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ON DISTORTION UNDER
QUASICONFORMAL MAPPING

ALEXANDER VASIL’EV

ABSTRACT. In the paper we study the range of the
system of functionals (|f(z1)|, |f(z2)|) over the class of K-
quasiconformal homeomorphisms of the Riemann sphere with
standard three point normalization f(0) = 0, f(1) = 1,
f(∞) = ∞, and for different real values of z1 and z2. Ex-
tremal functions are given in terms of the complex dilata-
tion dependent only on z1, z2. As a corollary, we derive
some sharp estimates for the functional |f(z2)| ± |f(z1)| and
|f(z2) ± f(z1)|. The main tool of the proofs is the extremal
partition of a Riemann surface by doubly connected domains.

1. Introduction. Let S0 be a Riemann surface given by the
punctured Riemann sphere C \ {0, 1}. We shall investigate the class
QK , of all functions w = f(z) univalent and K-quasiconformal in S0,
such that f(S0) = S0 with f(0) = 0, f(1) = 1. These functions are
Sobolev generalized homeomorphic solutions of the Beltrami equation

(1) wz̄ = µf (z)wz, z ∈ S0,

with the complex distributional derivatives

wz =
1
2

(
∂f

∂x
− ∂f

∂y

)
, and wz̄ =

1
2

(
∂f

∂x
+

∂f

∂y

)
, z = x + iy,

where the complex dilatation (or the Beltrami coefficient) µf (z) =
fz̄/fz is a measurable function with the norm

‖µf‖∞ = ess sup |µf (z)| ≤ k < 1, z ∈ S0, k =
K − 1
K + 1

.
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A quasiconformal mapping is said to be Teichműller’s if its Beltrami
coefficient is of the form

(2) µf (z) = k
ϕ(z)
|ϕ(z)| , k =

K − 1
K + 1

,

almost everywhere in S0, where ϕ(z)dz2 is a holomorphic or meromor-
phic quadratic differential on S0 of finite L1-norm. Such a differential
has at most simple poles in the Riemann sphere. The inverse map-
ping is also a Teichműller map, i.e., there exists a quadratic differential
ψ(w)dw2 on S0 = f(S0) such that the inverse mapping is given by its
Beltrami coefficient µf−1(w) = kψ(w)/|ψ(w)|. Teichműller mappings
are locally affine and map infinitesimal circles onto infinitesimal ellipses
having their bigger semi-axes along or orthogonal to a trajectory of the
differential ψ(w)dw2. The ratio of the bigger and smaller axes of ellipses
is equal to K for any regular point of ψ.

Let F (f) be a continuous functional (or system of functionals) over
QK . The extremal problem for F (f), i.e.

max
f∈QK

±F (f) (or finding the range of F (f)),

has been studied deeply by Lehto, Virtanen [15], Belinskii [3, 4],
Lavrent’ev [14], Krushkal’ [10 12], as well as Schiffer [18]. An im-
portant case of the functional F (f) in the theory of distortion and its
applications is

(3) F (f) = |F (f(z1), . . . , f(zn))|,

where z1, . . . , zn are fixed points on S0 and F (w1, . . . , wn) is a holo-
morphic function defined in the space {Cn, wj 
= wk, j 
= k}.
The approaches to solution of this extremal problem have gone

primarily in three directions. The first one is based on the variational
method by Belinskii [4], Schiffer [18], and has been developed further
in, e.g., [4, 6, 16]. The second employs the parametric representation of
quasiconformal mappings by Shah Dao-Shing [17]. Krushkal’ [11, 12]
has developed the method of invariant metrics which gives generally
non-sharp estimates, however, in particular cases solves the problem
completely. It is known [3, 10] that the extremal mapping f∗ for the
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extremal problem for F (f) is a Teichműller map and the inverse one
satisfies the Beltrami equation zw̄ = µf−1(w)zw, with the dilatation

µf−1(w) = keit ψ(w)
|ψ(w)| , k =

K − 1
K + 1

,

ψ(w) =
n−3∑
j=1

∂F

∂wj

wj(wj − 1)
w(w − 1)(w − wj)

,

for w = f∗(z), wj = f∗(zj).

This Beltrami coefficient contains a lot of unknown parameters so the
extremal problem is resolved only qualitatively.

Therefore, our main effort aims at creating a method to find a
representation of extremal mappings in terms of the dilatation of the
direct mapping.

Among particular cases of this functional we consider “two point”
distortion under quasiconformal mappings from QK . This can be
reduced to estimation of functionals dependent on two fixed points of
S0. There are some results devoted to such estimation. In the case of
the class QK there is a result by Krushkal’ [12]. He has obtained that
there is K0 > 1 such that for all f ∈ QK , 1 ≤ K ≤ K0 and for fixed
points z1, z2 ∈ C \ {0, 1}, z1 + z2 = 1 the extremal mapping for the
functional maxf∈QK

|f(z1) − f(z2)| is the Teichműller mapping with
the dilatation

µf (z) = keit ϕ(z)
|ϕ(z)| , k =

K − 1
K + 1

,

where ϕ(z) = z1z2[z(1− z)(z − z1)(z − z2)]−1.

Among two point distortion theorems we also refer to Agard [1].
His result [1, formula (3.1)] implies the sharp estimate of the ratio
|f(r2)|/|f(−r1)| over the class QK , r2 > 1, r1 > 0. We use the standard
notation, see [15],

µ(k) =
π

2
· K

′(k)
K(k)

,

where

K(k) =
∫ 1

0

dt√
(1− t2)(1− k2t2)

and K′(k) := K(
√
1− k2),

k ∈ (0, 1)
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are the complete elliptic integrals. Denote by pK(k) = µ−1 (1/Kµ(k)),
K ≥ 1. For this quantity the useful estimate (pK(k))2 ≤ 161−1/K ·k1/K

can be found in, e.g., [2, 15].

If f ∈ QK , then [1] the sharp estimate

|f(r2)|
|f(−r1)| ≤

u2

1− u2
≤ 161−1/K · r

1/(2K)
2

(r1 + r2)1/(2K) − 161−1/K · r
1/(2K)
2

,(4)

u = pK

(√
r2

r2 + r1

)
.

obeys.

Our paper deals with the application of the method of the extremal
partition of a Riemann surface by doubly connected domains to the
extremal problem about two point distortion in the class QK . In terms
of our method the previous result by Agard invokes the partition by
only one doubly connected domain. We use the partition by two doubly
connected domains to evaluate the range of the system of functionals
(|f(r1)|, |f(r2)|) for fixed real values of r1 and r2. Our main result is
the following theorem.

Theorem A. Let r1 and r2 be fixed real points, f ∈ QK . Then

(i) The unique extremal mapping f∗ gives the maximum to |f(r2)|−
|f(−r1)|, r1 > 0, r2 > 1 in the class QK . This mapping satisfies the
Beltrami equation (1) with the Beltrami coefficient (2) where

ϕ(z) =
c − z

z(z − 1)(z + r1)(z − r2)
,

and

c =
r1r2(r1 − r2 + 2)

r2(r2 − 1) + r1(1 + r1)
.

(ii) The unique extremal mapping f∗∗ gives the maximum to |f(r2)−
f(−r1)| and |f(r2)| + |f(−r1)|, r1 > 0, r2 > 1 in the class QK . This
mapping satisfies the Beltrami equation (1) with the Beltrami coefficient
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(2) with

ϕ(z) =
c − z

z(z − 1)(z + r1)(z − r2)
, for r2 − r1 > 1,

ϕ(z) =
z − c

z(z − 1)(z + r1)(z − r2)
, for r2 − r1 < 1,

ϕ(z) =
−1

z(z − 1)(z + r1)(z − r2)
, for r2 − r1 = 1,

where
c =

r1r2

1 + r1 − r2
.

(iii) The unique extremal mapping f∗ gives the maximum to |f(r2) +
f(r1)| and |f(r2)|+ |f(r1)|, 1 < r1 < r2 in the class QK . This mapping
satisfies the Beltrami equation (1) with the Beltrami coefficient (2) with

ϕ(z) =
z − c

z(z − 1)(z − r1)(z − r2)
,

and
c =

r1r2(r1 + r2 − 2)
r2(r2 − 1) + r1(r1 − 1)

.

(iv) The unique extremal mapping f∗∗ gives the maximum of |f(r2)|−
|f(r1)|, 1 < r1 < r2 in the class QK . This mapping satisfies the
Beltrami equation (1) with the Beltrami coefficient (2) with ϕ(z) as
in (iii) and

c =
r1r2

r1 + r2 − 1
.

Some initial results have been obtained by the author in [22]. In
particular, the upper boundary curve of the range of the system of
functionals (|f(r1)|, |f(r2)|), 0 < r1 < r2 < 1, was described in the
class of K-quasiconformal homeomorphisms of the unit disk, f(0) = 0.
In conformal case there are results by Jenkins [9] and by Vasil’ev and
Fedorov [21], who evaluated the range of the system of functionals
(|f(±r1)|, |f(r2)|) in the class S of all univalent holomorphic normalized
in the unit disk functions. More detail information about this will be
given in Section 6.
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2. Extremal quadratic differentials.

1. Let S be a Riemann surface represented by a multiply connected
domain in C with n punctures and with possibly l hyperbolic boundary
components, 2n + 3l > 6. We define on S an admissible system of
curves, following the terminology by Strebel [20], γ = (γ1, . . . , γm)
that satisfy the following property. The curves from this system are
not freely homotopic to each other in pairs and not homotopic to a
point or a puncture of S. All curves from the admissible system are
not intersected. In the case m = 1 we will speak about one admissible
curve γ.

A doubly connected hyperbolic domain Dj on S is said to be of
homotopic type γj if any simple loop on S separating the boundary
components of Dj is freely homotopic to the curve γj from the given
admissible system.

A system of nonoverlapping doubly connected hyperbolic domains
(D1, . . . , Dm) on S is said to be associated with the admissible system
γ = (γ1, . . . , γm) if for any j ∈ {1, . . . , m} the domain Dj is of homotopy
type γj .

Denote by M(D) the conformal modulus of a doubly connected
hyperbolic domain D. A general theorem by Jenkins [8] asserts that
any collection of non-overlapping doubly connected domains {Dj}
associated with the admissible system γ = (γ1, . . . , γm) satisfies the
following inequality

(5)
m∑

j=1

α2
jM(Dj) ≤

m∑
j=1

α2
jM(D∗

j ) = m(S, γ, α)

for a nonzero vector α = (α1, . . . , αm) with nonnegative coordinates.
The equality sign occurs only for Dj = D∗

j . Not all of D∗
j , j = 1, . . . , m,

degenerate. Each D∗
j , if it does not degenerate, is a ring domain in

the trajectory structure of a unique quadratic differential ϕ(z)dz2 with
closed trajectories. There is a conformal map gj(z), z ∈ D∗

j which
satisfies the differential equation

α2
j

(
g′j(z)
gj(z)

)2

= −4π2ϕ(z)
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and maps D∗
j onto the ring 1 < |w| < exp(2πM(D∗

j )). We normalize
the vector α by α1 = 1. If m = 1 and the vector α degenerates, α = (1),
then we denote by m(S, γ) ≡ m(S, γ, α). The quantity m(S, γ, α) is the
modulus, see e.g. [8,9], in the modulus problem for the free family of
homotopy classes of curves generated by the admissible system γ. So,
we call it also “modulus.”

The quadratic differential which is extremal in such a problem of
the extremal partition has closed trajectories, in Strebel’s terminology
[20], and at most ring domains in its trajectory structure. Vice versa,
each differential ϕ with closed trajectories and only ring domains in
its trajectory structure defines a problem of the extremal partition
where the admissible system of curves may be defined by noncritical
nonhomotopic trajectories of ϕ and the vector α consists of their length
in the metric

√|ϕ(z)||dz|.

2. Now we consider some special moduli m(S, γ, α) generated by
certain quadratic differentials. Assume r1 > 0, r2 > 1.

We set the following one-parametric families of holomorphic quadratic
differentials (6 8) on S = S0 \ {r1, r2}.

(6) ϕ1(z)dz2 = A1(α)
z − c1(α)

z(z − 1)(z + r1)(z − r2)
dz2,

where c1(α) ∈ [1, r2], A1(α) < 0. These values are calculated by the
equations

∫ −r1

−∞

√
ϕ1(x) dx = 1/2,

∫ 1

0

√
ϕ1(x) dx = α/2;

α is a fixed number from the segment [α0, 1], where

α0 =
∫ 1

0

dx√
x(r2 − x)(r1 + x)

( ∫ −r1

−∞

dx√
x(r2 − x)(r1 + x)

)−1

,

c1(α0) = 1, c1(1) = r2. For each α ∈ (α0, 1) this differential
has two ring domains in its trajectory structure D1 = D1(α) and
D2 = D2(α). The domain D1 is bounded by the ray (−∞, r1],
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the segment [c1(α), r2] and the smooth arc p = p(α) of the critical
trajectory of the differential ϕ1 with two endpoints at c(α) enclosing
the segment [0, 1]. The domain D2 is bounded by the segment [0, 1]
and the arc p(α). The corresponding problem of the extremal partition
is defined for the admissible system γ of two simple loops γ1 and
γ2. The loop γ1 is homotopic on S to the slit along [−∞,−r1], the
loop γ1 is homotopic on S to the slit along [0, 1]. Here the sign at
(−∞) simply shows the direction. Varying α from α0 to 1 one can
learn the dynamics of the trajectory structure from two ring domains
D1(α0) = S \{[−∞,−r1]∪ [0, r2]}, D2(α0) = ∅ up to two ring domains
D1(1) = S \ {[−∞,−r1] ∪ int p(1)}, D2(α0) = int p(1) \ [0, 1]. Here
(int p) means the domain lying left to the clock-wise direction of p and
we denote by int p its closure.

For the differentials ϕ2 and ϕ3 one can easily learn a similar dynamics
from the above description.

We set

(7) ϕ2(z)dz2 = A2(α)
z − c2(α)

z(z − 1)(z + r1)(z − r2)
dz2,

where c2(α) ∈ [−r1, 1], c2(1) = 0, A2(α) < 0. These values are
calculated by the equations

∫ −r1

−∞

√
ϕ1(x) dx = 1/2,

∫ 1

0

√
ϕ1(x) dx = α/2;

α is a fixed number from the segment [α1, α2], where

α1 =
∫ r2

1

dx√
x(r2 − x)(r1 + x)

( ∫ −r1

−∞

dx√
x(r2 − x)(r1 + x)

)−1

,

α2 =
∫ r2

1

dx√
x(r2 − x)(x − 1)

( ∫ −r1

−∞

dx√
x(r2 − x)(x − 1)

)−1

.

Let α 
= 1. Then we set

(8) ϕ3(z) dz2 = A3(α)
z − c3(α)

z(z − 1)(z + r1)(z − r2)
dz2,
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where c3(α) ∈ (∞,−r1] ∪ [r2,∞), A2(α) < 0 for α > 1 and A2(α) > 0
for α < 1. These values are calculated by the equations∫ 0

−r1

√
ϕ1(x) dx = 1/2,

∫ r2

1

√
ϕ1(x) dx = α/2;

α is a fixed number from the set [α3, 1) ∪ (1, α4], where

α3 =
∫ r2

1

dx√
x(x − 1)(r1 + x)

( ∫ 0

−r1

dx√
x(1− x)(r1 + x)

)−1

,

α4 =
∫ r2

1

dx√
x(r2 − x)(x − 1)

( ∫ 0

−r1

dx√
x(r2 − x)(x − 1)

)−1

.

For α = 1 we have

ϕ3(z) dz2 =
−1

z(z − 1)(z + r1)(z − r2)
dz2.

From (6 8) one can see the dynamics of the zero and trajectory
variation dependent on the parameter α. The values α0, . . . , α4 of the
parameter α correspond to the degeneracy of one of D1(α) and D2(α) in
the trajectory structure of the differentials (6 8). The differentials are
of finite L1-norms and have closed trajectories. For each of them one
can define a problem on the extremal partition where certain differential
is extremal. This means that the admissible system of curves consists
at most of two nonhomotopic noncritical trajectories of the differential
given with the weight vector (1, α).

3. Extremal mappings. Now we construct the Teichműller
mappings fj defined on C satisfying the Beltrami equation (1) with
the complex dilatation

µfj
(z) = k

ϕj(z)
|ϕj(z)| , k =

K − 1
K + 1

, j = 1, 2, 3,

keeping the points z = 0, 1,∞ motionless. These mappings satisfy
the condition f(z̄) = f(z). It is easily seen by the symmetry of the
corresponding Beltrami coefficients. Besides, the mappings are sym-
metrically normalized. These mappings are extremal with respect to
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the following problem of the extremal partition. Namely, we consider
the differential ϕ1(z) dz2, α ∈ (α0, 1) and its two nonhomotopic tra-
jectories as an admissible system of curves on S. Then we construct
the admissible system γ on S and define the problem of the extremal
partition for this admissible system and the vector (1, α), α ∈ [α0, 1].
Let m = m(D, γ, (1, α)) be the solution of this problem. In order to
simplify the notations further we shall use the same letter α both for
the vector α := (1, α) and for its second coordinate. So, we rewrite
m = m(D, γ, α).

Let us assume f to be an arbitrary quasiconformal homeomorphism
from QK and define the modulus mf = m(f(S), f(γ), α). The Te-
ichműller homeomorphism f1 is the unique extremal homeomorphism
in the problem of minf∈QK

mf . In fact, mf ≥ m/K = m(S, γ, α)/K
and the extremal mapping exists. We consider the mapping f1. The
trajectory structure of ϕ1(z) dz2 contains two ring domains D1 and D2

described in Section 2. The Teichműller homeomorphism f1 maps D1

and D2 onto a couple of ring domains in the trajectory structure of some
quadratic differential ψ(w) dw2 in C with singularities relevant to those
for ϕ1(z) dz2. We induce the local parameters ζ = exp(

∫ z √
ϕ1(z) dz)

and ζ ′ = exp(
∫ w √

ψ(w) dw) and one can see that in each domain Dj

the mapping f1 being considered in S acts affine in these coordinates
ζ ′ = z + kζ̄. For α ∈ [α0, 1] the ratio of the length of trajectories is
constant for ϕ1 and for ψ, therefore, the normalization of ψ implies
mf1 = M(f1(D1)) + α2M(f1(D2)) = m/K. The uniqueness follows
from [8]. Similar assertions are proved for the differentials ϕj and the
mappings fj for j = 2, 3.

The following result is known and one can find it in, e.g., [2]. We
adduce its proof here to clarify our method and the following proofs.

Proposition 1. The unique mapping f1

∣∣
α=1

gives the absolute
minimum and f3

∣∣
α=α3

gives the absolute maximum to |f(−r1)| in the
class QK .

Proof. We prove Proposition 1 for f3. If α = α3, then c3(α3) = r2 and
the admissible system of curves γ consists of a curve γ which separates
the points (−r1), 0 from 1, ∞, and homotopic on S to the slit along the
segment [−r1, 0]. The corresponding problem of the extremal partition
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has the domain Dz = C \ {[−r1, 0] ∪ [1,∞)} as the extremal one, see
Section 2.

We assume the contrary. Let there be a map f ∈ QK such that
f 
≡ f3 for α = α3 and |f(−r1)| ≥ −f3(−r1)

∣∣
α=α3

. Then mf > m/K.

Let us denote by D∗ the result of circular symmetrization of the
doubly connected domain f(Dz) with respect to the origin and the
positive real axis. The domain D∗ is admissible for the problem of the
extremal partition with respect to the admissible curve γ′ that sepa-
rates on S′ = C \ {

0, 1, f3(−r1)
∣∣
α=α3

}
the punctures f3(−r1)

∣∣
α=α3

, 0
from others being homotopic on S′ to the slit along

[
f3(−r1)

∣∣
α=α3

, 0
]
.

Let D′ be the extremal ring domain in this problem of the extremal
partition with m(S′, γ′) = M(D′). Then the chain of the inequalities

mf ≤ M(D∗) ≤ M(D′) = M
(
f3

∣∣
α=α3

(Dz)
)
=

1
K

M(Dz) = m/K

holds. This chain is not inconsistent only when f ≡ f3

∣∣
α=α3

. This
contradiction proves Proposition 1. For the mapping f1

∣∣
α=1

the proof
is similar.

Now we use the extremal partition of S by two ring domains to derive
a result about the range of the system of functionals (|f(−r1)|, |f(r2)|)
in the class QK .

Theorem 1. For any real u ≥ 0 with

min
f∈QK

|f(−r1)| = −f1(−r1)
∣∣
α=1

≤ u ≤ −f3(−r1)
∣∣
α=α3

= max
f∈QK

|f(−r1)|

among all functions fj(z), j = 1, 2, 3, there is a unique function f(z, u)
(more precisely, there are such j and α∗ that fj(z)

∣∣
α=α∗ = f(z, u)),

such that f(−r1) = −u. If f ∈ QK satisfies the condition |f(−r1)| = u,
then |f(r2)| ≤ f(r2, u) with the equality sign only for f(z) ≡ f(z, u).

Proof. The result by Solynin [19] implies the continuous dependence
of ϕ1, . . . , ϕ3 on α and, hence, the same for f1, . . . , f3. Moreover,
f1

∣∣
α=α0

= f2

∣∣
α=α1

, f2

∣∣
α=α2

= f3

∣∣
α=α4

. Therefore, Proposition 1
implies the existence of f(z, u).
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We choose j and α∗ such that |f(−r1)| = −fj(−r1)
∣∣
α=α∗ = u for

a function f ∈ QK . Assume, for instance, j = 3, α∗ ∈ [α3, α4] and
f(z, u) ≡ f3(z)

∣∣
α=α∗ . Then we generate the problem of the extremal

partition of S = C \ {−r1, 0, 1, r2} by the differential ϕ3(z) dz2 with
m = m(S, γ, α∗) for the admissible system γ = (γ1, γ2) with the
homotopy defined by the slit along [−r1, 0]. Denote by D1, D2 the
pair of extremal domains in this problem,

m = m(S, γ, α∗) = M(D1) + (α∗)2M(D2).

Now we assume the contrary. Let f ∈ QK and suppose that with
f(z, u) as above |f(r2)| ≥ f(r2, u) but f(z) is not identical with
f(z, u). We define a problem of the extremal partition of S′ =
C\{0, 1,−u, f(r2, u)} for the admissible systems γ′ of two loops (γ′

1, γ′
2)

and the vector (1, α∗), where γ′
1 is a simple loop which separates the

points f(−r1, u), 0 from 1, f(r2, u),∞. The loop γ′
1 is homotopic on

S′ to the slit along [f(−r1, u), 0]. The curve γ′
2 is a simple loop which

separates the points 1, f(r2, u) from 0, f(−r1, u),∞ with the homotopy
defined by γ′

1. Now we apply circular symmetrization [7, 9] to the pair
of domains f(D1), f(D2) with the center at the origin and with the
direction along the positive and negative real axes respectively. Denote
by D∗

1 and D∗
2 the result of this symmetrization. This pair of domains

is admissible in the problem of the extremal partition of S′ for the
admissible system γ′ and the vector α∗ given. Moreover,

M(D∗
1) ≥ M(f(D1)), M(D∗

2) ≥ M(f(D2))

with the equality only in the case of D∗
1 = f(D1), D∗

2 = f(D2).
Rotation is negligible. Therefore,

(9)

1
K

m =
1
K

(M(D1) + (α∗)2M(D2))

< M(f(D1)) + (α∗)2M(f(D2))
≤ M(D∗

1) + (α∗)2M(D∗
2) ≤ m(S′, γ′, α∗).

The strict inequality sign is because of the uniqueness of f(z, u) in the
extremal problem of minmf . For this extremal function we have

(10)
1
K

(M(D1) + (α∗)2M(D2)) = M(f(D1, u)) + (α∗)2M(f(D2, u))

= mf(z,u).
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Taking into account (9) (10) we observe that this chain of inequali-
ties is not inconsistent only if f(z) ≡ f(z, u) which contradicts our
assumption.

The cases j = 1, 2 can be considered analogously.

Now we can prove the uniqueness of the choice of α∗ and j = 1, . . . , 3.
For this we assume that there are two different pairs of these parameters
which lead to the same point of the boundary of the range of the system
of functionals (|f(−r1)|, |f(r2)|). One of these pairs we choose as a
basic pair and the Teichműller mapping defined by the other one we
denote f . Then we can repeat the previous proof and come to the same
contradiction. This ends the whole proof.

4. Boundary parameterization. We construct a new parameter-
ization replacing α → t, t ∈ [0, 1], to simplify notations. Set

x(t) =




−f1(−r1)
∣∣
α=3t(−1+α0)+1

, for t ∈ [0, 1/3]

−f2(−r1)
∣∣
α=3t(α2−α1)+2α1−α2

, for t ∈ [1/3, 2/3]

−f3(−r1)
∣∣
α=3t(α3−α4)+3α4−2α3

, for t ∈ [2/3, 1],

y(t) =




f1(r2)
∣∣
α=3t(−1+α0)+1

, for t ∈ [0, 1/3]

f2(r2)
∣∣
α=3t(α2−α1)+2α1−α2

, for t ∈ [1/3, 2/3]

f3(r2)
∣∣
α=3t(α3−α4)+3α4−2α3

, for t ∈ [2/3, 1].

Theorem 2. Let f ∈ QK , then the upper boundary curve Γ+

of the range of the system of functionals (|f(−r1)|, |f(r2)|), r1 > 0,
r2 > 1, i.e., the curve of maxf∈QK

|f(r2)| for |f(−r1)| fixed, is assigned
parameterically by (x(t), y(t)), t ∈ [0, 1]. This curve is smooth and being
considered in the plane (x, y) increases in t ∈ [0, 2/3] and decreases
in t ∈ [2/3, 1]. The tangent vector to Γ+ is vertical at t = 0, 1 and
horizontal at t = 2/3.

Proof. By (6) (8) the functions Aj(α) and cj(α), for j = 1, 2, 3, are
differentiable with respect to α in the corresponding intervals; therefore,
we have the same for ϕj , fj . Thus, the functions x(t), y(t) are piecewise
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differentiable and there are left-side and right-side derivatives at the
points 1/3, 2/3. Let us consider the interval (2/3, 1). We have the
equality mf3 = m/K in this interval where the modulus m is defined
by the extremal differential ϕ3. From [5, 19] we know that

dm

dα
= 2αM(D2),

∂mf3

∂α
= 2αM(f3(D2));

∂mf3

∂x
= −πResw=−xψ(w),

∂mf3

∂y
= πResw=yψ(w).

Here we consider (−x), y as simple poles of the extremal differential ψ
which is extremal for m(f3(S), f3(γ), α)

ψ(w)dw2 = B
w − C

w(w − 1)(w + x)(w − y)
dw2,

C ∈ (−∞,−x] ∪ [y,∞) when α 
= 1 or

ψ(w)dw2 =
−dw2

w(w − 1)(w + x)(w − y)
,

otherwise. For α < 1 we have B > 0, for α > 1 we have B < 0.

Thus, we obtain the equality

∂mf3

∂α
+

(
∂mf3

∂x

dx

dt
+

∂mf3

∂y

dy

dt

)
1

3(α3 − α4)
=

1
K

dm

dα
.

The mapping f3 is extremal for the modulus mf ; hence, it maps the
extremal configuration in the trajectory structure of the differential
ϕ3 onto the extremal configuration in the trajectory structure of the
differential ψ. Therefore,

∂mf3

∂α
=

1
K

dm

dα
.

The differentiation leads to the derivative

dy

dx
=

y(y − 1)(x + C)
x(x + 1)(y − C)
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which exists and negative in all points of (2/3,1). Moreover dy/dx → 0
as t → 2/3± 0 and dy/dx → ∞ as t → 1− 0. The consideration of the
cases j = 1, 2 is similar. This ends the proof.

Remark. From the results by Agard [1] and Theorem 1 it easily
follows that at the point t = 1/3 the argument of the vector (x(t), y(t))
admits its maximal value, see the estimate (4).

5. Estimation of functionals.

Theorem 3. The unique extremal mapping f∗ gives the maximum
to |f(r2)| − |f(−r1)|, r1 > 0, r2 > 1 in the class QK . This mapping
satisfies the Beltrami equation (1) with the Beltrami coefficient (2)
where

ϕ(z) =
c − z

z(z − 1)(z + r1)(z − r2)
,

and

c =
r1r2(r1 − r2 + 2)

r2(r2 − 1) + r1(1 + r1)
.

Proof. 1. We look for the extremal functions among those which give
the points (x(t), y(t)) of the upper boundary curve Γ+ of the range of
the system of functionals (|f(−r1)|, |f(r2)|).
Let us consider the point (x(1/3), y(1/3)) of Γ+. Theorem 2 and the

remark thereafter imply that

β = tan−1 y(1/3)
x(1/3)

= tan−1 y′(1/3)
x′(1/3)

.

2. First we suppose that β ≤ π/4. Then the extremal function
is f1 for some α∗ ∈ [α0, 1), which satisfies the necessary condition of
extremality for the functional, given by

y′(t∗)
x′(t∗)

= 1, α∗ = 3t∗(−1 + α0) + 1, t∗ ∈ (0, 1/3].

For the function f1 we have

(11)
∂mf1

∂x
= −πResw=−xψ1(w);

∂mf1

∂y
= πResw=yψ1(w).
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Here we consider (−x), y as simple poles of the extremal differential ψ1,

ψ1(w) dw2 = B
w − C

w(w − 1)(w + x)(w − y)
dw2,

C ∈ [1, y], and B < 0. This clearly forces the equality as in Theorem 2

∂mf1

∂x

dx

dt
+

∂mf1

∂y

dy

dt
= 0.

By (11) we obtain that for all points α∗ and, consequently, t∗, satisfying
the necessary condition

y′(t∗)
x′(t∗)

=
y(y − 1)(x + C)
x(x + 1)(y − C)

= 1,

we have

(12) C =
xy(x − y + 2)

y(y − 1) + x(x + 1)
,

where C = C(α∗, x, y) is a function defined by the conditions for the
differential ψ1∫ x

−∞

√
ψ1(s) ds = 1/2,

∫ 1

0

√
ψ1(s) ds = α∗/2.

3. Now we claim

(13) c(α∗) =
r1r2(r1 − r2 + 2)

r2(r2 − 1) + r1(1 + r1)
.

The equality (13) implies that there exist a unique α∗ and t∗ satisfying
the necessary condition which, therefore, becomes sufficient, because
the extremal function f(z, u) is unique for each point of Γ+. To prove
this we need more refined observations.

For α∗ fixed we consider the quadratic differential

(14) ϕ̃1(z) dz2 = Ã1
z − c̃1(u, v)

z(z − 1)(z + u)(z − v)
dz2,
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where c̃1 ∈ [1, v], Ã < 0. These values are calculated by the equations

∫ −u

−∞

√
ϕ̃1(s) ds = 1/2,

∫ 1

0

√
ϕ̃1(s) ds = α∗/2,

where the real valued differentiable functions u = u(µ), v = v(µ) accept
their values from some neighborhood of (r1, r2), µ ∈ (−ε, ε), u(0) = r1,
v(0) = r2. Now let us construct the Teichműller mapping f̃ as the
solution of the Beltrami equation (1) with the Beltrami coefficient (2)
for the quadratic differential (14) with the normalization of the class
QK . Denote by x(α∗, u, v) = |f̃(−r1)|, y(α∗, u, v) = |f̃(r2)|. These
functions are differentiable with respect to u and v as the values of f̃
which is the solution of the Beltrami equation with the Beltrami coeffi-
cient that is differentiable with respect to u and v. Moreover, we have
that c̃1(r1, r2) = c1(α∗), x(α∗) = x(α∗, r1, r2), y(α∗) = y(α∗, r1, r2).
Since f̃ ∈ QK , the points (x(α∗, u(µ), v(µ)), y(α∗, u(µ), v(µ))) form a
curve assigned by the parameter µ which touches the boundary curve
Γ+ at the point (x(α∗), y(α∗)).

Denote by m(u, v) the modulus defined by the differential (14) and
by mf̃ the modulus defined by the Teichműller mapping f̃ . Of course,
mf̃ = 1

K m(u, v). Now we differentiate this equality with respect to u
and v

1
K

∂m(u, v)
∂u

=
∂mf̃

∂x
· ∂x(α∗, u, v)

∂u
+

∂mf̃

∂y
· ∂y(α∗, u, v)

∂u
,(15)

1
K

∂m(u, v)
∂v

=
∂mf̃

∂x
· ∂x(α∗, u, v)

∂v
+

∂mf̃

∂y
· ∂y(α∗, u, v)

∂v
.(16)

Here in the righthand sides of these equalities the partial derivatives
are taken at the simple poles x, y of the extremal differential for mf̃ .
Taking into account the rule of differentiating of the modulus we obtain
that

(17) − u(u + 1)(v − c̃1(u, v))
v(v − 1)(u + c̃1(u, v))

=
[(∂mf̃/∂x)(∂x(α∗, u, v)/∂v)] + [(∂mf̃/∂y)(∂y(α∗, u, v)/∂v)]
[(∂mf̃/∂x)(∂x(α∗, u, v)/∂u)] + [(∂mf̃/∂y)(∂y(α∗, u, v)/∂u)]

.
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Observe, that

∂mf̃

∂x

∣∣∣
u=r1, v=r2

=
∂mf1

∂x

∣∣∣
α=α∗

,
∂mf̃

∂y

∣∣∣
u=r1, v=r2

=
∂mf1

∂y

∣∣∣
α=α∗

.

Then the equalities (11) and (12) imply

∂mf̃

∂x

∣∣∣
u=r1, v=r2

= −∂mf̃

∂y

∣∣∣
u=r1, v=r2

.

Now we choose the parameterization by u = r1 + µ/2, v = r2 − µ/2.
Since the curve (x(α∗, u(µ), v(µ)), y(α∗, u(µ), v(µ))), µ ∈ (−ε, ε), given
by the parameter µ touches the boundary curve of Theorem 3 at the
point µ = 0, we have

d(y(α∗, u, v)− x(α∗, u, v))
dµ

∣∣∣
µ=0

=
1
2

(
∂(y(α∗, u, v)−x(α∗, u, v))

∂u
− ∂(y(α∗, u, v)− x(α∗, u, v))

∂v

)∣∣∣
µ=0

= 0,

and the righthand side of the equality (17) reduces to 1 at µ = 0,
(u, v) = (r1, r2). This leads to the value c̃1(r1, r2) = c(α∗) given by
(13).

4. Now let β > π/4. Then we repeat all previous observations for
the function f2 and x(t), y(t) for t∗ ∈ (1/3, 2/3). As a result, we obtain
that the value of c(α∗) is given by the same formula (13). Thus, the
extremal function f∗ is either f1 or f2, dependent on the angle β, but
is given by the same Beltrami coefficient. This completes the proof.

If |f(r2)| ≤ |f(−r1)| for all f ∈ QK , then the result of Theorem 3
gives us the sharp lower estimate of ||f(r2)| − |f(−r1)||. We have the
equivalence K′(1/

√
2) = K(1/

√
2). Thus, Theorem 3 and the estimate

(4) imply the following useful corollary.

Corollary. Let f ∈ QK and r1 > 0, r2 > 1, and

r2

r1
≤ (µ−1(K/2))2

1− (µ−1(K/2))2
.
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Then |f(r2) + f(−r1)| ≥ −(f∗(r2) + f∗(−r1)). This estimate is sharp
for the unique function f∗ of Theorem 3.

Theorem 4. Let us set

c =
r1r2

1 + r1 − r2
.

The unique extremal mapping f∗∗ delivers the maximum of |f(r2) −
f(−r1)|, r1 > 0, r2 > 1 in the class QK . This mapping satisfies the
Beltrami equation (1) with the Beltrami coefficient (2) where

ϕ(z) =
c − z

z(z − 1)(z + r1)(z − r2)
, for r2 − r1 > 1,

ϕ(z) =
z − c

z(z − 1)(z + r1)(z − r2)
, for r2 − r1 < 1,

ϕ(z) =
−1

z(z − 1)(z + r1)(z − r2)
, for r2 − r1 = 1.

Proof. 1. Observe that the inequality |f(r2) − f(−r1)| ≤ |f(r2)| +
|f(−r1)| implies that we have to look for the extremal functions among
those which give the points (x(t), y(t)) of the upper boundary curve for
the system of functionals (|f(−r1)|, |f(r2)|) for t ∈ (2/3, 1).

Then the extremal function is f3 at some α∗ ∈ (α4, α3) that satisfies
the necessary condition of the extremality

y′(t∗)
x′(t∗)

= −1, α∗ = 3t∗(−1 + α0) + 1, t∗ ∈ (2/3, 1).

For the function f3 we have the relation (11) for the extremal differen-
tial ψ3,

ψ3(w) dw2 = B
w − C

w(w − 1)(w + x)(w − y)
dw2,

C ∈ (−∞,−x) ∪ (y,∞) if α∗ 
= 1, and

ψ3(w) dw2 = − 1
w(w − 1)(w + x)(w − y)

dw2,
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if α∗ = 1. B > 0 for α < 1 and B < 0 for α > 1. By this, we obtain
the equality as in Theorem 3

∂mf3

∂x

dx

dt
+

∂mf3

∂y

dy

dt
= 0.

Suppose α∗ 
= 1. With (11) we obtain that the equality

y′(t∗)
x′(t∗)

=
y(y − 1)(x + C)
x(x + 1)(y − C)

= −1

holds for all α∗ which satisfy the necessary condition of the extremality,
or

C =
xy

1 + x − y
,

where C = C(α∗, x, y) is a function defined by the conditions for the
differential ψ3∫ 0

−x

√
ψ3(s) ds = 1/2,

∫ y

1

√
ψ3(s) ds = α∗/2.

2. Now we claim
c(α∗) =

r1r2

1 + r1 − r2
.

To prove this we repeat the proof of Theorem 4 with the same param-
eterization dependent on µ. The case α∗ = 1 one can consider as the
limiting case as α∗ → 1. Negative or positive constant in front of ϕ3

leads to different cases of the function ϕ in Theorem 4. This completes
the proof.

The same observations for positive fixed points of a function f ∈ QK

lead to the following results.

Theorem 5. The unique extremal mapping f∗ gives the maximum
to |f(r2) + f(r1)|, 1 < r1 < r2 in the class QK . This mapping satisfies
the Beltrami equation (1) with the Beltrami coefficient (2) with

ϕ(z) =
c − z

z(z − 1)(z − r1)(z − r2)
,
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where

c =
r1r2(r1 + r2 − 2)

r2(r2 − 1) + r1(r1 − 1)
.

The unique extremal mapping f∗∗ gives the maximum to |f(r2)| −
|f(r1)|, 1 < r1 < r2 in the class QK . This mapping satisfies the
Beltrami equation (1) with the Beltrami coefficient (2) with the same
function ϕ(z) and

c =
r1r2

r1 + r2 − 1
.

Theorems 3, 4 and 5 is the contents of Theorem A in the introduction.

6. Conclusions and unsolved problems. We start with the
conformal case. Let S be a class of all holomorphic and univalent
functions in the unit disk U = {z : |z| < 1} with the normalization
f(0) = 0, f ′(0) = 1. Denote by SR its subclass of symmetric functions
satisfying the additional condition f(z) = f(z̄). The earlier result
by Jenkins [9] asserts that the upper boundary curve of the range of
the system of functionals (|f(−r1)|, |f(r2)|), 0 < r1, r2 < 1, over the
class S coincides with that over the class SR. By the words “upper”
and “lower” we say that the points (|f(−r1)|, |f(r2)|) are considered
as points of real plane R2. In Jenkins’ proof it was important that
the fixed points (−r1) and r2 were situated in different legs of the real
diameter. Later on the author and Fedorov [21] have proved the same
result for the system of functionals (|f(r1)|, |f(r2)|), 0 < r1 < r2 < 1.
As for the lower boundary curves for these ranges, they are different in
the classes S and SR. In SR the points of the lower boundary curves
are delivered by the simple function z(1−uz+z2)−1, −2 ≤ u ≤ 2. The
points of the upper boundary curves are delivered by functions with
more complicated structure. They have been described in [9] and [21].

Now in the quasiconformal case we can introduce a subclass QR
K

of the class QK of functions satisfying the same symmetry condition
f(z) = f(z̄). This class plays the same role for the class QK as the
subclass SR for the class S. One can easily see that the upper boundary
curve of the range of the system of functionals (|f(−r1)|, |f(r2)|),
r1 > 0, r2 > 1 in the class QK coincides with that in the class QR

K . So,
this result is close to [9] and [21]. Of course, the method of the proof
is different. The extra normalization f(1) = 1 yields another difficulty.
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So, we are not able by now to prove analogous result for the system of
functionals (|f(−r1)|, |f(r2)|), r1 > 0, 0 < r2 < 1 or for the system of
functionals (|f(r1)|, |f(r2)|), 0 < r1 < 1, r2 > 1. But for the system
of functionals (|f(r1)|, |f(r2)|), 1 < r1 < r2 this is the case as the
author talked at the International Congress of Mathematicians, Berlin,
1998 [23]. In [22] the author has shown this for K-quasiconformal
homeomorphisms of the unit disk U .

From these results we deduce (Theorem A) the sharp estimates for
the functionals |f(r2)|±|f(±r1)| and |f(r2)±f(±r1)|. The proofs open
a way to present extremal functions in terms of Beltrami coefficient of
direct mapping. But the solution of the problem for |f(r2)±f(∓r1)| is
still unknown. The same is for the lower estimations of the functional
|f(r2)|/|f(±r1)|.

So we consider the following problems as interesting and difficult to
resolve:

1) To find the lower boundary curve of the range of the system of
functionals (|f(r1)|, |f(r2)|) in the class QK for different real r1, r2.

2) To find the upper boundary curve of the range of the system of
functionals (|f(r1)|, |f(r2)|) in the class QK for different r1, r2 so that
one of r1, r2 lies in the segment (0, 1) (for r1, r2 ∈ (0, 1) this can be
obtained the same way it was presented in this paper and, therefore, it
is not so interesting).

3) To obtain the sharp estimates of |f(r2)−f(r1)| and |f(r2)+f(−r1)|
for r2, r1 > 0 in terms of Beltrami coefficient of direct mapping.

4) To obtain the lower sharp estimates of |f(r2)|/|f(±r1)| for different
real values of r1 and r2.

Here we do not speak about nonreal fixed points because our method
is based on symmetric structures.
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