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KERNEL GROUPS AND NONTRIVIAL
GALOIS MODULE STRUCTURE OF
IMAGINARY QUADRATIC FIELDS

DANIEL R. REPLOGLE

ABSTRACT. Let K be an algebraic number field with ring
of integers OK , p > 2, be a rational prime and G the cyclic
group of order p. Let Λ denote the order OK [G]. Let Cl(Λ)
denote the locally free class group of Λ and D(Λ) the kernel
group, the subgroup of Cl(Λ) consisting of classes that become
trivial upon extension of scalars to the maximal order. If
p is unramified in K, then D(Λ) = T (Λ), where T (Λ) is
the Swan subgroup of Cl(Λ). This yields upper and lower
bonds for D(Λ). Let R(Λ) denote the subgroup of Cl(Λ)
consisting of those classes realizable as rings of integers, OL,
where L/K is a tame Galois extension with Galois group
Gal(L/K) ∼= G. We show under the hypotheses above that

T (Λ)(p−1)/2 ⊆ R(Λ) ∩ D(Λ) ⊆ T (Λ), which yields conditions
for when T (Λ) = R(Λ) ∩ D(Λ) and bounds on R(Λ) ∩ D(Λ).

We carry out the computation for K = Q(
√−d), d > 0, d �= 1

or 3. In this way we exhibit primes p for which these fields
have tame Galois field extensions of degree p with nontrivial
Galois module structure.

1. Introduction and subgroups of Cl(Λ). Let K be an algebraic
number field and denote its ring of algebraic integers by OK . Let G
be a finite abelian group of order n. Let Λ denote the order OK [G]
in the group algebra K[G]. The class group of stable isomorphism
classes of locally free Λ-modules is denoted by Cl(Λ). The kernel
group, D(Λ), is the subgroup of Cl(Λ) consisting of those classes that
become trivial upon extension of scalars to the maximal order. Let
Σ =

∑
g∈G g, then for each r ∈ OK so that r and n are relatively prime

define the Swan module 〈r,Σ〉 by 〈r,Σ〉 = rΛ + ΛΣ. Swan modules
are locally free rank one Λ-ideals and hence determine classes in Cl(Λ)
[15]. The set of classes of Swan modules is the Swan subgroup, denoted
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T (Λ), a subgroup of D(Λ) first extensively studied by Ullom [15]. (The
fact that T (Λ) is a subgroup of D(Λ) follows from the Mayer-Vietoris
sequence of Reiner-Ullom discussed in Section 2.) Throughout this
article, let p > 2 be prime, ζp be a primitive pth root of unity and Q
the field of rational numbers. Let Cs denote the cyclic group of order
s. In our results we will require that p > 2 is a rational prime so that p
is unramified in OK . We will express this as saying p > 2 is unramified
in K. Recall two number fields E and F are arithmetically disjoint
if no rational primes ramify in both OE and OF and in this case for
K = EF , the compositum, we have OK = OEOF , see [1], for example.

The first main result of this article is the following result of Section 2.

Theorem 2.1. Let p > 2 be unramified in a number field K, and let
G ∼= Cp. Then T (Λ) = D(Λ).

Since T (Λ) is easily seen to be trivial for cyclic groupsG whenK = Q,
Theorem 2.1 implies that D(Λ) is trivial when K = Q, a well-known
theorem of Rim [13].

Let R(Λ) denote the subgroup of Cl(Λ) consisting of those classes re-
alizable as rings of integers OL where L/K is a tame abelian Galois ex-
tension of number fields with abelian Galois group Gal(L/K) ∼= G [9].
R(Λ) is described explicitly as a subgroup of Cl(Λ) for all p-elementary
abelian groups in [8]. Note that showing R(Λ) is nontrivial proves the
existence of a tame Galois field extension L/K with Gal(L/K) ∼= G so
OL is not a free OK [G]-module. In the language of [6] this shows K
has nontrivial Galois module structure for G. (Equivalently, we may
says in this case there exists an L so that L/K does not have a normal
integral basis. We note from [8] that it follows that there are infinitely
many such fields for each nontrivial class in R(Λ).) Using McCulloh’s
description of R(Λ) from [8] and the relationship between R(Λ), T (Λ)
and D(Λ) from [6] we obtain the second main result of this article,
which will be stated in a stronger form in Section 4.

Theorem 4.2. Let G ∼= Cp and p > 2 be unramified in K. If
the exponent of T (Λ) is relatively prime with (p − 1)/2, then T (Λ) =
R(Λ) ∩D(Λ).
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We note the proof of [6, Theorem 2] shows that for any algebraic
number field K �= Q there are in fact infinitely many primes p so
that for each there is a tame Galois field extension L of K of degree p
without a normal integral basis, i.e., for which L/K has a nontrivial
Galois module structure.

We now outline the structure of this article. In Section 2 we introduce
the exact Mayer-Vietoris sequence of Reiner-Ullom which yields a
convenient description of the Swan subgroup T (Λ). We use this to prove
Theorem 2.1 and recover Rim’s theorem from Theorem 2.1. In Section 3
we combine Theorem 2.1 with upper and lower bounds for Swan
subgroups to obtain upper and lower bounds for kernel groups. We
carry out the computation for imaginary quadratic fields K = Q(

√−d)
when d > 0 and d �= 1 or 3. In Section 4 we explore the implications
this work has to Galois module structure problems. Specifically we
prove Theorem 4.2 and derive from it our concluding result our last
main theorem:

Theorem 4.3. Let K = Q(
√−d) where d > 0 and d �= 1 or 3. Then

(a) For p inert in K/Q we have Cp+1/2 ⊆ R(Λ) ∩D(Λ) ⊆ Cp+1.

(b) For p split in K/Q we have R(Λ)∩D(Λ) is a homomorphic image
of Cp−1.

(c) For p ramified in K/Q we have T (Λ) ∼= Cp, hence Cp ⊆
R(Λ) ∩D(Λ).

2. Swan subgroups and a generalization of Rim’s theorem.
The key properties of the Swan subgroup used in this article are the
exact Mayer-Vietoris sequence of Reiner-Ullom and the convenient
description of the Swan subgroup it yields. (Here and throughout the
rest of the text we will denote OK by O when no confusion can result).
Let Γ = Λ/(Σ), O = O/pO, φ and φ̄ denote the canonical quotient
maps, ε denote the augmentation map and ε̄ denote the map induced
by the augmentation map. Consider the fiber product:

Λ

u

ε

w

φ Γ

u

ε̄

O w

φ̄
O.
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The result in [10] applied to the case when G is abelian (or more gen-
erally, when the group algebra K[G] satisfies the “Eichler condition,”
see [10] or [3]) is: there is an exact Mayer-Vietoris sequence

1 −→ Λ∗ −→ O∗ × Γ∗ h−→ O∗ δ−→ D(Λ)
φ−→ D(Γ)⊕D(O) −→ 0,

where for any ring S we denote its group of units by S∗. From [15] we
have that the image of s ∈ O∗

under δ is [s,Σ], the class of the Swan
module 〈s,Σ〉, and hence T (Λ) = Im(δ); therefore, T (Λ) is a subgroup
of D(Λ) and T (Λ) ∼= O∗

/h(O∗ ×Γ∗). We note that the map h is given
by (u, v) �→ ū · v̄−1 = φ(u)ε̄(v)−1.

We now prove our first main result which gives conditions when D(Λ)
and T (Λ) coincide.

Theorem 2.1. Let p > 2 be unramified in a number field K, and let
G ∼= Cp. Then T (Λ) = D(Λ).

Proof. Since p does not ramify in O, O/pO ∼= O[ζp]/(1−ζp). We also
have that O[ζp] ∼= Λ/(Σ). Let x be a fixed generator of G = Cp. Let
f : Λ = O[G] → O[ζp] be induced by x �→ ζp and j : Λ = O[G] → O be
induced by x �→ 1. Then we have the fiber product:

Λ w

f

u

j

O[ζp] ∼= Λ/OΣ = Γ

u

O w O[ζp]/(1− ζp) ∼= O.
This gives rise to the exact Mayer-Vietoris sequence:

1 −→ Λ∗ −→ O∗ × Γ∗ h−→ O∗ δ−→ D(Λ) −→ D(O)⊕D(Γ) −→ 0.

Since K and Q(ζp) are arithmetically disjoint, Γ ∼= O[ζp], a maximal
order in KQ(ζp), whence D(Γ) ∼= {1}. Similarly, O is a maximal order
in K so D(O) ∼= {1}. So our Mayer-Vietoris sequence becomes

1 −→ Λ∗ −→ O∗ × Γ∗ h−→ O∗ δ−→ D(Λ) −→ 0.

Hence δ is surjective implying D(Λ) = T (Λ).
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Corollary 2.2 (Rim’s theorem [13]). For each odd prime p and
G ∼= Cp, D(Z[G]) ∼= {1}.

Proof. By Theorem 2.1 it suffices to show h is surjective. The
argument is standard and is essentially the proof that T (Z[G]) is trivial
whenever G is cyclic (see [3, Section 53], for example). To simplify
notation, let π = 1 − ζp and S = Z[ζp]/(π). Each element of S∗ is of
the form η̄ = n + πZ[ζp] for some n ∈ Z relatively prime to p. Since
the cyclotomic unit u = (1− ζn

p )/(1− ζp) = [1− (1− π)n]/π of Z[ζp] is
congruent to n mod π, h[(u, 1)] = η̄. Hence, h is surjective.

3. Upper and lower bounds for kernel groups. In this
section we outline proofs of upper and lower bounds for the Swan
subgroup, adapted from [6], [11] and [12]. Combining these bounds
with Theorem 2.1 yields upper and lower bounds on the kernel group,
D(Λ) when p > 2 is unramified in K and G ∼= Cp.

We first introduce some notation and state our upper and lower
bounds as Proposition 3.1. We then give the arguments.

Let O = O/pO. As above, O∗ denotes the units of O. We denote by
Im(O∗) the image of O∗ via the map s �→ s̄ where s ∈ O∗ and s̄ is the
image of s under the canonical homomorphism can : O → O/pO. Let
∆ = Aut(G), the group of automorphisms of G. Let Vp = O∗

/Im(O∗),
and for an abelian group H we denote by (H)k its k-torsion subgroup.

Proposition 3.1. If p > 2 is unramified in K and G ∼= Cp, then

V p−1
p ≤ D(Λ) ≤ O∗

/(Im(O∗)(Z/pZ)∗),

where “≤” is taken to mean “isomorphic to a subgroup of.”

Proof. In Lemma 3.2 below we will show the existence of a surjective
map T → V p−1

p . Hence we have V p−1
p ≤ T (Λ). In Lemma 3.4 we

obtain that T (Λ) ≤ O∗
/Im(O∗)(Z/pZ)∗. Hence we have

V p−1
p ≤ T (Λ) ≤ O∗

/Im((O∗)(Z/pZ)∗).

The proposition now follows from Theorem 2.1.
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Lemma 3.2 ([12, Theorem 12]). There is a surjective map T (Λ) →
Vp/(Vp)p−1

∼= V p−1
p .

Sketch of proof. We have T (Λ) ∼= (O∗
/Im(O∗))/(Im(O∗×Γ∗)/Im(O∗))

under the map h : O∗ ×Γ∗ → O∗
given by (s, γ) �→ s̄γ̄−1. It suffices to

show that

h(O∗ × Γ∗)/Im(O∗) ⊆ {x ∈ O∗
/Im(O∗) : xp−1 = 1}

To see this it suffices to show that, for any γ ∈ Γ∗, that ε̄(γ)p−1 ∈
Im(O∗).

One shows that there is an isomorphism O ∼= (Γ∆)∗. Then let N be
the norm map N : Γ∗ → (Γ∆)∗ ∼= O∗, defined by N(γ) =

∏
δ∈∆ γδ.

One then shows that the diagram

Γ∗ N
−→ (Γ∆)∗ ∼= O∗

↓ ε̄ ↓ ε̄ ↓ can

O∗ ( )p−1

−→ O∗
= O∗

commutes, completing the proof.

Remarks 3.3. i) For details on the above, see [12, Lemmata 13 and
14] or [6, Theorem 5]. ii) The proof in [6] gives a generalization to the
case G is p-elementary abelian. iii) The proofs of Lemmata 3.2 and 3.4
implicitly use the finiteness of the class group to get the “isomorphic
to a subgroup of” claim.

Lemma 3.4. If G ∼= Cn and K is a number field, then T (Λ) ≤
O∗

/((Z/nZ)∗Im(O∗)).

Proof. Let G = Cn where n ≥ 3; for n = 1 or 2 there is nothing
to prove. It is well known that, when G is cyclic, T (Z[G]) is trivial.
Therefore, by extending scalars from Z to O we can conclude the Swan
class [s,Σ] = 0 ∈ T (Λ) whenever s ∈ Z. In particular, [rΛ + ΣΛ] = 0
for all r ∈ Z with (r, n) = 1. Hence the kernel of the surjective map
ρ : O∗

/Im(O∗) → T (Λ) contains (Z/nZ)∗.
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Therefore ρ yields a map from

(O
∗
/Im(O)∗)/(((Z/nZ)∗Im(O∗))/Im(O∗)) ∼= O∗

/((Z/nZ)∗Im(O∗))

onto T (Λ).

We now consider imaginary quadrative extensions of Q. Let K =
Q(

√−d), where d is positive and for convenience we assume d �= 1 or
3 (but see Section 4 and [12]). We wish to obtain information about
D(Λ) when G ∼= Cp and p > 2 is unramified in K. The result we prove
is given next.

Proposition 3.5. Let K = Q(
√−d) where d > 0 is square free and

coprime to p and d �= 1 or 3. Let G be cyclic of order p. Then D(Λ) is
a homomorphic image of Cp−1 if p splits completely in K, and D(Λ)
is isomorphic to Cp+1 or C(p+1)/2 if p is inert in K.

We first compute O/Im(O∗) for imaginary quadratic fields. Then
we compute the upper and lower bounds of T (Λ) for d as above. The
result then immediately follows from Proposition 3.1. (For the case G
is of order 2 analogous results hold, see [14].) The finite field of pn

elements will be denoted Fpn .

Proof. If p is inert, then O/pO is a field and has degree 2 over Z/pZ.
Thus O = O/pO ∼= Fp2 whence O∗ ∼= Cp2−1. If p splits then (p)
factors into two distinct prime ideals in O, say (p1) and (p2). Then
by the Chinese remainder theorem we get O/pO ∼= O/p1O × O/p2O,
whence O/pO ∼= Fp × Fp and O∗ ∼= Cp−1 × Cp−1.

Next note that Im(O∗) ⊂ (Z/pZ)∗, so the upper bound of Propo-
sition 3.2 is O∗

/((Z/pZ)∗). If p splits completely we have O∗ ∼=
Cp−1 × Cp−1, which forces the lower bound V p−1

p to be trivial. For
the upper bound we have O∗

/(Z/pZ)∗ ∼= Cp−1. Therefore T (Λ) is a
homomorphic image of Cp−1.

If p is inert we have O∗ ∼= Cp2−1. Therefore our lower bound is
given by C(p+1)/2. For the upper bound we have O∗

/(Z/pZ)∗ ∼= Cp+1.
Therefore we obtain that T (Λ) is isomorphic with one of these two
groups, i.e., T (Λ) ∼= Cp+1 or C(p+1)/2.
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We note two facts of interest. First one can compute T (Λ) when p
ramifies exactly as above; however, then Theorem 2.1 is not applicable.
We include this for completeness as our last proposition of this section.
Second, by comparison, Fröhlich, Reiner and Ullom [4], [5], [10] proved
that D(Z[G]) is trivial if G ∼= Cp, and for G an abelian p-group of order
pn with n > 1 that D(Z[G]) is a p-group. Hence we see even in the
simplest case, that of an imaginary quadratic field and G ∼= Cp, their
results do not generalize to rings of algebraic integers.

Proposition 3.6. Let K = Q(
√−d) where d > 0 and d �= 1 or 3.

Assume the prime p > 2 divides d and let G ∼= Cp. Then T (Λ) ∼= Cp.

Proof. Since p divides d we have p ramifies. Thus pOK = P2 for
some prime ideal P in OK . Moreover we can write as an equation
of ideals pOK = (p, µ) where OK has a maximal ideal of the form
pOK +µOK and OK/pOK

∼= Fp[µ] where µ2 = 0. Hence we may write
OK/pOK = {a + bµ : a, b ∈ Fp}. The units in this ring are seen to
be of the form U = {a + bµ : a �= 0}. The set {1 + bµ : b ∈ Fp}
and {a + 0µ : a �= 0} form subgroups whose union is all of U and
whose intersection is the identity and are isomorphic to Cp and Cp−1,
respectively.

Thus we have (OK/pOK)∗ ∼= Cp−1 × Cp. Now as p > 2 is odd one
has Im(O∗

K) ∼= C2. Again as p is odd Im(O∗
K) must embed in the

Cp−1 factor. Hence O∗
K/Im(O∗

K) ∼= C(p−1)/2 × Cp. The upper and
lower bounds are thus both Cp. This gives T (Λ) ∼= Cp. However as
p ramifies we need not have D(Λ) = T (Λ) hence we obtain no upper
bound on D(Λ).

4. Nontrivial p-extensions of imaginary quadratic fields. Let
G be the additive group of Fpn . Let L range over all Galois extensions
of K with Galois group isomorphic to G. It is well known that OL

is a locally free Λ = OK [G]-module if and only if the extension L/K
is tame, i.e., at most tamely ramified. Therefore, when the extension
L/K is tame OL yields a “Galois module class” in Cl(Λ). Following
McCulloh [8] denote by R(Λ) the set of all classes in Cl(Λ) realizable
as rings of integers of tame Galois extensions of K with Galois group
G.
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Denote by C the group of nonzero elements of Fpn . Since C ⊂
Aut(G), Cl(Λ) is a Z[C]-module. For each δ ∈ C denote by t(δ) the
least nonnegative residue (mod p) of Tr(δ) where Tr : Fpn → Fp is the
trace. Let θ =

∑
δ∈C t(δ)δ−1 ∈ Z[C], and let J = Z[C](θ/p) ∩ Z[C],

the Stickelberger ideal of Z[C]. Then the main theorem in [8] is:

Theorem (McCulloh [8]). If G is elementary abelian of order
pn, then R(Λ) ∼= Cl0(Λ)J , where Cl0(Λ) is the kernel of the map
Cl(λ) → Cl(OK) induced by the augmentation OK [G] → OK .

Since T (Λ) and D(Λ) are Z[C]-submodules of Cl0(Λ), McColloh’s
theorem implies the following proposition.

Proposition 4.1 ([6, Corollary 7]). For G elementary abelian of
order pn �= 2, T pn−1(p−1)/2(λ) = T (λ)J ≤ R(Λ) ∩D(Λ).

This proposition follows from two facts. First C acts trivially on a
Swan class. Second, for ε : Z[C] → Z, the augmentation, if pn �= 2,
then ε(J ) = (pn−1(p− 1)/2)Z. For details, see [6].

This last result yields some information about R(Λ) ∩D(Λ), namely
we prove Theorem 4.2 which we now state in a stronger form.

Theorem 4.2. Suppose G ∼= Cp and p > 2 is unramified in K. Then

(a) V (p−1)2/2
2 ≤ R(Λ) ∩D(Λ) ≤ O∗

/(Im(O∗)(Z/pZ)∗).

(b) If the exponent of the T (Λ) is coprime to (p− 1)/2, then R(Λ) ∩
D(Λ) = T (Λ).

Proof. From Theorem 2.1 we have T (Λ) = D(Λ). From the
Proposition 4.1 we have, as n = 1, T (p−1)/2(Λ) ⊆ R(Λ) ∩ D(Λ).
Thus it follows T (p−1)/2(Λ) ⊆ R(Λ) ∩ D(Λ) ⊆ D(Λ) = T (Λ). The
lower and upper bounds of (a) now follow from Lemmata 3.2 and
3.4. If the exponent of T (Λ) is relatively prime to (p − 1)/2, then
T (p−1)/2(Λ) = T (Λ), giving (b).

We note this result generalizes [6, Corollary 7] by also providing an
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upper bound and a condition for equality. We now give the application
of Theorem 4.2 announced in the Introduction.

Theorem 4.3. Let K = Q(
√−d), d square-free and d �= 1 or 3.

(a) If p is inert in OK , then C(p+1)/2 ≤ R(Λ) ∩D(Λ) ≤ Cp+1.

(b) If p splits in OK , then R(Λ) ∩D(Λ) is a homomorphic image of
Cp−1.

(c) If p ramifies in K/Q, then T (Λ) ∼= Cp. Hence Cp ≤ R(Λ)∩D(Λ).

Proof. This follows from Theorem 4.1 (a) and the computations
in Section 3. For instance, for (a) we have Vp

∼= C(p2−1)/2 and
O∗

/Im(O(Z/pZ)∗) ∼= Cp+1.

For (c) see Proposition 3.6 and note Cp is not of exponent dividing
p− 1. Also note, Theorem 2.1 does not apply, hence we do not obtain
an upper bound on R(Λ) ∩ D(Λ) and only obtain a lower bound on
D(Λ).

We close by noting the cases d = 1 or d = 3 were only omitted
as there are more units to consider. That is, for K = Q(

√−1) the
units in OK are given by {±1,±i}. Determining how these embed in
OK/pOK is not difficult. Likewise, for K = Q(

√−3), the units are
{±1,±ω,±ω2} where ω is a primitive sixth root of unity. The problem
is, of course, one has to examine many cases. Moreover, generalizing
these results to biquadratic fields (compositums of the types of fields
considered) presents only one other difficulty, namely, computing the
embedding of the fundamental unit. More precisely, letK1 = Q(

√−d1)
and K2 = Q(

√−d2), where d1, d2 > 0, and so that the discriminants
are relatively prime. Then K1 and K2 are arithmetically disjoint, so for
K = K1K2, the compositums, we have OK = OK1OK2 . Moreover, the
only other intermediate field of K/Q is K3 = Q(

√
d1d2). It is easy to

see using Dirichlet’s unit theorem that O∗
K contains the roots of unity

in K and a set of units generated by one fundamental unit. Hence
one may do the computations required to find bounds on the Swan
subgroup. The problem therefore is determining the embedding of this
fundamental unit in the appropriate quotient and then computing the
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quotient for each possible case.

It might be of interest then to consider one particular case K =
Q(

√−1,√−3). Note that Q(
√−1,√−3) = Q(ζ12) where ζ12 is a

primitive 12th root of unity. In [2] several primes are exhibited for
which this field has a nontrivial Galois module structure. Hence, using
the methods contained in here for this field and those primes might be
of interest as the Swan subgroups are not explicitly computed in [2].
This project could lead to other interesting ideas and might be pursued
in a future note.
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