ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 1, Spring 2004

## ON THE *H*-POLYNOMIAL OF CERTAIN MONOMIAL CURVES

## D.P. PATIL AND G. TAMONE

ABSTRACT. Let  $n_1, \ldots, n_e$  be an increasing sequence of positive integers with  $gcd(n_1, \ldots, n_e) = 1$  and let A be the coordinate ring of the algebroid monomial curve in the affine algebroid e-space  $\mathbf{A}_{e}^{e}$  over a field K, defined parametrically by  $X_1 = t^{n_1}, \ldots, X_e = t^{n_e}$ . In this article assuming that some e - 1 terms of  $n_1, \ldots, n_e$  form an arithmetic sequence, we compute (under some mild additional assumptions, see Theorem (2.7) for more precise assumptions) the *h*-polynomial (and hence the Hilbert function) of A explicitly in terms of the standard basis of the semi-group generated by  $n_1, \ldots, n_e$ . Our special assumptions are satisfied in the case e = 3; in particular, for the class of algebroid monomial space curves, we can write down the *h*-polynomial and hence the Hilbert function explicitly.

**1.** Introduction. Let  $(A, \mathfrak{m})$  be Noetherian local ring, and let  $G := \operatorname{gr}_m(A) = \bigoplus_{i \ge 0} m^i / m^{i+1}$  be the associated graded ring of A. The Hilbert function  $H_A$ :  $\mathbf{N} \to \mathbf{N}$  of A is the numerical function defined by  $H_A(n) := \dim_{A/\mathfrak{m}}(\mathfrak{m}^n/\mathfrak{m}^{n+1})$ . The Poincaré series of A is the series  $P_A(Z) := \sum_{n>0} H_A(n) Z^n$ . By the Hilbert-Serre theorem, there exists a polynomial  $h_A(Z) = \sum_{j=0}^{\deg h_A} h_j Z^j$  such that  $P_A(Z) =$  $h_A(Z)/(1-Z)^{\dim A}$ . Then  $h_0 = 1, h_1 = \text{emdim}(A) := \dim_{A/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$ . The polynomial  $h_A(Z)$  is called the *h*-polynomial of A and the vector  $(h_0, h_1, \ldots, h_{\deg h_A})$  is called the *h*-vector of A. It is clear that the *h*vector of A and the Krull dimension of A determine the Hilbert function of A and conversely. Since the Hilbert function  $H_A$  of A is a good measure of singularity of the affine scheme Spec(A) at the closed point m, it is important to compute the Hilbert function, Poincaré series, h-vector, h-polynomial and its degree explicitly. These invariants are studied by many authors in the standard literature on local rings and still many interesting questions regarding these invariants are open in general (see, for example, [1-3, 5, 6, 10-12]).

Received by the editors on March 10, 1999, and in revised form on March 30, 2001.

Copyright ©2004 Rocky Mountain Mathematics Consortium

D.P. PATIL AND G. TAMONE

In this article we assume that A is the coordinate ring of an algebroid monomial curve in the affine e-space  $\mathbf{A}_{K}^{e}$  over a field K, defined parametrically by  $X_{0} = T^{m_{0}}, \ldots, X_{e-1} = T^{m_{e-1}}$  with  $0 < m_{0} < m_{1} < \cdots < m_{e-1}$ ,  $\gcd(m_{0}, \ldots, m_{e-1}) = 1$  and the sequence  $m_{0}, \ldots, m_{e-1}$  is an almost arithmetic sequence, that is,  $m_{0} < \cdots < m_{p}$ , p := e - 2 is an arithmetic sequence and  $n := m_{e-1}$  is arbitrary. In the case when the associated graded ring  $\operatorname{gr}_{m}(A) := \bigoplus_{i\geq 0} m^{i}/m^{t+1}$  of A is not Cohen-Macaulay, in [12; Corollary 2.7], it is proved that the h-polynomial has non-negative coefficients. In this article, we assume  $\operatorname{gr}_{m}(A)$  is Cohen-Macaulay and  $m_{0} < n$ ,  $\mu \neq 0$  (see 2.3 for definition of  $\mu$ ) to give an algorithmic method to write down the h-polynomial of A explicitly. In the special case when the sequence  $m_{0}, \cdots, m_{e-1}$  is an arithmetic sequence then  $\operatorname{gr}_{\mathfrak{m}}(A)$  is always Cohen-Macaulay (see [5, Proposition (1.1)]) and the h-polynomial of A is written down explicitly (see [5, Corollary (1.10)]).

Our algorithmic method involves the nonnegative integers  $\lambda, \mu, \nu, u, v, z, w$  which were defined in [9], using the explicit description of the standard basis  $S_{m_0}$  of the semi-group  $\Gamma := \sum_{i=0}^{e-2} \mathbf{N}m_i + \mathbf{N}n$ . Given integers  $m_0, \ldots, m_p, n$ , it is easy to find the nonnegative integers  $\lambda, \mu, \nu, u, v, z, w$ . The explicit description of  $S_{m_0}$  and the properties of the nonnegative integers  $\lambda, \mu, \nu, u, v, z, w$  were used to find explicit minimal sets of generators for the relation ideal and the derivation module of A (see [7] and [8]). Further, in [4], the properties of the nonnegative integers  $\lambda, \mu, \nu, u, v, z, w$  were used to give, in most cases, necessary and sufficient conditions for  $\operatorname{gr}_{\mathfrak{m}}(A)$  to be Cohen-Macaulay (this condition is just one inequality which involves the nonnegative integers  $\lambda, \mu, \nu, u, z, w$  and which is easy to check).

For the case of monomial space curves, we can write down, in most cases, the *h*-vector of A explicitly, since any three integers are in almost arithmetic sequence with  $m_0 < m_1 < n$ . We also give many examples to illustrate our algorithmic method.

2. Standard basis. In this section we recall the explicit description of the standard basis of a numerical semi-group generated by an almost arithmetic sequence given in [9, Section 3] (see also [7]). First we fix the following notations throughout this paper.

**2.1 Notation.** Let **Z**, respectively **N**, denote the set of all, respectively nonnegative, integers. For  $a, b \in \mathbf{Z}$ , let  $[a, b] := \{i \in \mathbf{Z} \mid a \leq i \leq b\}$ . Unless mentioned otherwise, the symbols a, b, c, d, e, i, j, m, n, p, q, r, s, t, u, v, w, z denote integers.

Let  $m_0, \ldots, m_{e-1}$  be a sequence of positive integers with  $m_0 < \cdots < m_{e-1}$  and  $\gcd(m_0, \ldots, m_{e-1}) = 1$ . We assume that  $m_0, \ldots, m_{e-1}$  is a minimal set of generators for the semi-group  $\Gamma := \sum_{i=0}^{e-1} \mathbf{N}_{m_i}$ .

• Let  $\mathcal{E} := (\mathbf{N})^e$  and for  $i \in [0, e-1]$ , we put  $\mathbf{e}_i := (\delta_{ij})_{0 \leq j \leq e-1}$ , where  $\delta_{ij}$  denote the Kronecker delta.

- For  $\alpha = \sum_{i=0}^{e-1} a_i \mathbf{e}_i$ , let  $\partial(\alpha) := \sum_{i=0}^{e-1} a_i m_i$ .
- For  $h \in \Gamma$ , let  $\mathcal{E}(h) := \{ \alpha \in \mathcal{E} \mid \partial(\alpha) = h \}.$
- For  $\alpha = \sum_{i=0}^{e-1} a_i \mathbf{e}_i \in \mathcal{E}(h)$ , we put deg  $(\alpha) := \sum_{i=0}^{e-1} a_i$ .
- For  $\alpha, \beta \in \mathcal{E}(h)$ , we write  $\alpha \leq_{\text{deg}} \beta$  if  $\text{deg}(\alpha) \leq \text{deg}(\beta)$ .

Then  $\leq_{\text{deg}}$  is an order on  $\mathcal{E}(h)$  and since  $\mathcal{E}(h)$  is a finite set,  $\mathcal{E}(h)$  has maximal elements with respect to the order  $\leq_{\text{deg}}$ . Let  $\max(\mathcal{E}(h))$  denote the set of all maximal elements in  $\mathcal{E}(h)$ . Note that all elements of  $\max(\mathcal{E}(h))$  have the same degree, therefore this degree we shall denote by max deg (h).

**2.2 Standard basis.** Let  $\Gamma$  be a numerical semi-group generated by a sequence  $m_0, m_1, \ldots, m_{e-1}$  of positive integers. Then the set  $S_{m_0} := \{z \in \Gamma \mid z - m_0 \notin \Gamma\}$  is called the standard basis or the Apery set of  $\Gamma$  with respect to  $m_0$ . It is clear that  $S_{m_0}$  depends on  $\Gamma$ and  $m_0$ , but for simplicity we write  $S := S_{m_0}$ . It is easy to see that  $S = \{s_0 := 0, s_1, \ldots, s_{m_0-1}\}$ , where  $s_1, \ldots, s_{m_0-1} \in \Gamma$  are positive integers with the following properties:

(a)  $s_i \equiv i \pmod{m_0}$  for every  $i \in [0, m_0 - 1]$ 

(b) If  $z \in \Gamma$  then  $z \equiv i \pmod{m_0}$  for a unique  $i \in [0, m_0 - 1]$  and  $z \geq s_i$ .

The following Key-Lemma from [9, Section 3] (see also [7, Section 1]) gives the explicit description of the standard basis of a semi-group generated by an almost arithmetic sequence.

**2.3 Key-Lemma.** Let p := e - 2 and let d be a positive integer with  $m_i = m_0 + id$  for all  $0 \le i \le p$ . Let n be an arbitrary positive integer with  $gcd(m_0, d, n) = 1$ . Let  $\Gamma' := \sum_{i=0}^{p} \mathbf{N}_{m_i}$  and  $\Gamma = \Gamma' + \mathbf{N}n$ . Let  $S := S_{m_0}$  be the standard basis of  $\Gamma$  with respect to  $m_0$ . For  $t \in \mathbf{N}$ , let  $q_t \in \mathbf{Z}$ ,  $r_t \in [1, p]$  and  $g_t \in \Gamma'$  be defined by  $t = q_t p + r_t$  and  $g_t = q_t m_p + m_{r_t}$ .

(1)  $g_s+g_t = \varepsilon m_0 + g_{s+t}$  with  $\varepsilon = 1$  or 0 according to whether  $r_s+r_t \leq p$  or  $r_s + r_t > p$ .

(2) Let  $u := \min\{t \in \mathbf{N} \mid g_t \notin S\}$  and  $v := \min\{b \ge 1 \mid bn \in \Gamma'\}$ . Then unique integers  $w \in [0, v - 1], z \in [0, u - 1], \lambda \ge 1, \mu \ge 0$ , exist such that

(i) 
$$g_u = \lambda m_0 + w_n$$
;

(ii)  $vn = \mu m_0 + g_z;$ 

(iii)  $g_{u-z} + (v-w)n = \nu m_0$ . Moreover,  $\nu = \lambda + \mu + \varepsilon$  where  $\varepsilon = 1$ or 0 according to whether  $r_{u-z} < r_u$  or  $r_{u-z} \ge r_u$ .

(3) Let  $V := [0, u-1] \times [0, v-1]$ ,  $W := [u-z, u-1] \times [v-w, v-1]$ and  $U := V \setminus W$ . Then  $S = \{g_s + bn \mid (s,b) \in U\}$ . In particular, if  $(s,b), (t,c) \in U$  with  $g_s + bn \equiv g_t + cn \pmod{m_0}$ , then (s,b) = (t,c).

(4) Every element of  $\Gamma$  can be expressed uniquely in the form  $am_0 + g_s + bn$  with  $a \in \mathbf{N}$  and  $(s, b) \in U$ .

(5) The map  $(\mathbf{N})^{p+2} \to (\mathbf{N})^2$  defined by  $\sum_{i=0}^{p+1} a_i \mathbf{e}_i \mapsto (\sum_{i=0}^p a_i m_i, a_{p+1}n)$  is a bijection between S and U.

*Proof.* See [9, Section 3].

**2.4 Notation.** In addition to the notation in 2.1 and in Key-Lemma 2.3, we fix the following:

•  $q := q_u, r := r_u$ , that is, u = qp + r, u' := u - z,  $q' := q_{u'}, r' := r_{u'}$ , that is, u' = q'p + r', and v' := v - w.

•  $U_1 := \{(s,b) \in U \mid b \in [0,v'-1]\}$  and  $U_2 := \{(s,b) \in U \mid b \in [v',v-1]\}.$ 

• For  $j \in \mathbf{N}$ , let  $Z_j := \{(s,b) \in U \mid q_s + 1 + b = j\}$  and let  $Z_{1,j} := Z_j \cap U_1, Z_{2,j} := Z_j \cap U_2,$ 

• For  $(i, b) \in \mathbf{Z} \times \mathbf{N}$ , let  $X_{i,b} := U \cap ([(i-1)p+1, ip] \times \{b\}).$ 

**2.5 The picture of** U. The following picture of U (see 2.3) might be useful for computations or proofs:



With the notation in 2.3, 2.4 and using the above picture of U, the following two lemmas are immediate from the definitions.

**2.6 Lemma.** Let  $(i, b) \in \mathbf{N} \times \mathbf{N}$ . Then

- (1) If either  $b \ge v'$  or  $i \ge q+2$ , then  $X_{i,b} \cap U_1 = \emptyset$ .
- (2) If either  $b \ge v$  or  $i \ge q' + 2$ , then  $X_{i,b} \cap U_2 = \emptyset$ .
- (3) If  $b \le v' 1$ , then

$$X_{i,b} \cap U_1 = \begin{cases} \{(0,b)\} & \text{if } i = 0, \\ [(i-1)p+1, ip] \times \{b\} & \text{if } 1 \le i \le q, \\ [qp+1, qp+r-1] \times \{b\} & \text{if } i = q+1, \\ \varnothing & \text{if } i \ge q+2. \end{cases}$$

In particular,

$$\operatorname{card} (X_{i,b} \cap U_1) = \begin{cases} 1 & \text{if } i = 0, \\ p & \text{if } 1 \le i \le q, \\ r - 1 & \text{if } i = q + 1, \\ 0 & \text{if } i \ge q + 2. \end{cases}$$

(4) If  $v' \le b \le v - 1$ , then

$$X_{i,b} \cap U_2 = \begin{cases} \{(0,b)\} & \text{if } i = 0, \\ [(i-1)p+1,ip] \times \{b\} & \text{if } 1 \le i \le q', \\ [q'p+1,q'p+r'-1] \times \{b\} & \text{if } i = q'+1, \\ \varnothing & \text{if } i \ge q'+2. \end{cases}$$

In particular,

$$\operatorname{card} (X_{i,b} \cap U_2) = \begin{cases} 1 & \text{if } i = 0, \\ p & \text{if } 1 \le i \le q', \\ r' - 1 & \text{if } i = q' + 1, \\ 0 & \text{if } 1 \ge q' + 2. \end{cases}$$

**2.7** Lemma. Let  $j \in \mathbf{N}$ . Then (1)  $Z_j = \bigcup_{b=0}^{v-1} X_{j-b,b} = \bigcup_{j-b=j-(v-1)}^{j} X_{j-b,b}$ . (2)  $Z_{1,j} = \bigcup_{j-b=j-(v'-1)}^{j} X_{j-b,b}$  and  $Z_{2,j} = \bigcup_{j-b=j-(v-1)}^{j-v'} X_{j-b,b}$ . (3) If  $j \in [0, v - 1]$ , then  $Z_{2,j} = \bigcup_{j-b=0}^{j-v'} X_{j-b,b}$ . (4) If  $j \in [v, \infty)$ , then  $Z_{2,j} = \bigcup_{j-b=j-(v-1)\geq 1}^{j-v'} X_{j-b,b}$ .

**2.8 Theorem.** Let K be a field and let K[[T]] be the power series ring. Let  $p, d, m \in \mathbf{N}^+$ ,  $m_i = m + id$  for  $i = 0, \ldots, p$  and let n be an arbitrary positive integer with gcd(m, d, n) = 1. Let  $A := K[[T^{m_0}, \ldots, T^{m_p}, T^n]] \subseteq K[[T]]$ ,  $\mathfrak{m}$  the maximal ideal of A and let  $G := gr_{\mathfrak{m}}(A)$  be the associated graded ring of A. Let  $\tau_0, \ldots, \tau_p$ ,  $\tau$  denote the images of  $T^{m_0}, \ldots, T^{m_p}, T^n$  in G, respectively, and let  $G' := G/(\tau_0) = \bigoplus_{j=0}^t G'_j$ . Suppose that  $m_0 < n, \mu \neq 0$  (see 2.3),

and G is Cohen-Macaulay. Then  $h_A(Z) = \sum_{j=0}^t \dim_K(G'_j) Z^j$  and  $\dim_K(G'_j) = \operatorname{card}(Z_j)$  for every  $j \in \mathbf{N}$ .

*Proof.* Since *G* is Cohen-Macaulay and  $m_0 < n$  by assumption, by [**3**, Theorem 7],  $\tau_0$  is a nonzero divisor in *G* and hence *G'* is an Artinian reduction of *G*. In particular,  $h_j = \dim_K(G'_j)$  for every  $j \in \mathbf{N}$ . Let  $\bar{\tau}_1, \ldots, \bar{\tau}_p, \bar{\tau}$  denote the images of  $\tau_1, \ldots, \tau_p, \tau$  in *G'*. Then for each  $j \in \mathbf{N}, G'_j$  is generated, as an *A*/m-vector space, by the set  $\{\bar{\tau}_1^{a_1}\cdots \bar{\tau}_p^{a_p}\cdot \bar{\tau}^b \mid a_1m_1+\cdots +a_pm_p+bn \in S \text{ and } T^{a_1m_1+\cdots +a_pm_p+b_n} \in$  $\mathfrak{m}^j \setminus \mathfrak{m}^{j+1}\}$ . In particular (see 2.3) dim<sub>K</sub>(*G'\_j*) = card ({(*s, b*) ∈ *U* | max deg (*g<sub>s</sub>*+*bn*) = *j*}) for every *j* ∈ **N**. Now since  $m_0 < n, \mu \neq 0$  and *G* is Cohen-Macaulay, by [**5**, Theorem (3.4)], we have  $\lambda + w \ge q_u + 1$ and  $v \le \mu + q_z + 1$  (see 2.3 for definitions of  $\lambda, \mu, u, v, w, z, q_u, q_z$ ) and so by [**4**, Proposition (3.2)] and the definition of *Z<sub>j</sub>* (see 2.4), we have dim<sub>K</sub>(*G'<sub>j</sub>*) = card (*Z<sub>j</sub>*) for every *j* ∈ **N**. □

In the next section we shall give an algorithmic method to compute card  $(Z_j)$ ,  $j \in \mathbf{N}$ , by using the nonnegative integers v, v', q and q'.

**3.** The *h*-polynomial. Let *K* be a field and let K[[T]] be the power series ring. Let  $p, d, m \in \mathbf{N}^+$ ,  $m_i = m + id$  for  $i = 0, \ldots, p$  and let n be an arbitrary positive integer with m < n and gcd(m, d, n) = 1. We assume that  $m_0, \ldots, m_p, n$  is a minimal set of generators for the semi-group  $\Gamma := \sum_{i=0}^{e-1} \mathbf{N}m_i$ . We shall use the explicit description of the standard basis  $S_{m_0}$  of the semi-group  $\Gamma := \sum_{i=0}^{p} \mathbf{N}m_i + \mathbf{N}n$  given in the Key-Lemma 2.3, particularly, the definitions (see 2.3) of the nonnegative integers  $\lambda, \mu, \nu, u, v, z, w$ .

Let  $A := K[[T^{m_0}, \ldots, T^{m_p}, T^n]] \subseteq K[[T]]$ ,  $\mathfrak{m}$  be the maximal ideal of A and let  $G := \operatorname{gr}_{\mathfrak{m}}(A)$  be the associated graded ring of A. Suppose that  $m_0 < n, \mu \neq 0$  (see 2.3) and G is Cohen-Macaulay.

With all the above assumptions, in this section we shall compute  $\deg h_A$  of the *h*-polynomial and its coefficients  $h_j$ ,  $0 \leq j \leq \deg h_A$ , explicitly.

For convenience we shall subdivide **N** into the two intervals  $J_1 := [0, v - 1]$  and  $J_2 := [v, \infty)$ . In the proposition below, we shall compute  $h_j$  for  $j \in J_1$ . For this subdivide the interval  $J_1$  into the following six

disjoint subsets:

- $J_{11} := [0, q'] \cap J_1.$
- $J_{12} := [q'+1,q] \cap [0,v'+q'] \cap J_1.$
- $J_{13} := [q'+1,q] \cap [v'+q'+1,v-1] \cap J_1.$
- $J_{14} := [q+1, v-1] \cap [0, v'+q'] \cap J_1.$
- $J_{15} := [q+1, v-1] \cap [v'+q'+1, v'+q] \cap J_1.$
- $J_{16} := [q+1, v-1] \cap [v'+q+1, v-1] \cap J_1.$

With this we have:

**3.1 Proposition.** Suppose that  $j \in J_1$ . Then

(1) If j ∈ J<sub>11</sub>, then h<sub>j</sub> = jp + 1.
 (2) If j ∈ J<sub>12</sub>, then h<sub>j</sub> = jp + 1.
 (3) If j ∈ J<sub>13</sub>, then h<sub>j</sub> = (v' + q')q + r'.
 (4) If j ∈ J<sub>14</sub>, then h<sub>j</sub> = qp + r.
 (5) If j ∈ J<sub>15</sub>, then h<sub>j</sub> = (v' + q - j + q')p + r + r' - 1.
 (6) If j ∈ J<sub>16</sub>, then h<sub>j</sub> = q'p + r'.

*Proof.* (1) Since  $0 \le j \le q' \le q$ , by 2.7 (1) we have  $h_j = \operatorname{card}(Z_j) = jp + 1$ .

(2) We consider the two cases  $j \in [0, v' - 1]$  and  $j \in [v', v' + q']$  separately.

Case 1.  $j \in [0, v'-1]$ . In this case, since  $q'+1 \leq j \leq q$  and j-v' < 0, by 2.7 (2) and (3) we have card  $(Z_{1,j}) = jp + 1$  and card  $(Z_{2,j}) = 0$ . Therefore,  $h_j = \operatorname{card} (Z_j) = jp + 1$ .

Case 2.  $j \in [v', v' + q']$ . In this case, since  $v' \leq j \leq q$  and  $j - v' \leq q'$ , by 2.7 (2) and (3) we have  $\operatorname{card}(Z_{1,j}) = v'p$  and  $\operatorname{card}(Z_{2,j}) = (j - v')p + 1$ . Therefore,  $h_j = \operatorname{card}(Z_j) = jp + 1$ .

(3) Since  $j \leq q$  and  $0 \leq q' + 1 \leq j - v'$ , by 2.7 (2) and (3) we have card  $(Z_{1,j}) = v'p$  and card  $(Z_{2,j}) = q'p + r'$ . Therefore,  $h_j = \text{card}(Z_j) = (v' + q')p + r'$ .

(4) We consider the two cases  $j \in [0, v' - 1]$  and  $j \in [v', v' + q']$  separately.

Case 1.  $j \in [0, v'-1]$ . In this case since  $q+1 \leq j$  and j-v' < 0, by 2.7 (2) and (3) we have card  $(Z_{1,j}) = qp + r$  and card  $(Z_{2,j}) = 0$ . Therefore,  $h_j = \operatorname{card}(Z_j) = qp + r$ .

Case 2.  $j \in [v', v'+q']$ . In this case, since  $q+1 \leq j$  and  $0 \leq j-v' \leq q'$ , by 2.7 (2) and (3) we have card  $(Z_{1,j}) = (q-j+v')p+r-1$  and card  $(Z_{2,j}) = (j-v')p+1$ . Therefore  $h_j = \operatorname{card}(Z_j) = qp+r$ .

(5) Since  $q + 1 \le j$  and  $0 \le q' + 1 \le j - v' \le q$ , by 2.7 (2) and (3) we have  $\operatorname{card}(Z_{1,j}) = (q - j + v')p + r - 1$  and  $\operatorname{card}(Z_{2,j}) = q'p + r'$ . Therefore  $h_j = \operatorname{card}(Z_j) = (v' + q - j + q')p + r + r' - 1$ .

(6) Since  $0 \le q' + 1 \le q + 1 \le j - v'$ , by 2.7 (2) and (3) we have  $\operatorname{card}(Z_{1,j}) = 0$  and  $\operatorname{card}(Z_{2,j}) = q'p + r'$ . Therefore  $j_j = \operatorname{card}(Z_j) = q'p + r'$ .  $\Box$ 

Now to compute the coefficients  $h_j$  for  $j \in J_2$ , we subdivide  $J_2$ into the two disjoint subsets  $J_{21} := [v, \infty) \cap [0, q]$  and  $J_{22} := [v, \infty) \cap [q + 1, \infty)$ . Further, for convenience we shall subdivide the set  $J_{21}$  into the following four disjoint subsets:

- $J_{211} := [v, q'] \cap J_{21}.$
- $J_{212} := (q', q] \cap [v, v' + q'] \cap J_{21}.$
- $J_{213} := (q', q] \cap [v' + q' + 1, v + q'] \cap J_{21}.$
- $J_{214} := (q', q] \cap [v + q' + 1, \infty) \cap J_{21}.$

With this we can now write down  $h_j, j \in J_{21}$  in the proposition below

**3.2 Proposition.** Suppose that  $j \in J_{21}$ . Then

- (1) If  $j \in J_{211}$ , then  $h_j = vp$ .
- (2) If  $j \in J_{212}$ , then  $h_j = vp$ .
- (3) If  $j \in J_{213}$ , then  $h_j = (v + v' + q' j)p + r' 1$ .
- (4) If  $j \in J_{214}$ , then  $h_j = v'p$ .

*Proof.* Since  $v' \leq v \leq j \leq q$ , by 2.7 (2) we have

(1) and (2) Since  $j - v' \leq q'$ , card  $(Z_{2,j}) = wp$  by 2.7 (4) and so  $h_j = \text{card}(Z_j) = (v' + w)p = vp$  by (3.2a).

(3) Since  $1 \leq q' + 1 \leq j - v'$ , by 2.7 (4) we have  $\operatorname{card}(\mathbf{Z}_{2,j}) = (q' - j + v)p + r' - 1$  and so  $h_j = \operatorname{card}(Z_j) = (v + v' + q' - j)p + r' - 1$  by (3.2a).

(4) Since  $j - (v - 1) \ge q' + 2$ , card  $(Z_{2,j}) = 0$  by 2.7 (4) and so  $h_j = \text{card}(Z_j) = v'p$  by (3.2a).

Now to compute the coefficients  $h_j$  for  $j \in J_{22}$ , we subdivide  $J_{22}$  into the two disjoint subsets  $J_{221} := [v, v + q] \cap [q + 1, \infty)$  and  $J_{222} := [v + q + 1, \infty) \cap [q + 1, \infty)$ . Further, for convenience we shall subdivide the set  $J_{221}$  into the following five disjoint subsets:

- $J_{2211} := [v, v' + q'] \cap J_{221}.$
- $J_{2212} := [v' + q' + 1, v' + q] \cap [v' + q' + 1, v + q'] \cap J_{221}.$
- $J_{2213} := [v' + q' + 1, v' + q] \cap [v + q' + 1, v + q] \cap J_{221}.$
- $J_{2214} := [v' + q + 1, v + q] \cap [v' + q + 1, v + q'] \cap J_{221}.$
- $J_{2215} := [v' + q + 1, v + q]] \cap [v + q' + 1, v + q] \cap J_{221}.$

With this we have:

**3.3 Proposition.** Suppose that  $j \in J_{221}$ . Then

(1) If  $j \in J_{2211}$ , then  $h_j = (q - j + v)p + r - 1$ .

- (2) If  $j \in J_{2212}$ , then  $h_j = (q + q' 2j + v + v')p + r + r' 2$ .
- (3) If  $j \in J_{2213}$ , then  $h_j = (q j + v')p + r 1$ .
- (4) If  $j \in J_{2214}$ , then  $h_j = (q' j + v)p + r' 1$ .
- (5) If  $j \in J_{2215}$ , then  $h_j = 0$ .

*Proof.* (1) Since  $1 \le j - (v'-1) \le q'+1 \le q+1 \le j$  and  $1 \le j - v' \le q'$ , by 2.7 (2) and (4) we have card  $(Z_{1,j}) = (q - j + v')p + r - 1$  and card  $(Z_{2,j}) = wp$ . Therefore,  $h_j = (q - j + v)p + r - 1$ .

(2) Since  $1 \le j - (v'-1) \le q+1 \le j$  and  $q \le q'+1 \le j-v'$ , by 2.7 (2) and (4) we have card  $(Z_{1,j}) = (q-j+v')p+r-1$  and card  $(Z_{2,j}) = (q'-j+v)p+r'-1$ . Therefore  $h_j = (q+q'-2j+v+v')p+r+r'-2$ .

(3) Since  $1 \le j - (v'-1) \le q+1 \le j$  and  $j - (v-1) \ge q'+2$ , by 2.7 (2) and (4) we have card  $(Z_{1,j}) = (q-j+v')p + r - 1$  and card  $(Z_{2,j}) = 0$ . Therefore  $h_j = (q-j+v')p + r - 1$ .

(4) Since  $j - (v'-1) \ge q+2$  and  $1 \le q'+1 \le q+1 \le j-v'$ , by 2.7 (2) and (4) we have card  $(Z_{1,j}) = 0$  and card  $(Z_{2,j}) = (q'-j+v)p + r' - 1$ . Therefore  $h_j = (q'-j+v)p + r' - 1$ .

(5) Since  $j - (v' - 1) \ge q + 2$  and  $j - (v - 1) \ge q' + 2$ , by 2.7 (2) and (4) we have card  $(Z_{1,j}) = 0$  and  $(Z_{2,j}) = 0$ . Therefore,  $h_j = 0$ .

**3.4 Proposition.** Suppose that  $j \in J_{222}$ . Then  $h_j = 0$ .

*Proof.* Since  $j - (v' - 1) \ge j - v + 1 \ge q + 2 \ge q' + 2$  by 2.7 (2) and (4) we have card  $(Z_{1,j}) = 0$  and card  $(Z_{2,j}) = 0$ . Therefore,  $h_j = 0$ .

## **3.5 Proposition.** Let $j \in \mathbf{N}$ .

- (1)  $h_j \neq 0$  for all  $j \in J_1 \cup J_{21}$ .
- (2) Suppose that v' < v.
- (a) If v + q' < v' + q, then

$$h_{j} = \begin{cases} 0 & \text{if } j > v' + q, \\ r - 1 & \text{if } j = v' + q, \\ p + r + r' - 2 & \text{if } j = v' + q - 1 \text{ and} \\ & v + q' = v' + q - 1, \\ p + r - 1 & \text{if } j = v' + q - 1 \text{ and} \\ & v + q' < v' + q - 1. \end{cases}$$

(b) If  $v + q' \ge v' + q$ , then

$$h_{j} = \begin{cases} 0 & \text{if } j > v + q', \\ r + r' - 2 & \text{if } j = v + q' \text{ and} \\ v + q' = v' + q, \\ r' - 1 & \text{if } j = v + q' \text{ and} \\ v + q' > v' + q, \\ (q - q' - w + 2)p \\ + r + r' - 2 & \text{if } j = v + q' - 1 \text{ and} \\ v' + q' + 1 \le v + q' - 1 \le v' + q, \\ p + r' - 1 & \text{if } j = v + q' - 1 \text{ and} \\ v' + q + 1 \le v + q' - 1. \end{cases}$$

(3) Suppose that v' = v. Then

$$h_j = \begin{cases} 0 & \text{if } j > v + q, \\ r - 1 & \text{if } j = v + q, \\ p + r - 1 & \text{if } j = v + q - 1. \end{cases}$$

Proof. (1) is immediate from 3.1 and 3.2. (2)(a) For  $j \in \mathbf{N}, \ j \ge v' + q - 1$ , we have

$$j \in \begin{cases} J_{2215} & \text{if } j > v' + q, \\ J_{2213} & \text{if } j = v' + q, \\ J_{2212} & \text{if } j = v' + q - 1 \text{ and} \\ & v + q' = v' + q - 1, \\ J_{2213} & \text{if } j = v' + q - 1 \text{ and} \\ & v + q' < v' + q - 1. \end{cases}$$

Therefore the assertion follows from 3.3.

(b) For  $j \in \mathbf{N}$ ,  $j \ge v + q' - 1$ , we have

$$j \in \begin{cases} J_{2215} & \text{if } j > v + q', \\ J_{2212} & \text{if } j = v + q' \text{ and } v + q' = v' + q, \\ J_{2214} & \text{if } j = v + q' \text{ and } v + q' > v' + q, \\ J_{2212} & \text{if } j = v + q' - 1 \text{ and} \\ & v' + q' + 1 \le v + q' - 1 \le v' + q, \\ J_{2214} & \text{if } j = v + q' - 1 \text{ and} \\ & v' + q + 1 \le v + q' - 1. \end{cases}$$

Therefore the assertion follows from 3.3.

(3) Since v' = v, w = 0 and for  $j \in \mathbf{N}$ ,  $j \ge v + q - 1$ , we have

$$j \in \begin{cases} J_{2215} & \text{if } j > v + q, \\ J_{2211} & \text{if } j = v + q \text{ and } q' = q, \\ J_{2213} & \text{if } j = v + q \text{ and } q' < q, \\ J_{2211} & \text{if } j = v + q - 1 \text{ and } q' \ge q - 1, \\ J_{2213} & \text{if } j = v + q - 1 \text{ and } q' < q - 1. \end{cases}$$

Therefore the assertion follows from 3.3.

**3.6 Corollary.** Let  $p, d, m \in \mathbf{N}^+$ ,  $m_i = m + id$  for  $i = 0, \ldots, p$ and n any positive integer with gcd(m, d, n) = 1. Let K be a field,  $A := K[[T^{m_0}, \ldots, T^{m_p}, T^n]] \subseteq K[[T]]$  and let  $\mathfrak{m}$  be the maximal ideal of A. Suppose that  $m_0 < n$ ,  $\mu \neq 0$  (see 2.3) and  $gr_{\mathfrak{m}}(A)$  is Cohen-Macaulay. Then the degree  $deg h_A$  of the h-polynomial is

 $\deg_{hA} = \begin{cases} v'+q-1 & \text{if } v' < v, \, v+q' < v'+q \text{ and } r=1, \\ v'+q & \text{if } v' < v, \, v+q' < v'+q \text{ and } r\neq 1, \\ \max\{q,v+q'-1\} & \text{if } v' < v, \, v+q'=v'+q, \, r=1 \text{ and } r'=1, \\ \max\{q,v+q'\} & \text{if } v' < v, \, v+q'=v'+q \text{ and} \\ & \text{either } r\neq 1 \text{ or } r'\neq 1, \\ \max\{q,v+q'-1\} & \text{if } v' < v, \, v+q' > v'+q \text{ and } r'=1, \\ \max\{q,v+q'\} & \text{if } v' < v, \, v+q' > v'+q \text{ and } r'=1, \\ v+q & \text{if } v'=v \text{ and } r=1, \\ v+q & \text{if } v'=v \text{ and } r\neq 1. \end{cases}$ 

Now we give examples to illustrate the use of 3.1, 3.2, 3.3, 3.4 and 3.6 to compute the *h*-polynomial and its degree. Note that in each of the following examples  $gr_{\mathfrak{m}}(A)$  is the Cohen-Macaulay (since in each of them, we have  $m_0 < n$  and  $\mu \neq 0$ , we can use [4, Theorem (3.4)] and just need to verify the inequalities  $\lambda + w \geq q + 1$  and  $v \leq \mu + q_z + 1$ ).

**3.7 Example** (see [5, Corollary (1.10)]). Let a be an integer  $\geq 2$ ,  $p, b \in \mathbb{N}, p \geq 1, b \in [0, p], m := a(p+1) + b, d$  an integer  $\geq 1$  with gcd(m, d) = 1 and let  $m_i := m + id$  for  $i = 0, 1, \ldots, p + 1$ . Note that we are taking  $n := m_{p=1}$ . Then

$$u = p + 1, \quad \lambda = 1, \quad w = 1, \quad q = 1, \quad r = 1,$$

$$v = \begin{cases} a & \text{if } b = 0, \\ a + 1 & \text{if } b \neq 0, \end{cases}$$

$$\mu = d + a, \quad z = \begin{cases} 0 & \text{if } b = 0, \\ p + 1 - b & \text{if } b \neq 0, \end{cases}$$

$$v' = v - w = v - 1 = \begin{cases} a - 1 & \text{if } b = 0, \\ a & \text{if } b \neq 0, \end{cases}$$

$$u' = u - z = \begin{cases} u & \text{if } b = 0, \\ b & \text{if } b \neq 0, \end{cases}$$

$$q' = \begin{cases} 1 & \text{if } b = 0, \\ 0 & \text{if } b \neq 0, \end{cases}$$

$$r' = \begin{cases} 1 & \text{if } b = 0, \\ b & \text{if } b \neq 0, \end{cases}$$

**3.7.1** Case: b = 0

|                        | 2   CT 2                                                                 | $J_{14} = [4, 4, 4]$                                   |                                                        | $J_{16} = \delta$                                      |
|------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|                        |                                                                          | $h_j = p + 1,$                                         |                                                        |                                                        |
|                        |                                                                          | $2 \leq j \leq a-1$                                    |                                                        |                                                        |
|                        |                                                                          |                                                        |                                                        |                                                        |
| $Z_{212} = \emptyset$  | $J_{213}=\varnothing$                                                    | $J_{214}=\varnothing$                                  |                                                        |                                                        |
|                        |                                                                          |                                                        |                                                        |                                                        |
|                        | $J_{221} = [a, a \dashv$                                                 | + 1]                                                   |                                                        | $J_{222} = [a+2,\infty)$                               |
| $S_{2212} = \emptyset$ | $J_{2213}=\varnothing$                                                   | $J_{2214} = \{a+1\}$                                   | $J_{2215} = \emptyset$                                 |                                                        |
|                        |                                                                          | $h_{a+1} = 0$                                          |                                                        | $h_j = 0,$                                             |
|                        |                                                                          |                                                        |                                                        | $j \ge a+2$                                            |
|                        |                                                                          | deg                                                    | $h_A =$                                                |                                                        |
| Za                     |                                                                          | $a = \max\{q$                                          | $, v + q' - 1 \}$                                      |                                                        |
|                        | $\begin{array}{c c} 2 & = & 0 \\ \hline 1 & 1 & 2 \\ \hline \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

**3.7.2**  $Case: b \neq 0$ 

| $J_1 = [0, a]$          | $J_{11} = \{0\}$       | $J_{12} = \{1\}$      | $J_{13} = \emptyset$   | $J_{14} = [2, a]  J_1$      | к<br>М          | $J_{16} = \emptyset$     |
|-------------------------|------------------------|-----------------------|------------------------|-----------------------------|-----------------|--------------------------|
|                         | $h_0 = 1,$             | $h_1 = p + 1$         |                        | $h_j = p + 1, -$            |                 |                          |
|                         |                        |                       |                        | $2 \leq j \leq a$           |                 |                          |
| $J_2 = [a+1,\infty)$    |                        |                       |                        |                             |                 |                          |
| $J_{21} = \emptyset$    | $J_{211} = \emptyset$  | $J_{212} = \emptyset$ | $J_{213} = \emptyset$  | $J_{214} = \emptyset$       |                 |                          |
|                         |                        |                       |                        |                             |                 |                          |
| $J_{22} = [a+1,\infty)$ |                        | $J_{22}$              | $_{1} = [a + 1, a -$   | + 2]                        |                 | $J_{222} = [a+3,\infty)$ |
|                         | $J_{2211} = \emptyset$ | $J_{2212} = \{a+1\}$  | $J_{2213} = \emptyset$ | $J_{2214} = \emptyset  J_2$ | $215 = \{a+2\}$ |                          |
|                         |                        | $h_{a+1} = b - 1$     |                        | —— <i>h</i> <sub>a</sub>    | +2 = 0          | $h_j = 0,$               |
|                         |                        |                       |                        |                             |                 | $j \ge a + 3$            |
|                         | $h_A =$                |                       |                        | $\deg h_A =$                |                 |                          |
| $1 + \sum_{i=1}^{n} 1$  | $(p+1)Z^{j} + (l)$     | $b-1)Z^{a+1}$         | }                      | $a = \max\{q, v - d\}$      | + q' - 1, if b  | = 1,                     |
| $\int d^{j=1}$          |                        | ~                     | ,                      | $a + 1 = \max\{g$           | v, v + q', if b | $\geq 2$                 |

**3.8 Example.** Let *a* be an integer  $\geq 2$ ,  $p \in \mathbb{N}$ ,  $p \geq 1$ ,  $m_i := 2a(2p+1) - p + i$  for  $i = 0, 1, \ldots, p$ , and let  $n := m_0 + 2p + 1$ . Then u = 2p + 1,  $\lambda = 2$ , w = 1, q = 2, r = 1,  $v = 2a, \mu = 2a, z = p, v' = v - w = v - 1 = 2a - 1, u' = u - z = p + 1, q' = 1, r' = 1$ .

| $J_1 = [0, 2a - 1]$     | $J_{11} = [0,1]$         | $J_{12} = \{2\}$          | $J_{13} = \emptyset$    | $J_{14} = [3, 2a - 1]$   | $J_{15} = \emptyset$      | $J_{16} = \emptyset$         |
|-------------------------|--------------------------|---------------------------|-------------------------|--------------------------|---------------------------|------------------------------|
|                         | $h_0 = 1,$               | $h_2 = 2p + 1$            |                         | $h_j = 2p + 1,$          |                           |                              |
|                         | $h_1 = p + 1$            |                           |                         | $3 \leq j \leq 2a-1$     |                           |                              |
| $J_2 = [2a, \infty)$    |                          |                           |                         |                          |                           |                              |
| $J_{21} = \emptyset$    | $J_{211}=\varnothing$    | $J_{212} = \emptyset$     | $J_{213} = \varnothing$ | $J_{214} = \varnothing$  |                           |                              |
|                         |                          |                           |                         |                          |                           |                              |
| $J_{22} = [2a, \infty)$ |                          | $J_{i}$                   | $_{221} = [2a, 2a -$    | + 2]                     |                           | $J_{222} = [2a + 3, \infty)$ |
|                         | $J_{2211} = \{2a\}$      | $J_{2212} = \{2a\!+\!1\}$ | $J_{2213}=\varnothing$  | $J_{2214} = \varnothing$ | $J_{2215} = \{2a + 2\}$   |                              |
|                         | $h_a = 2p$               | $h_{2a+1} = 0$            |                         | _                        | $h_{2a+2} = 0$            | $h_j = 0,$                   |
|                         |                          |                           |                         |                          |                           | $j \ge 2a + 3$               |
|                         | $h_A = h_A$              |                           |                         | p                        | $\log h_A =$              |                              |
| 1 + (p + 1)Z            | $+\sum_{j=2}^{2a-1}(2p+$ | $(1)Z^{j} + 2pZ^{2a}$     |                         | 2a = ma                  | $\mathrm{tx}\{q,v+q'-1\}$ |                              |
|                         |                          |                           |                         |                          |                           |                              |

**3.9 Example.** Let  $p, r, q, v \in \mathbf{N}$ ,  $p \ge r \ge 1$ ,  $v > q \ge 2$ ,  $m_i := (v-1)(qp+r)+i+1$  for  $i = 0, 1, \ldots, p$ , and let n := v(qp+r)+1. Then u = qp+r,  $\lambda = q$ , w = 1,  $\mu = v-q$ , z = qp+r-1, v' = v-w = v-1, u' = 1, q' = 0, r' = 1.

| $J_1 = [0,v-1]$             | $J_{11}\!=\!\{0\}$                     | $J_{12} \!=\! [1,q]$                   | $J_{13} = \emptyset$       | $J_{14}{=}[q{+}1,v{-}1]$                                          | $J_{15} = \emptyset$              | $J_{16}{=}\varnothing$     |
|-----------------------------|----------------------------------------|----------------------------------------|----------------------------|-------------------------------------------------------------------|-----------------------------------|----------------------------|
|                             | $h_0 = 1$                              | $h_j = jp+1,$                          |                            | $h_j = qp + r$ ,                                                  |                                   |                            |
|                             |                                        | $1 \leq j \leq q$                      |                            | $q+1 \le j \le v-1$                                               |                                   |                            |
| $J_2 = [v, \infty)$         |                                        |                                        |                            |                                                                   |                                   |                            |
| $J_{21} = \emptyset$        | $J_{211} = \varnothing$                | $J_{212} \!=\! \varnothing$            | $J_{213} = \varnothing$    | $J_{214}\!=\!\varnothing$                                         |                                   |                            |
|                             |                                        |                                        |                            |                                                                   |                                   |                            |
| $J_{22}\!=\![v,\infty)$     |                                        |                                        | $J_{221} = [v, v+q]$       |                                                                   |                                   | $J_{222} = [v+q+1,\infty)$ |
|                             | $J_{2211} = \varnothing$               | $J_{2212} = \{v\}$                     | $J_{2213} = [v+1, v'+q]$   | $J_{2214}\!=\!\varnothing$                                        | $J_{2215} \!=\! \{v\!+\!q\}$      |                            |
|                             |                                        | $h_v = (q-1)p + r - 1$                 | $h_j = (q-j+v')p+r-1,$     |                                                                   | $h_{v+q} = 0$                     | $h_{j} = 0,$               |
|                             |                                        |                                        | $v+1\!\leq\!j\!\leq\!v'+q$ |                                                                   |                                   | $j \ge q+3$                |
|                             | $h_A =$                                |                                        |                            | $\deg h_A =$                                                      |                                   |                            |
| $1 + \sum_{j=1}^{q} (j)$    | $(p+1)Z^j + \sum_{i=1}^{j} (1+j)Z^{j}$ | $\mathcal{L}_{j=q+1}^{v-1}(qp+r)Z^{j}$ | }                          | $\begin{aligned} v+q-2 &= v'+q - \\ v+q-1 &= v'+q, \end{aligned}$ | -1, if $r = 1$ ,<br>if $r \neq 1$ |                            |
| +[(q-1)]                    | $p+r-1]Z^v$<br>-1[(a-i+a)]             | $m \pm m = 11 Z j$                     |                            |                                                                   |                                   |                            |
| $^{\top}\mathcal{L}_{j=v+}$ | +1 [(4 - J + v])                       | d = d + d d                            |                            |                                                                   |                                   |                            |

| $\geq 1$<br>qp+r<br>$m^{*'})+1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $\frac{2}{r}r''$<br>+( $r-r$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| $r \geq r$<br>$\Gamma$ hen $q'')p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| $p \geq 1$<br>p = (q - p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ſ |
| with $n+d$<br>u-z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| n := n<br>u' = u'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ī |
| and $i = d, = d,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| sitiv<br>r + r)d<br>r = v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| be point $f(qp) = (qp)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| r''', $r'''m_0 :=z = c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - |
| d, q''<br>n := 1<br>n' - 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |
| p, r, q<br>Let $n$<br>= $d-q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Let $3d$ .<br>3d.<br>$d, \mu =$<br>n'+1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ī |
| le.<br>d q ><br>v = q<br>r - r'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| amp<br>= 0,<br>r' = 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| <b>Ex</b><br>$p_{\mu}^{\prime\prime\prime} E_{\mu}^{\prime\prime\prime} + p_{\mu}^{\prime\prime\prime} + p_{\mu}^{\prime\prime\prime} + 2p_{\mu}^{\prime\prime\prime} + 2p_{\mu}^{\prime\prime\prime} + p_{\mu}^{\prime\prime\prime} + p_{\mu}^{\prime\prime} + p_{\mu}^{\prime} + p_{\mu}^{\prime\prime} + p_{\mu}^{$ |   |
| $3.10$ $d := q$ $\lambda = q$ $\eta' = q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |

| $J_1 \!=\! [0,d\!-\!1]$   | $J_{11}\!=\![0,d\!-\!1]$                      | $J_{12} = \emptyset$   | $J_{13} = \emptyset$                                     | $J_{14} = \emptyset$         | $J_{15} = \emptyset$          | $J_{16} = \emptyset$     |
|---------------------------|-----------------------------------------------|------------------------|----------------------------------------------------------|------------------------------|-------------------------------|--------------------------|
|                           | $h_j = jp+1$                                  |                        |                                                          |                              |                               |                          |
|                           | $0 \leq j \leq d-1$                           |                        |                                                          |                              |                               |                          |
| $J_2 = [d, \infty)$       |                                               |                        |                                                          |                              |                               |                          |
| $J_{21} = [d, q]$         | $J_{211} = [d, q']$                           | $J_{212} = (q', q]$    | $J_{213} = \emptyset$                                    | $J_{214} \!=\! \varnothing$  |                               |                          |
|                           | hj = dp,                                      | hj = dp,               |                                                          |                              |                               |                          |
|                           | $d \leq j \leq q'$                            | $q' < j \leq q$        |                                                          |                              |                               |                          |
| $J_{22} =$                |                                               | $J_{221}$              | = [q+1, d+q]                                             |                              |                               | $J_{222} =$              |
| $[q+1,\infty)$            |                                               |                        |                                                          |                              |                               | $[d\!+\!q\!+\!1,\infty)$ |
|                           | $J_{2211}{=}[q\!+\!1,d\!+\!q']$               | $J_{2212} = \emptyset$ | $J_{2213} = [d+q'+1, d+q]$                               | $J_{2214} \!=\! \varnothing$ | $J_{2215} = \emptyset$        |                          |
|                           | $h_j=(q-j+d)p+r-1$                            |                        | $h_j = (q-j+d)p+r-1,$                                    |                              |                               | $h_j = 0,$               |
|                           | $q+1 \leq j \leq d+q'$                        |                        | $d+q'+1\leq j\leq d+q$                                   |                              |                               | $j \ge d + q + 1$        |
|                           | $h_A =$                                       |                        |                                                          | $\deg h_A =$                 |                               |                          |
| $\sum_{j=0}^{d-1} (jp+1)$ | $Z^{j} + \sum_{j=d}^{q} (dp) Z^{j}$           |                        | $\left\{\begin{array}{c} 5+p\\ 1-b+p\end{array}\right\}$ | 1 = v + q - 1,<br>q = v + q, | if $r = 1$ ,<br>if $r \neq 1$ |                          |
|                           | $+\sum_{j=q+1 \atop j=q+1}^{d+q'} [(q-j+d)_j$ | $p+(r-1)]Z^{j}$        |                                                          |                              |                               |                          |
|                           | $+\sum_{j=d+q'+1}^{a+q} [(q-j+$               | $(+d)p + (r-1)]Z^{j}$  |                                                          |                              |                               |                          |

Acknowledgments. Part of this work was done while the first author was visiting the Department of Mathematics, Genova University, Genova, Italy, and the final manuscript was written during the DAAD sponsored visit of the first author at the Department of Mathematics, Ruhr Universität Bochum, Germany. The first author thanks both the Departments for their hospitality and gives special thanks to Dr. Hartmut Wiebe for helping to draw the picture using Corel-Draw.

## REFERENCES

**1.** J. Elias, On the conjecture of Sally on the Hilbert function for curve singularities, J. Algebra **160** (1993), 42–49.

**2.** J. Elias, M.E. Rossi and G. Valla, On the coefficients of the Hilbert polynomial, J. Pure Appl. Algebra **108** (1996), 35–60.

**3.** A. Garcia, Cohen-Macaulayness of the associated graded ring of a semigroup ring, Comm. Algebra **10** (1982), 393–415.

**4.** S. Molinelli, D.P. Patil and G. Tamone, On the Cohen-Macaulagness of the associated graded ring of certain monomial curves, Beiträge zur Algebra und Geometrie — Contributions to Algebra and Geometry **39** (1998), 433–446.

5. S. Molinelli and G. Tamone, On the Hilbert function of certain rings of monomial curves, J. Pure Appl. Algebra 101 (1995), 191–206.

6. ——, On the Hilbert function of certain non Cohen Macaulay one dimensional rings, Rocky Mountain J. Math. 29 (1999), 271–300.

7. D.P. Patil, Minimal sets of generators for the relation ideals of certain monomial curves, Manuscripta Math. 80 (1993), 239-248.

8. D.P. Patil and I. Sengupta, Minimal sets of generators for the derivation module of certain monomial curves, Comm. Algebra 27 (1999), 5619–5631.

**9.** D.P. Patil and Balwant Singh, Generators for the derivation modules and the relation ideals of certain curves, Manuscripta Math. **68** (1990), 327–335.

10. M.E. Rossi and G. Valla, A conjecture of Sally, Comm. Algebra 24 (1996), 4249–4261.

11. ——, Cohen-Maucaulay local rings of dimension two and a extended version of conjecture of Sally, J. Pure Appl. Algebra 122 (1997), 293–311.

**12.** G. Tamone, On the Hilbert function of some non Cohen Macaulay graded rings, Comm. Algebra **26** (1998), 4221–4231.

Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

*E-mail address:* patil@math.iisc.ernet.in

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI GENOVA, VIA DODECANESO 35, I-16146 GENOVA, ITALY

*E-mail address:* tamone@dima.unige.it