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UNIQUE SOLVABILITY OF AN
ORDINARY FREE BOUNDARY PROBLEM

UWE SCHÄFER

ABSTRACT. In this paper an existence theorem for an or-
dinary free boundary problem is given. The result is based on
differential inequalities and completes the uniqueness theorem
by R.C. Thompson in 1982.

1. Introduction. In the present paper we consider the ordinary
free boundary problem:

Find s > 0 and u(x) : [0,∞) → R such that

(1.1)




u′′(x) = f(x, u(x), u′(x)) for x ∈ [0, s],
u(0) = α, u′(s) = 0,
u(x) = 0, for x ∈ [s,∞),

where α > 0 and f(x, z, p) : [0,∞) × R2 → R are given. For an
application we refer to [1] and [2]. Thompson has given the following
result in 1982.

Theorem 1.1. Let α satisfy the inequality α > 0 and suppose that
f(x, z, p): [0,∞)× R2 → R satisfies the following conditions:

1. f(x, 0, 0) > 0;

2. f(x, z, p) is increasing with respect to z, i.e., the inequality z ≤ z̃
implies f(x, z, p) ≤ f(x, z̃, p);

3. f(x, z, p) satisfies a Lipschitz condition in p on bounded subsets of
its domain in R3.

Then solutions to problem (1.1) are unique when they exist.

For the proof we refer to Corollary 1 in [3]. In this paper we will
prove a theorem that guarantees the existence of a solution of (1.1).
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The proof is motivated by [4].

2. Preliminaries. The results of this section are used to prove the
main theorem in Section 3.

Theorem 2.1. Let s > 0. Assume that f = f(x, z, p), (x, z, p) ∈
[0,∞) × R2 is continuous and increasing with respect to z, i.e., the
inequality z ≤ z̃ implies f(x, z, p) ≤ z(x, z̃, p). If v, w ∈ C2[0, s] satisfy

v′′ − f(x, v, v′) < 0 = w′′ − f(x, w, w′) for x ∈ [0, s],
v(x) = w(x) = 0, for x ∈ [s,∞),

v′(s) = w′(s) = 0,

then
v(x) < w(x) for x ∈ [0, s)

follows.

Proof. We assume that there exists x0 ∈ [0, s) such that v(x0) ≥
w(x0).

Case 1. Suppose v(x) ≥ w(x) holds for all x ∈ [x0, s]. Then we define
Φ(x) = w(x)− v(x), x ∈ [0,∞). On the one hand, this implies

Φ(x) ≤ 0 = Φ(s) for x ∈ [x0, s];

on the other hand, we will show that for some ε0 > 0 it is

(2.1) Φ(s − ε) > 0 for all ε ∈ (0, ε0).

This is a contradiction. To show (2.1) we consider

lim
ε→0+

Φ′′(s − ε) = lim
ε→0+

w′′(s − ε)− lim
ε→0+

v′′(s − ε)

= f(s, 0, 0)− lim
ε→0+

v′′(s − ε)

> f(s, 0, 0)− f(s, 0, 0) = 0.

In other words, there exists ε0 > 0 such that Φ′(x) is strictly increasing
on [s−ε0, s]. Since Φ′(s) = 0 we can conclude Φ′(x) < 0, x ∈ [s−ε0, s).
So Φ is strictly decreasing on [s− ε0, s]. Due to Φ(s) = 0, (2.1) follows.
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Case 2. There exists x1 ∈ (x0, s) such that w(x1) > v(x1). Then we
can conclude that there are x2, x3 ∈ [x0, s] such that

w(x) > v(x) for x ∈ (x2, x3)

and
w(x2) = v(x2) and w(x3) = v(x3).

Again we define Φ(x) = w(x) − v(x), x ∈ [0,∞). It is Φ(x2) = 0,
Φ(x3) = 0 and Φ(x) > 0 for x ∈ (x2, x3). Hence, there exists
x̄ ∈ (x2, x3) such that

Φ(x̄) = max
x∈[x2,x3]

Φ(x) > 0.

Since Φ ∈ C2[x2, x3], it follows that Φ′′(x̄) ≤ 0 and Φ′(x̄) = 0, which
implies w′(x̄) = v′(x̄). But it also holds that

Φ′′(x̄) = w′′(x̄)− v′′(x̄) = f(x̄, w(x̄), w′(x̄))− v′′(x̄)
> f(x̄, w(x̄), w′(x̄))− f(x̄, v(x̄), v′(x̄)) ≥ 0,

since w(x̄) > v(x̄). This is again a contradiction.

Lemma 2.1. Let c, s > 0, r ∈ R and b ≥ 0, and let v(x; s) be the
unique solution of the initial value problem

u′′(x) = c + b · u(x) + r · u′(x), x ∈ [0, s],
u(s) = 0, u′(s) = 0.

Then lim
s→∞ v(0; s) = ∞.

Proof. Case 1. Let b > 0. Then it is an elementary result (see [5])
that

v(x; s) = Aeλ1x + Beλ2x − c

b

with

λ1 =
r

2
+

√
r2

4
+ b > 0, λ2 =

r

2
−

√
r2

4
+ b < 0

and
A = − λ2

eλ1s(λ1 − λ2)
· c

b
, B =

λ1

eλ2s(λ1 − λ2)
· c

b
.



344 U. SCHÄFER

Hence,

lim
s→∞ v(0; s) = lim

s→∞
c

b

(
λ1

eλ2s(λ1 − λ2)
− λ2

eλ1s(λ1 − λ2)
− 1

)
= ∞.

Case 2. Let b = 0. Suppose r 	= 0, then it is

v(x; s) = Aerx + B − c

r
x

with
A =

c

r2
e−rs and B =

c

r
s − c

r2
.

Hence,

lim
s→∞ v(0; s) = lim

s→∞

(
c

r2
e−rs +

c

r
s − c

r2

)
= ∞.

Suppose r = 0; then it is v(x; s) = (c/2)(x − s)2 and lim
s→∞ v(0; s) = ∞.

3. The main theorem.

Theorem 3.1. Let α > 0 and suppose that f satisfies the following
assumptions:

(V1) f = f(x, z, p) is continuous in [0,∞)× R2;

(V2) For every s > 0 there exists L(s) > 0 such that f is Lipschitz
continuous in z and p with Lipschitz constant L(s), i.e.,

|f(x, z, p)− f(x, z̄, p̄)| ≤ L(s)|z − z̄|+ L(s)|p − p̄|;

for every (x, z, p), (x, z̄, p̄) ∈ [0, s]× R2;

(V3) f = f(x, z, p) is increasing with respect to z, i.e., the inequality
z ≤ z̃ implies f(x, z, p) ≤ f(x, z̃, p);

(V4) There exist r ∈ R, b ≥ 0 and c > 0 such that

f(x, z, p) > c + b · z + r · p for (x, z, p) ∈ [0,∞)× R2.

Then the ordinary free boundary problem (1.1) has a unique solution
{s, w(x; s)}. Moreover, w(x; s) > 0 for x ∈ [0, s).
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Proof. It is well known (see, for example, Section 1.6 in [5]) that for
fixed s > 0 the initial value problem

(3.1)
0 = u′′(x)− f(x, u(x), u′(x)), x ∈ [−1, s]

u(s) = u′(s) = 0

has a unique solution w(x; s) which is also continuous in s. Since
w(s; s) = 0, we have

lim
s→0+

w(0; s) = 0.

Next we will show that

(3.2) lim
s→∞w(0; s) = ∞.

From this we conclude that, for every α > 0, there is at least one s > 0
such that w(0; s) = α, i.e., {s, w(x; s)} solves (1.1).

We consider the function v(x; s) defined in Lemma 2.1 where r, b, c
come from (V4), i.e.,

v′′(x; s)− f(x, v(x; s), v′(x; s))
< v′′(x; s)− (c + b · v(x; s) + r · v′(x; s)) = 0,

v(s; s) = v′(s; s) = 0.

Since w(x; s) solves (3.1), we get

v(x; s) < w(x; s) for x ∈ [0, s)

due to Theorem 2.1. Due to Lemma 2.1, (3.2) follows.

The solution is unique, since the assumptions (V1) (V4) imply the
assumptions of Theorem 1.1. Finally, in Lemma 2 of [3] it has already
been mentioned that w(x; s) > 0 for x ∈ [0, s).
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