by

(2.4) µm :=
∫ π

−π
e−im θ dψ(θ) =

I∑
j=−I

|αj |2 eimωj , m ∈ Z
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are related to µ(N)
m by

(2.5)
1
N
µ(N)
m = µm +O

(
1
N

)
, as N → ∞, for m ∈ Z

and to the Herglotz transform H(ψ; z) in (1.8) by

(2.6) H(ψ; z) =



µ0 + 2

∞∑
k=1

µkz
k |z| < 1

−µ0 − 2
∞∑
k=1

µ−kz−k |z| > 1.

The PPC-function associated with ψN (θ) is given by

(2.7a) δ(N)
0 − 2δ(N)

0

1+
1

δ
(N)
1 z+

(1− |δ(N)
1 |2)z

δ
(N)
1 +

1

δ
(N)
2 z+

(1− |δ(N)
2 |2)z

δ
(N)
2 +

· · ·

where

(2.7b) δ
(N)
0 := µ(N)

0 :=
∫ π

−π
dψN (θ) =

N−1∑
m=0

|xN (m)|2 > 0, N ≥ 1,

and

(2.7c) δ(N)
m := (−1)m

T
(−1)
m (ψN )

T
(0)
m (ψN )

, m ≥ 1, N ≥ 1.

The δ(N)
m , m ≥ 1, are called reflection coefficients, and they satisfy

(2.8) δ(N)
m ∈ R and |δ(N)

m | < 1 for N ≥ 1, m ≥ 1.

For m ≥ 0 and N ≥ 1, we let Rm(ψN ; z), Pm(ψN ; z) and Qm(ψN ; z)
denote the mth approximant, numerator and denominator, respec-
tively, of the PPC-fraction (2.7). These are defined by

(2.9) Rm(ψN ; z) :=
Pm(ψN ; z)
Qm(ψN ; z)

,
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where

(2.10a)
P0(ψN ; z) := −P1(ψN ; z) := δ

(N)
0 ,

Q0(ψN ; z) := Q1(ψN ; z) := 1,

(2.10b)

(
P2m(ψN ; z)
Q2m(ψN ; z)

)
:= δ(N)

m z

(
P2m−1(ψN ; z)
Q2m−1(ψN ; z)

)

+
(
P2m−2(ψN ; z)
Q2m−2(ψN ; z)

)
, m ≥ 1,

(2.10c)(
P2m+1(ψN ; z)
Q2m+1(ψN ; z)

)
:= δ(N)

m

(
P2m(ψN ; z)
Q2m(ψN ; z)

)

+ (1−|δ(N)
m |2)z

(
P2m−1(ψN ; z)
Q2m−1(ψN ; z)

)
, m ≥ 1.

It follows readily that Q2m+1(ψN ; z) is a monic polynomial of degree
m, while P2m(ψN ; z), Q2m(ψN ; z) and P2m+1(ψN ; z) are polynomials
of degree at most m. Moreover, Pm(ψN ; z) and Qm(ψN ; z) have no
common zeros, the m poles of R2m+1(ψN ; z) lie in |z| < 1 and

P2m+1(ψN ; z) = −zmP2m(ψN ; 1/z̄),(2.11a)

Q2m+1(ψN ; z) = zmQ2m(ψN ; 1/z̄),(2.11b)

R2m+1(ψN ; z) = −R2m(ψN ; 1/z̄).(2.11c)

The terminating PPC-fraction associated with ψ(θ) is given by

(2.12a)
R2n0(ψ; z) := δ0 −

2δ0
1 +

1
δ1z +

(1− δ21)z
δ1 +

· · ·

+
1

δn0−1z +
(1− δ2n0−1)z
δn0−1 +

1
δn0z

,

where

(2.12b) δ0 := µ0, δm := (−1)m
T (−1)(ψ)

T
(0)
m (ψ)

for 1 ≤ m ≤ n0,
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(2.13) δ0 > 0, |δm| < 1 for 1 ≤ m ≤ n0 − 1 and |δn0 | = 1

and n0 is defined by (1.9).

The nth approximant, numerator and denominator of (2.12) are
denoted by Rm(ψ; z), Pm(ψ; z) and Qm(ψ; z), respectively. Some useful
properties include

(2.14) Q2n0(ψ; z) = (z − 1)L
I∏
j=1

(z − eiωj )(z − e−iωj ),

where L is as in (1.9),

(2.15) R2n0(ψ; z) :=
P2n0(ψ; z)
Q2n0(ψ; z)

= H(ψ; z) =
I∑

j=−I
|αj |2 e

iωj + z
eiωj − z ,

(2.16)
δ
(N)
0 = Nδ0 +O(1), δ(N)

m = δm +O
(

1
N

)
for 1 ≤ m ≤ n0 as N → ∞,

and, for 1 ≤ m ≤ 2n0,
(2.17)

lim
N→∞

1
N
Pm(ψN ; z) = Pm(ψ; z), lim

N→∞
Qm(ψN ; z) = Qm(ψ; z),

the convergence being locally uniform on C. The asymmetry of the
factor 1/N in (2.17) is a consequence of the normalization of the
distribution functions ψN (θ) and ψ(θ) in (1.6) and (1.7) which agrees
with the notation used in earlier work.

The monic Szegö polynomial ρm(ψN ; z) of degree m with respect to
ψN (θ) and the mth reciprocal polynomial ρ∗m(ψN ; z) are given by

(2.18)
ρm(ψN ; z) := Q2m+1(ψN ; z), ρ∗m(ψN ; z) := Q2m(ψN ; z), m ≥ 0.

They satisfy by (2.11b)

(2.19) ρ∗m(ψN ; z) = zmρm(ψN ; 1/z̄), m ≥ 0,
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the recurrence relations

ρ0(ψN ; z) = ρ∗0(ψN ; z) = 1,(2.20a)

ρm(ψN ; z) = zρm−1(ψN ; z) + δ(N)
m ρ∗m−1(ψN ; z), m ≥ 1,(2.20b)

ρ∗m(ψN ; z) = δ(N)
m zρm−1(ψN ; z) + ρ∗m−1(ψN ; z), m ≥ 1(2.20c)

and orthogonality relations

〈ρm(ψN ; z), zk〉ψN
=

{
0 if 0 ≤ k ≤ m− 1

T
(0)
m+1(ψN )/T (0)

m (ψN ) > 0 if k = m,

(2.21a)

〈ρ∗m(ψN ; z), zk〉ψN
=

{
T

(0)
m+1(ψN )/T (0)

m (ψN ) > 0 if k = 0,

0 if 1 ≤ k ≤ m,

(2.21b)

where
〈f, g〉ψN

:=
∫ π

−π
f(eiθ)g(eiθ) dψN (θ), f, g ∈ ΠR

is an inner product on the linear space of polynomials over R. Since,
from (2.20b),

(2.22) δ(N)
m = ρm(ψN ; 0) = − 〈zρm−1(ψN ; z), 1〉ψN

〈ρ∗m−1(ψN ; z), 1〉ψN

, m ≥ 1,

one can compute the δ(N)
m and ρm(ψN ; z) recursively by using (2.20)

and (2.22). This procedure is known as Levinson’s algorithm.

We conclude this section with the statement of important properties
of the zeros of the Szegö polynomials (poles of PPC-fraction approxi-
mants).

Theorem 2.1. Let m ≥ n0 + 1 be given, see (1.9). Then

(A) there exist n0 sequences of zeros of ρm(ψN ; z) (poles of
R2m+1(ψN ; z)) denoted by

(2.23)

{z(j,m,N)}∞N=1 for j ∈ ∆ :=
{
[±1,±2, . . . ,±I] if α0 = 0,
[0,±1, . . . ,±I] if α0 > 0,
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such that

(2.24) lim
N→∞

z(j,m,N) = eiωj for all j ∈ ∆.

(B) The remaining zeros of ρm(ψN ; z) (not considered in (A)) are
denoted by

(2.25) z(j,m,N) for N ≥ 1, j ∈ Γ := [I+1, I+2, . . . , I+m−n0],

and satisfy

(2.26) |z(j,m,N)| ≤ Km < 1 for N ≥ 1, j ∈ Γ,

where Km is a constant independent of N .

The zeros considered in Theorem 2.1(b) are referred to as the un-
interesting zeros, since they are bounded away from the frequency
points eiωj . Theorem 2.1 also applies to the zeros of ρ∗m(ψN ; z)
(poles of R2m(ψN ; z)); in fact, if z(j,m,N) is a zero of ρm(ψN ; z) and
z(j,m,N) �= 0, then z∗(j,m,N) := 1/z̄(j,m,N) is a zero of ρ∗m(ψN ; z).
This follows from (2.11) and (2.18).

3. Convergence of PPC-fractions. We now state and prove the
principal results of this paper.

Theorem 3.1. Let m ≥ n0 + 1 be given, and let Km be a positive
constant (see Theorem 2.1(b)) such that for the uninteresting zeros
z(j,m,N) of ρm(ψN ; z) (poles of R2m+1(ψN ; z)) the following hold

(3.1) |z(j,m,N)| ≤ Km < 1 for N ≥ 1, I + 1 ≤ j ≤ I +m− n0.

Let δ satisfy

(3.2) 0 < δ <
1
2
(1−Km).

Then (A)

(3.3a) lim
N→∞

1
N
R2m(ψN ; z) = H(ψ; z) =

I∑
j=−I

|αj |2 e
iωj + z
eiωj − z ,
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the convergence being locally uniform on

(3.3b) S∗(Km, δ) :=
[
w ∈ C : |w| < 1

Km
−δ and |w−eiωj | > δ, j∈∆

]

(see (2.23) for a definition of ∆).

(B)

(3.4a) lim
N→∞

1
N
R2m+1(ψN ; z) = H(ψ; z) =

I∑
j=−I

|αj |2 e
iωj + z
eiωj − z ,

the convergence being locally uniform on

(3.4b) S(Km, δ) := [w ∈ C : |w| > Km+δ and |w−eiωj | > δ, j ∈ ∆].

Remark on Theorem 3.1. The conditions (3.2) and 0 < Km < 1
imply two inequalities

(a) 1 < (1/Km)− δ and (b) 0 < Km + δ < 1.

(a) implies that S∗(Km, δ) contains the circles |w| = ρ with

1 < ρ <
1
Km

− δ

and (b) implies that S(Km, δ) contains the circles |w| = ρ with

0 < Km + δ < 1.

Our proof of Theorem 3.1 makes use of several lemmas. We begin by
defining polynomials

U
(N)
k (z) and V (N)

k (z) for k ≥ 2n0 and N ≥ 1,

where (N) denotes an index, not a derivative:

(3.5a) U
(N)
2n0

(z) := V (N)
2n0+1(z) := 1, U (N)

2n0+1(z) := δ
(N)
n0
, V

(N)
2n0

(z) := 0.
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and, for m ≥ n0 + 1,

(
U

(N)
2m (z)
V

(N)
2m (z)

)
:= δ(N)

m z

(
U

(N)
2m−1(z)
V

(N)
2m−1(z)

)
+

(
U

(N)
2m−2(z)
V

(N)
2m−2(z)

)
,

(3.5b)

(
U

(N)
2m+1(z)
V

(N)
2m+1(z)

)
:= δ(N)

m

(
U

(N)
2m (z)
V N2m(z)

)(3.5c)

+ (1− |δ(N)
m |2)z

(
U

(N)
2m−1(z)
V

(N)
2m−1(z)

)
.

Remarks on U (N)
k (z) and V (N)

k (z). The polynomials U (N)
k (z) and

V
(N)
k (z) are introduced in order to obtain relations (3.8) with the factor

(1− |δ(N)
n0 |2) in the second term on the righthand side since, by (2.13)

and (2.16),
lim
N→∞

|δ(n)
n0

| = |δn0 | = 1.

We note also that the recurrence relations (3.5b) and (3.5c) are identical
to (2.10b) and (2.10c) for the polynomials Pk(ψN ; z) and Qk(ψN ; z),
but the initial conditions (3.5a) are not the same as (2.10a). The
following lemma is an immediate consequence of (3.5).

Lemma 3.2. For m ≥ n0+1 and N ≥ 1, the polynomials (3.5) have
the forms

U
(N)
2m (z) = δ(N)

n0
δ(N)
m zm−n0 + · · ·+ 1,(3.6a)

V
(N)
2m (z) = δ(N)

m zm−n0 + · · ·+ δ(N)
n0+1z,(3.6b)

U
(N)
2m+1(z) = δ

(N)
n0
zm−n0 + · · ·+ δ(N)

m ,(3.6c)

V
(N)
2m+1(z) = z

m−n0 + · · ·+ δ(N)
n0+1δ

(N)
m (z).(3.6d)

From (3.6) we see that V (N)
2m+1(z) is a monic polynomial of degree

(m − n0) and, for N sufficiently large, U (N)
2m+1(z) has degree (m − n0)
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since, by (2.13) and (2.16),

(3.7) lim
N→∞

|δ(N)
n0

| = |δn0 | = 1.

The U (N)
k (z) and V (N)

k (z) are related to Pk(ψN ; z) and Qk(ψn; z) as
follows.

Lemma 3.3. For k ≥ 2n0 + 1 and N ≥ 1,

(3.8)

(
Pk(ψN ; z)
Qk(ψN ; z)

)
= U (N)

k (z)
(
P2n0(ψN ; z)
Q2n(ψN ; z)

)

+ (1− |δ(N)
n0

|2)zV (N)
k (z)

(
P2n0−1(ψN ; z)
Q2n0−1(ψN ; z)

)
.

Proof (by induction). We prove (3.8) for {Qk(ψN ; z)} and omit the
analogous argument for {Pk(ψN ; z)}. For simplicity in the proof we
adopt the notation

δk := δ(N)
k , Qk := Qk(ψN ; z), Uk := U (N)

k (z), Vk := V (N)
k (z).

Thus it suffices to prove that, for all k ≥ 2n0 + 1,

(3.9) Qk = UkQ2n0 + (1− δ2n0
)zVkQ2n0−1.

To verify (3.9) for k = 2n0 + 1, we use (2.10c) and (3.5a) with m = n0

to obtain

Q2n0+1 = δn0Q2n0 + (1− δ2n0
)zQ2n0−1

= U2n0+1Q2n0 + (1− δ2n0
)zV2n0+1Q2n0−1

in agreement with (3.9). Next for m = n0 + 1 in (2.10b), (3.5) and
(3.9) with k = 2n0 + 1, we have

Q2n0+2 = δn0+1zQ2n0+1 +Q2n0

= δn0+1z[U2n0+1Q2n0 + (1− δ2n0
)zV2n0+1Q2n0−1] +Q2n0

= (δn0+1zδn0 + 1)Q2n0 + (1− δ2n0
)zδn0+1Q2n0−1

= U2n0+2Q2n0 + (1− δ2n0
)zV2n0+2Q2n0−1
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agreeing with (3.9) for k = 2n0 + 2. Now we assume that (3.9) holds
for k = 2n0 + 2m and k = 2n0 + 2m+ 1 with m ≥ 2. Then, by (2.10)
and (3.5),

Q2n0+2m+2 = δn0+m+1zQ2n0+2m+1 +Q2n0+2m

= δn0+m+1z[U2n0+2m+1Q2n0+ (1− δ2n0
)zV2n0+2m+1Q2n0−1]

+ [U2n0+2mQ2n0 + (1− δ2n0
)zV2n0+2mQ2n0−1]

= U2n0+2m+2Q2n0 + (1− δ2n0
)zV2n0+2m+2Q2n0−1

and

Q2n0+2m+3

= δn0+m+1Q2n0+2m+2 + (1− δ2n0+m+1)zQ2n0+2m+1

= δn0+m+1[U2n0+2m+2Q2n0 + (1− δ2n0
)zV2n0+2m+2Q2n0−1]

+ (1− δ2n0+m+1)z[U2n0+2m+1Q2n0+ (1− δ2n0
)zV2n0+m+1Q2n0−1]

= U2n0+2m+3Q2n0 + (1− δ2n0
)zV2n0+2m+3Q2n0−1.

Therefore (3.9) holds for k = 2n0 + 2m+ 2 and k = 2n0 + 2m+ 3 and
by induction (3.9) holds for all k ≥ 2n0 + 1.

Let {Nk}∞k=1 be an arbitrary subsequence of the natural numbers.
Then by (2.8) we can obtain a subsequence {Nkν

}∞ν=1 such that, for
m ≥ 1, {δ(Nkν )

m }∞ν=1 is convergent.

We set

(3.10a) δm({Nkν
}) := lim

ν→∞ δ
(Nkν )
m for m ≥ 0

and note that, by (2.16),

(3.10b) δm = δm({Nkν
}) for 0 ≤ m ≤ n0.

From the recurrence relations (2.10) and (3.5) one can see that, for
each of the polynomials Pm(ψN ; z), Qm(ψN ; z), U

(N)
m (z), V (N)

m (z), the
coefficients of individual powers of z are continuous functions of the
coefficients δ(N)

k . It follows that, for m ≥ 2n0, the four sequences{ 1
Nkν

Pm(ψNkν
; z)
}∞

ν=1
, {Qm(ψNkν

; z)}∞ν=1,

{U (Nkν )
m (z)}∞ν=1, {V (Nkν )

m (z)}∞ν=1
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converge locally uniformly on C. We write, for m ≥ 2n0,

Pm({Nkν
}; z) := lim

ν→∞
1
Nkν

Pm(ψNkν
; z),(3.11a)

Qm({Nkν
}; z) := lim

ν→∞Qm(ψnkν
; z),(3.11b)

Um({Nkν
}; z) := lim

ν→∞U
(Nkν )
m (z),(3.11c)

Vm({Nkν
}; z) := lim

ν→∞V
(Nkν )(z),(3.11d)

It follows from this, (3.7), (3.8) and (2.17) that

Pm({Nkν
}; z) ≡ Um({Nkν

}; z)P2n0(ψ; z), m ≥ 2n0,
(3.12a)

and

Qm({Nkν
}; z) ≡ Um({Nkν

}; z)Q2n0(ψ; z), m ≥ 2n0.
(3.12b)

For m ≥ 2n0 and ν ≥ 1, let

εm,ν(z) :=
1
Nkν

Pm(ψNkν
; z)− Um({Nkν

}; z)P2n0(ψ; z),(3.13a)

ηm,ν(z) := Qm(ψNkν
; z)− Um({Nkν

}; z)Q2n0(ψ; z).(3.13b)

Then, for m ≥ 2n0 + 1 and ν ≥ 1, by (2.15) and (3.13)

(3.14)
∣∣∣∣ 1
Nkν

Rm(ψNkν
; z)−H(ψ; z)

∣∣∣∣
=
∣∣∣∣ 1
Nkν

Pm(ψNkν
; z)

Qm(ψNkν
; z)

− P2n0(ψ; z)
Q2n0(ψ; z)

∣∣∣∣
=
∣∣∣∣ Um({Nkν

}; z)P2n0(ψ; z) + εm,ν(z)
Um({Nkν

}; z)Q2n0(ψ; z) + ηm,ν(z)
− P2n0(ψ; z)
Q2n0(ψ; z)

∣∣∣∣
=
∣∣∣∣ Q2n0(ψ; z)εm,ν(z)− P2n0(ψ; z)ηm,ν(z)
Q2n0(ψ; z)[Um({Nkν

}; z)Q2n0(ψ; z) + ηm,ν(z)]

∣∣∣∣
=
∣∣∣∣ H(ψ; z)ηm,ν(z)− εm,ν(z)
Um({Nkν

}; z)Q2n0(ψ; z) + ηm,ν(z)

∣∣∣∣.
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We now replace m by (2m + 1) in (3.14) where m ≥ n0 + 1, let Km
denote the constant in (2.2b) of Theorem 2.1 and let S(Km, δ) denote
the open set in (3.4b) of Theorem 3.1, where 0 < δ < (1−Km)/2. Let
K be an arbitrary compact subset of S(Km, δ). Let

(3.15a) ε(K)
m,ν := sup

z∈K
|εm,ν(z)|, η(K)

m,ν := sup
z∈K

|η(K)
m,ν(z)|

so that by (3.11), (3.12) and (3.13),

(3.15b) lim
ν→∞ ε

(K)
m,ν = 0 and lim

ν→∞ η
(K)
m,ν = 0.

By (2.2b) of Theorem 2.1(B), (3.4b) of Theorem 3.1(B), (3.11) and
(3.12)

(3.16) Lm(K) := inf
z∈K

|U2m+1({Nkν
}; z)| > 0,

and by (2.14)

(3.17) T (K) := inf
z∈K

|Q2n0(ψ; z)| > 0.

Since H(ψ; z) is holomorphic in S(Km, δ) and hence in K,

(3.18) D(K) := sup
z∈K

|H(ψ; z)| <∞.

Let ε satisfying 0 < ε < Lm(K)T (K) be given. Then there exists
ν(ε) > 0 such that

0 ≤ ε(K)
2m+1,ν < ε and 0 ≤ η(K)

2m+1,ν < ε for ν ≥ ν(ε).

Combining these results with (3.14) yields

sup
z∈K

∣∣∣∣ 1
Nkν

R2m+1(ψNkν
; z)−H(ψ, z)

∣∣∣∣
≤ D(K)η(K)

2m+1,ν + ε
(K)
2m+1,ν

Lm(K)T (K)− η(K)
2m+1,ν

(3.19)

< ε

(
D(K) + 1

Lm(K)T (K)− ε
)

for ν ≥ ν(ε).
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An analogous argument holds ifm is replaced by 2m in (3.14). Thus we
have proved the following two lemmas. The first gives existence of con-
vergent subsequences {(1/Nkν

)Rk(ψNkν
; z)}∞ν=1, the second asserts the

convergence of the whole sequences {(1/N)Rk(ψN ; z)}∞N=1 to H(ψ; z).

Lemma 3.4. Let m ≥ n0 +1 be given. Let S(Km, δ) and S∗(Km, δ)
be defined as in Theorem 3.1. Let {Nk}∞k=1 be an arbitrary subsequence
of the natural number sequence. Then there exists a subsequence
{Nkν

}∞ν=1 of {Nk}∞k=1 such that: (a) for z ∈ S∗(Km, δ),

(3.20) lim
ν→∞

1
Nkν

R2m(ψNkν
; z) = H(ψ; z),

the convergence being locally uniform on S∗(Km, δ).

(b) For z ∈ S(Km, δ),

(3.21) lim
ν→∞

1
Nkν

R2m+1(ψNkν
; z) = H(ψ; z),

the convergence being locally uniform on S(Km, δ).

Lemma 3.5. Let m ≥ n0 + 1 and let S(Km, δ) and S∗(Km, δ) be
defined as in Theorem 3.1. Then

lim
N→∞

1
N
R2m(ψN ; z) = H(ψ; z) for z ∈ S∗(Km, δ),

(3.22a)

and

lim
N→∞

1
N
R2m+1(ψ; z) = H(ψ; z) for z ∈ S(Km, δ).

(3.22b)

Proof. Assume that there exists a z0 ∈ S(Km, δ) such that
{(1/N)R2m+1(ψn; z)}∞N=1 does not converge to H(ψ; z0). Then there
exists an ε > 0 and a subsequence {Nk}∞k=1 of the natural number
sequence such that∣∣∣∣ 1

Nk
R2m+1(ψNk

; z0)−H(ψ; z0)
∣∣∣∣ ≥ ε for k ≥ 1.



CONVERGENCE IN FREQUENCY ANALYSIS 541

This contradicts Lemma 3.4(b). Therefore, (3.22b) holds. An analo-
gous argument can be given to prove (3.22a).

Our proof of Theorem 3.1 makes use of a property of normal families
stated here. (See, e.g., [1], [5], [30].) Let F be a family of functions
holomorphic on an open region R. In order for F to be a normal family
in R, it suffices that every sequence {fn(z)} in F contains a subsequence
{fni

(z)} which converges locally uniformly on R.

Stieltjes-Vitali theorem. Let R be an open region in C, and let
Λ be a subset of R having infinitely many elements and having a limit
point in R. If {fn(z)} is a normal family in R and if limn→∞ fn(z)
exists for all z ∈ Λ, then {fn(z)} converges locally uniformly on R.

Proof of Theorem 3.1. (a) It follows from Theorem 2.1 that there ex-
ists an N∗ ≥ 1 such that, for all N ≥ N∗, (1/N)R2m(ψN ; z) is holomor-
phic in S∗(Km, δ). Therefore, by Lemma 3.4, {(1/N)R2m(ψN ; z)}∞N=N∗

is a normal family in S∗(Km, δ). Assertion (A) of Theorem 3.1 follows
from this and Lemma 3.5 and the Stieltjes-Vitali theorem. An anal-
ogous proof can be given for (b) of Theorem 3.1. This completes the
proof.

4. Uninteresting zeros (poles). A natural question to raise is the
following.

Is it possible to extend the convergence results in Theorem 3.1 even
further, to larger domains, possibly to the whole plane minus disks
around the uninteresting zeros? Behind this question is this idea of
having a discrete set of uninteresting zeros to stay away from. This
is, however, an incorrect picture of what may happen, as the following
very simple example will show.

Example 4.1. Take a signal with merely the frequencies ±ω,
0 < ω < π and amplitudes 1:

(4.1) x(m) = emiω + e−miω = 2 cos(mω).

The N -process leads to, in limit, the two frequency points e±iω and,
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before going to limits, to the uninteresting zero

(4.2) z(N) = − 3 cosω + cos((2N − 1)ω)
4 + 2 cos2 ω + 2 cosω cos((2N − 1)ω)

+O
(

1
N

)
.

The limit as N → ∞ does not exist. If ω/π is irrational, the set of
points z(N), N = 1, 2, 3, . . . is dense in the interval

(4.3)
[
− 3 cosω + 1

2(cos2 ω + cosω + 2)
,

−3 cosω + 1
2(cos2 ω − cosω + 2)

]
.

This follows from a theorem of Kronecker stating that the set of points
eNiω, N = 1, 2, 3, . . . is dense on the unit circle when ω/π is irrational.

Actually, this is a special case of Kronecker’s theorem [3, Chapter
23; see, in particular, 23.2(iii)]. One way of proving this theorem is by
using the Pigeonhole principle, also called the Dirichlet drawer (or box)
principle: If k + 1 or more objects are placed into k boxes, then there
is at least one box containing two or more objects. See, e.g., [29, 4.2].

This example (and others) exclude the possibility of extending the
theorem to larger domains merely by removing disks around a discrete
set of points. It does not exclude the possibility of extending it to
domains obtained by removing more complicated sets.

5. Final remark (erratum). Lemma 3.4 in the present paper
replaces Theorem 3.5(B) in [14], which is not correct as it stands.
The proof of Theorem 3.8 in [14] is based upon Theorem 3.5(B)
and is therefore not valid. However, a version where even and odd
approximants are separately discussed, and where the domains in
Theorem 3.1 of the present paper replace the domain in Theorem 3.8
in [14] is correct.
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