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ON THE H-POLYNOMIAL OF
CERTAIN MONOMIAL CURVES

D.P. PATIL AND G. TAMONE

ABSTRACT. Let n1, . . . , ne be an increasing sequence of
positive integers with gcd (n1, . . . , ne) = 1 and let A be the
coordinate ring of the algebroid monomial curve in the affine
algebroid e-space Ae

K over a field K, defined parametrically
by X1 = tn1 , . . . , Xe = tne . In this article assuming that
some e − 1 terms of n1, . . . , ne form an arithmetic sequence,
we compute (under some mild additional assumptions, see
Theorem (2.7) for more precise assumptions) the h-polynomial
(and hence the Hilbert function) of A explicitly in terms of
the standard basis of the semi-group generated by n1, . . . , ne.
Our special assumptions are satisfied in the case e = 3; in
particular, for the class of algebroid monomial space curves,
we can write down the h-polynomial and hence the Hilbert
function explicitly.

1. Introduction. Let (A,m) be Noetherian local ring, and let
G := grm(A) = ⊕

i≥0
mi/mi+1 be the associated graded ring of A.

The Hilbert function HA : N → N of A is the numerical function
defined by HA(n) := dimA/m(mn/mn+1). The Poincaré series of A is
the series PA(Z) :=

∑
n≥0 HA(n)Zn. By the Hilbert-Serre theorem,

there exists a polynomial hA(Z) =
∑deg hA

j=0 hjZ
j such that PA(Z) =

hA(Z)/(1−Z)dim A. Then h0 = 1, h1 = emdim (A) := dimA/m(m/m2).
The polynomial hA(Z) is called the h-polynomial of A and the vector
(h0, h1, . . . , hdeg hA

) is called the h-vector of A. It is clear that the h-
vector of A and the Krull dimension of A determine the Hilbert function
of A and conversely. Since the Hilbert function HA of A is a good
measure of singularity of the affine scheme Spec (A) at the closed point
m, it is important to compute the Hilbert function, Poincaré series,
h-vector, h-polynomial and its degree explicitly. These invariants are
studied by many authors in the standard literature on local rings and
still many interesting questions regarding these invariants are open in
general (see, for example, [1 3, 5, 6, 10 12]).
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In this article we assume that A is the coordinate ring of an algebroid
monomial curve in the affine e-space Ae

K over a field K, defined
parametrically by X0 = Tm0 , . . . , Xe−1 = Tme−1 with 0 < m0 < m1 <
· · · < me−1, gcd (m0, . . . ,me−1) = 1 and the sequence m0, . . . ,me−1 is
an almost arithmetic sequence, that is, m0 < · · · < mp, p := e− 2 is
an arithmetic sequence and n := me−1 is arbitrary. In the case when
the associated graded ring grm(A) := ⊕

i≥0
mi/mt+1 of A is not Cohen-

Macaulay, in [12; Corollary 2.7], it is proved that the h-polynomial has
non-negative coefficients. In this article, we assume grm(A) is Cohen-
Macaulay and m0 < n, µ �= 0 (see 2.3 for definition of µ) to give an
algorithmic method to write down the h-polynomial of A explicitly.
In the special case when the sequence m0, · · · ,me−1 is an arithmetic
sequence then grm(A) is always Cohen-Macaulay (see [5, Proposition
(1.1)]) and the h-polynomial of A is written down explicitly (see [5,
Corollary (1.10)]).

Our algorithmic method involves the nonnegative integers λ, µ, ν, u,
v, z, w which were defined in [9], using the explicit description of the
standard basis Sm0 of the semi-group Γ :=

∑e−2
i=0 Nmi +Nn. Given

integers m0, . . . ,mp, n, it is easy to find the nonnegative integers
λ, µ, ν, u, v, z, w. The explicit description of Sm0 and the properties
of the nonnegative integers λ, µ, ν, u, v, z, w were used to find explicit
minimal sets of generators for the relation ideal and the derivation
module of A (see [7] and [8]). Further, in [4], the properties of the
nonnegative integers λ, µ, ν, u, v, z, w were used to give, in most cases,
necessary and sufficient conditions for grm(A) to be Cohen-Macaulay
(this condition is just one inequality which involves the nonnegative
integers λ, µ, ν, u, z, w and which is easy to check).

For the case of monomial space curves, we can write down, in most
cases, the h-vector of A explicitly, since any three integers are in almost
arithmetic sequence with m0 < m1 < n. We also give many examples
to illustrate our algorithmic method.

2. Standard basis. In this section we recall the explicit description
of the standard basis of a numerical semi-group generated by an almost
arithmetic sequence given in [9, Section 3] (see also [7]). First we fix
the following notations throughout this paper.
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2.1 Notation. Let Z, respectively N, denote the set of all, respec-
tively nonnegative, integers. For a, b ∈ Z, let [a, b] := {i ∈ Z | a ≤ i ≤
b}. Unless mentioned otherwise, the symbols a, b, c, d, e, i, j,m, n, p, q, r,
s, t, u, v, w, z denote integers.

Let m0, . . . ,me−1 be a sequence of positive integers with m0 < · · · <
me−1 and gcd (m0, . . . ,me−1) = 1. We assume that m0, . . . ,me−1 is a
minimal set of generators for the semi-group Γ :=

∑e−1
i=0 Nmi

.

• Let E := (N)e and for i ∈ [0, e − 1], we put ei := (δij)0≤j≤e−1,
where δij denote the Kronecker delta.

• For α = ∑e−1
i=0 aiei, let ∂(α) :=

∑e−1
i=0 aimi.

• For h ∈ Γ, let E(h) := {α ∈ E | ∂(α) = h}.
• For α = ∑e−1

i=0 aiei ∈ E(h), we put deg (α) := ∑e−1
i=0 ai.

• For α, β ∈ E(h), we write α ≤deg β if deg (α) ≤ deg (β).

Then ≤deg is an order on E(h) and since E(h) is a finite set, E(h)
has maximal elements with respect to the order ≤deg . Let max(E(h))
denote the set of all maximal elements in E(h). Note that all elements of
max(E(h)) have the same degree, therefore this degree we shall denote
by maxdeg (h).

2.2 Standard basis. Let Γ be a numerical semi-group generated
by a sequence m0,m1, . . . ,me−1 of positive integers. Then the set
Sm0 := {z ∈ Γ | z − m0 /∈ Γ} is called the standard basis or the
Apèry set of Γ with respect to m0. It is clear that Sm0 depends on Γ
and m0, but for simplicity we write S := Sm0 . It is easy to see that
S = {s0 := 0, s1, . . . , sm0−1}, where s1, . . . , sm0−1 ∈ Γ are positive
integers with the following properties:

(a) si ≡ i (mod m0) for every i ∈ [0,m0 − 1]
(b) If z ∈ Γ then z ≡ i (mod m0) for a unique i ∈ [0,m0 − 1] and

z ≥ si.

The following Key-Lemma from [9, Section 3] (see also [7, Section 1])
gives the explicit description of the standard basis of a semi-group
generated by an almost arithmetic sequence.



292 D.P. PATIL AND G. TAMONE

2.3 Key-Lemma. Let p := e− 2 and let d be a positive integer with
mi = m0 + id for all 0 ≤ i ≤ p. Let n be an arbitrary positive integer
with gcd (m0, d, n) = 1. Let Γ′ :=

∑p
i=0 Nmi

and Γ = Γ′ +Nn. Let
S := Sm0 be the standard basis of Γ with respect to m0. For t ∈ N,
let qt ∈ Z, rt ∈ [1, p] and gt ∈ Γ′ be defined by t = qtp + rt and
gt = qtmp +mrt

.

(1) gs+gt = εm0+gs+t with ε = 1 or 0 according to whether rs+rt ≤ p
or rs + rt > p.

(2) Let u := min{t ∈ N | gt /∈ S} and v := min{b ≥ 1 | bn ∈ Γ′}.
Then unique integers w ∈ [0, v − 1], z ∈ [0, u − 1], λ ≥ 1, µ ≥ 0, exist
such that

(i) gu = λm0 + wn;

(ii) vn = µm0 + gz;

(iii) gu−z + (v − w)n = νm0. Moreover, ν = λ + µ + ε where ε = 1
or 0 according to whether ru−z < ru or ru−z ≥ ru.

(3) Let V := [0, u− 1]× [0, v− 1], W := [u− z, u− 1]× [v−w, v− 1]
and U := V \ W . Then S = {gs + bn | (s, b) ∈ U}. In particular, if
(s, b), (t, c) ∈ U with gs + bn ≡ gt + cn (mod m0), then (s, b) = (t, c).

(4) Every element of Γ can be expressed uniquely in the form am0 +
gs + bn with a ∈ N and (s, b) ∈ U .

(5) The map (N)p+2 → (N)2 defined by
∑p+1

i=0 aiei �→ (
∑p

i=0 aimi, ap+1n)
is a bijection between S and U .

Proof. See [9, Section 3].

2.4 Notation. In addition to the notation in 2.1 and in Key-Lemma
2.3, we fix the following:

• q := qu, r := ru, that is, u = qp+ r, u′ := u− z, q′ := qu′ , r′ := ru′ ,
that is, u′ = q′p+ r′, and v′ := v − w.

• U1 := {(s, b) ∈ U | b ∈ [0, v′ − 1]} and U2 := {(s, b) ∈ U | b ∈
[v′, v − 1]}.
• For j ∈ N, let Zj := {(s, b) ∈ U | qs + 1 + b = j} and let

Z1,j := Zj ∩ U1, Z2,j := Zj ∩ U2,

• For (i, b) ∈ Z× N, let Xi,b := U ∩ ([(i− 1)p+ 1, ip]× {b}).



ON THE H-POLYNOMIAL OF CERTAIN CURVES 293

2.5 The picture of U . The following picture of U (see 2.3) might
be useful for computations or proofs:

With the notation in 2.3, 2.4 and using the above picture of U , the
following two lemmas are immediate from the definitions.

2.6 Lemma. Let (i, b) ∈ N× N. Then

(1) If either b ≥ v′ or i ≥ q + 2, then Xi,b ∩ U1 = ∅.

(2) If either b ≥ v or i ≥ q′ + 2, then Xi,b ∩ U2 = ∅.

(3) If b ≤ v′ − 1, then

Xi,b ∩ U1 =




{(0, b)} if i = 0,
[(i− 1)p+ 1, ip]× {b} if 1 ≤ i ≤ q,
[qp+ 1, qp+ r − 1]× {b} if i = q + 1,
∅ if i ≥ q + 2.
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In particular,

card (Xi,b ∩ U1) =




1 if i = 0,
p if 1 ≤ i ≤ q,
r − 1 if i = q + 1,
0 if i ≥ q + 2.

(4) If v′ ≤ b ≤ v − 1, then

Xi,b ∩ U2 =




{(0, b)} if i = 0,
[(i− 1)p+ 1, ip]× {b} if 1 ≤ i ≤ q′,
[q′p+ 1, q′p+ r′ − 1]× {b} if i = q′ + 1,
∅ if i ≥ q′ + 2.

In particular,

card (Xi,b ∩ U2) =




1 if i = 0,
p if 1 ≤ i ≤ q′,
r′ − 1 if i = q′ + 1,
0 if 1 ≥ q′ + 2.

2.7 Lemma. Let j ∈ N. Then

(1) Zj = ∪v−1
b=0Xj−b,b = ∪j

j−b=j−(v−1)Xj−b,b.

(2) Z1,j = ∪j
j−b=j−(v′−1)Xj−b,b and Z2,j = ∪j−v′

j−b=j−(v−1)Xj−b,b.

(3) If j ∈ [0, v − 1], then Z2,j = ∪j−v′
j−b=0Xj−b,b.

(4) If j ∈ [v,∞), then Z2,j = ∪j−v′

j−b=j−(v−1)≥1Xj−b,b.

2.8 Theorem. Let K be a field and let K[[T ]] be the power
series ring. Let p, d,m ∈ N+, mi = m + id for i = 0, . . . , p and
let n be an arbitrary positive integer with gcd (m, d, n) = 1. Let
A := K[[Tm0 , . . . , Tmp , Tn]] ⊆ K[[T ]], m the maximal ideal of A and
let G := grm(A) be the associated graded ring of A. Let τ0, . . . , τp,
τ denote the images of Tm0 , . . . , Tmp , Tn in G, respectively, and let
G′ := G/(τ0) = ⊕t

j=0G
′
j. Suppose that m0 < n, µ �= 0 (see 2.3),



ON THE H-POLYNOMIAL OF CERTAIN CURVES 295

and G is Cohen-Macaulay. Then hA(Z) =
∑t

j=0 dimK(G′
j)Z

j and
dimK(G′

j) = card (Zj) for every j ∈ N.

Proof. Since G is Cohen-Macaulay and m0 < n by assumption,
by [3, Theorem 7], τ0 is a nonzero divisor in G and hence G′ is an
Artinian reduction of G. In particular, hj = dimK(G′

j) for every
j ∈ N. Let τ̄1, . . . , τ̄p, τ̄ denote the images of τ1, . . . , τp, τ in G′. Then
for each j ∈ N, G′

j is generated, as an A/m-vector space, by the set
{τ̄a1

1 · · · τ̄ap
p · τ̄ b | a1m1 + · · ·+ apmp+ bn ∈ S and T a1m1+···+apmp+bn ∈

mj \ mj+1}. In particular (see 2.3) dimK(G′
j) = card ({(s, b) ∈ U |

maxdeg (gs+ bn) = j}) for every j ∈ N. Now since m0 < n, µ �= 0 and
G is Cohen-Macaulay, by [5, Theorem (3.4)], we have λ + w ≥ qu + 1
and v ≤ µ+ qz + 1 (see 2.3 for definitions of λ, µ, u, v, w, z, qu, qz) and
so by [4, Proposition (3.2)] and the definition of Zj (see 2.4), we have
dimK(G′

j) = card (Zj) for every j ∈ N.

In the next section we shall give an algorithmic method to compute
card (Zj), j ∈ N, by using the nonnegative integers v, v′, q and q′.

3. The h-polynomial. Let K be a field and let K[[T ]] be the power
series ring. Let p, d,m ∈ N+, mi = m + id for i = 0, . . . , p and let
n be an arbitrary positive integer with m < n and gcd (m, d, n) = 1.
We assume that m0, . . . ,mp, n is a minimal set of generators for the
semi-group Γ :=

∑e−1
i=0 Nmi. We shall use the explicit description of

the standard basis Sm0 of the semi-group Γ :=
∑p

i=0 Nmi +Nn given
in the Key-Lemma 2.3, particularly, the definitions (see 2.3) of the
nonnegative integers λ, µ, ν, u, v, z, w.

Let A := K[[Tm0 , . . . , Tmp , Tn]] ⊆ K[[T ]], m be the maximal ideal
of A and let G := grm(A) be the associated graded ring of A. Suppose
that m0 < n, µ �= 0 (see 2.3) and G is Cohen-Macaulay.

With all the above assumptions, in this section we shall compute
deg hA of the h-polynomial and its coefficients hj , 0 ≤ j ≤ deg hA,
explicitly.

For convenience we shall subdivide N into the two intervals J1 :=
[0, v− 1] and J2 := [v,∞). In the proposition below, we shall compute
hj for j ∈ J1. For this subdivide the interval J1 into the following six
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disjoint subsets:

• J11 := [0, q′] ∩ J1.

• J12 := [q′ + 1, q] ∩ [0, v′ + q′] ∩ J1.

• J13 := [q′ + 1, q] ∩ [v′ + q′ + 1, v − 1] ∩ J1.

• J14 := [q + 1, v − 1] ∩ [0, v′ + q′] ∩ J1.

• J15 := [q + 1, v − 1] ∩ [v′ + q′ + 1, v′ + q] ∩ J1.

• J16 := [q + 1, v − 1] ∩ [v′ + q + 1, v − 1] ∩ J1.

With this we have:

3.1 Proposition. Suppose that j ∈ J1. Then

(1) If j ∈ J11, then hj = jp+ 1.

(2) If j ∈ J12, then hj = jp+ 1.

(3) If j ∈ J13, then hj = (v′ + q′)q + r′.

(4) If j ∈ J14, then hj = qp+ r.

(5) If j ∈ J15, then hj = (v′ + q − j + q′)p+ r + r′ − 1.
(6) If j ∈ J16, then hj = q′p+ r′.

Proof. (1) Since 0 ≤ j ≤ q′ ≤ q, by 2.7 (1) we have hj = card (Zj) =
jp+ 1.

(2) We consider the two cases j ∈ [0, v′ − 1] and j ∈ [v′, v′ + q′]
separately.

Case 1. j ∈ [0, v′−1]. In this case, since q′+1 ≤ j ≤ q and j−v′ < 0,
by 2.7 (2) and (3) we have card (Z1,j) = jp + 1 and card (Z2,j) = 0.
Therefore, hj = card (Zj) = jp+ 1.

Case 2. j ∈ [v′, v′ + q′]. In this case, since v′ ≤ j ≤ q and
j − v′ ≤ q′, by 2.7 (2) and (3) we have card (Z1,j) = v′p and
card (Z2,j) = (j − v′)p+ 1. Therefore, hj = card (Zj) = jp+ 1.

(3) Since j ≤ q and 0 ≤ q′ + 1 ≤ j − v′, by 2.7 (2) and (3)
we have card (Z1,j) = v′p and card (Z2,j) = q′p + r′. Therefore,
hj = card (Zj) = (v′ + q′)p+ r′.
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(4) We consider the two cases j ∈ [0, v′ − 1] and j ∈ [v′, v′ + q′]
separately.

Case 1. j ∈ [0, v′ − 1]. In this case since q + 1 ≤ j and j − v′ < 0,
by 2.7 (2) and (3) we have card (Z1,j) = qp + r and card (Z2,j) = 0.
Therefore, hj = card (Zj) = qp+ r.

Case 2. j ∈ [v′, v′+q′]. In this case, since q+1 ≤ j and 0 ≤ j−v′ ≤ q′,
by 2.7 (2) and (3) we have card (Z1,j) = (q − j + v′)p + r − 1 and
card (Z2,j) = (j − v′)p+ 1. Therefore hj = card (Zj) = qp+ r.

(5) Since q + 1 ≤ j and 0 ≤ q′ + 1 ≤ j − v′ ≤ q, by 2.7 (2) and (3)
we have card (Z1,j) = (q − j + v′)p+ r − 1 and card (Z2,j) = q′p + r′.
Therefore hj = card (Zj) = (v′ + q − j + q′)p+ r + r′ − 1.
(6) Since 0 ≤ q′ + 1 ≤ q + 1 ≤ j − v′, by 2.7 (2) and (3) we have

card (Z1,j) = 0 and card (Z2,j) = q′p + r′. Therefore jj = card (Zj) =
q′p+ r′.

Now to compute the coefficients hj for j ∈ J2, we subdivide J2

into the two disjoint subsets J21 := [v,∞) ∩ [0, q] and J22 := [v,∞)∩
[q+1,∞). Further, for convenience we shall subdivide the set J21 into
the following four disjoint subsets:

• J211 := [v, q′] ∩ J21.

• J212 := (q′, q] ∩ [v, v′ + q′] ∩ J21.

• J213 := (q′, q] ∩ [v′ + q′ + 1, v + q′] ∩ J21.

• J214 := (q′, q] ∩ [v + q′ + 1,∞) ∩ J21.

With this we can now write down hj , j ∈ J21 in the proposition below

3.2 Proposition. Suppose that j ∈ J21. Then

(1) If j ∈ J211, then hj = vp.

(2) If j ∈ J212, then hj = vp.

(3) If j ∈ J213, then hj = (v + v′ + q′ − j)p+ r′ − 1.
(4) If j ∈ J214, then hj = v′p.
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Proof. Since v′ ≤ v ≤ j ≤ q, by 2.7 (2) we have

(3.2a) card (Z1,j) = v′p.

(1) and (2) Since j − v′ ≤ q′, card (Z2,j) = wp by 2.7 (4) and so
hj = card (Zj) = (v′ + w)p = vp by (3.2a).

(3) Since 1 ≤ q′ + 1 ≤ j − v′, by 2.7 (4) we have card (Z2,j) =
(q′ − j + v)p+ r′ − 1 and so hj = card (Zj) = (v+ v′ + q′ − j)p+ r′ − 1
by (3.2a).

(4) Since j − (v − 1) ≥ q′ + 2, card (Z2,j) = 0 by 2.7 (4) and so
hj = card (Zj) = v′p by (3.2a).

Now to compute the coefficients hj for j ∈ J22, we subdivide J22

into the two disjoint subsets J221 := [v, v + q] ∩ [q + 1,∞) and
J222 := [v + q + 1,∞) ∩ [q + 1,∞). Further, for convenience we shall
subdivide the set J221 into the following five disjoint subsets:

• J2211 := [v, v′ + q′] ∩ J221.

• J2212 := [v′ + q′ + 1, v′ + q] ∩ [v′ + q′ + 1, v + q′] ∩ J221.

• J2213 := [v′ + q′ + 1, v′ + q] ∩ [v + q′ + 1, v + q] ∩ J221.

• J2214 := [v′ + q + 1, v + q] ∩ [v′ + q + 1, v + q′] ∩ J221.

• J2215 := [v′ + q + 1, v + q]] ∩ [v + q′ + 1, v + q] ∩ J221.

With this we have:

3.3 Proposition. Suppose that j ∈ J221. Then

(1) If j ∈ J2211, then hj = (q − j + v)p+ r − 1.
(2) If j ∈ J2212, then hj = (q + q′ − 2j + v + v′)p+ r + r′ − 2.
(3) If j ∈ J2213, then hj = (q − j + v′)p+ r − 1.
(4) If j ∈ J2214, then hj = (q′ − j + v)p+ r′ − 1.
(5) If j ∈ J2215, then hj = 0.

Proof. (1) Since 1 ≤ j−(v′−1) ≤ q′+1 ≤ q+1 ≤ j and 1 ≤ j−v′ ≤ q′,
by 2.7 (2) and (4) we have card (Z1,j) = (q − j + v′)p + r − 1 and
card (Z2,j) = wp. Therefore, hj = (q − j + v)p+ r − 1.
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(2) Since 1 ≤ j − (v′ − 1) ≤ q + 1 ≤ j and q ≤ q′ + 1 ≤ j − v′, by 2.7
(2) and (4) we have card (Z1,j) = (q− j+v′)p+ r−1 and card (Z2,j) =
(q′− j+ v)p+ r′ − 1. Therefore hj = (q+ q′− 2j+ v+ v′)p+ r+ r′− 2.
(3) Since 1 ≤ j−(v′−1) ≤ q+1 ≤ j and j−(v−1) ≥ q′+2, by 2.7 (2)

and (4) we have card (Z1,j) = (q− j + v′)p+ r− 1 and card (Z2,j) = 0.
Therefore hj = (q − j + v′)p+ r − 1.
(4) Since j−(v′−1) ≥ q+2 and 1 ≤ q′+1 ≤ q+1 ≤ j−v′, by 2.7 (2)

and (4) we have card (Z1,j) = 0 and card (Z2,j) = (q′− j+ v)p+ r′− 1.
Therefore hj = (q′ − j + v)p+ r′ − 1.
(5) Since j − (v′ − 1) ≥ q+ 2 and j − (v− 1) ≥ q′ + 2, by 2.7 (2) and

(4) we have card (Z1,j) = 0 and (Z2,j) = 0. Therefore, hj = 0.

3.4 Proposition. Suppose that j ∈ J222. Then hj = 0.

Proof. Since j− (v′−1) ≥ j−v+1 ≥ q+2 ≥ q′+2 by 2.7 (2) and (4)
we have card (Z1,j) = 0 and card (Z2,j) = 0. Therefore, hj = 0.

3.5 Proposition. Let j ∈ N.

(1) hj �= 0 for all j ∈ J1 ∪ J21.

(2) Suppose that v′ < v.

(a) If v + q′ < v′ + q, then

hj =




0 if j > v′ + q,

r − 1 if j = v′ + q,

p+ r + r′ − 2 if j = v′ + q − 1 and

v + q′ = v′ + q − 1,
p+ r − 1 if j = v′ + q − 1 and

v + q′ < v′ + q − 1.



300 D.P. PATIL AND G. TAMONE

(b) If v + q′ ≥ v′ + q, then

hj =




0 if j > v + q′,
r + r′ − 2 if j = v + q′ and

v + q′ = v′ + q,
r′ − 1 if j = v + q′ and

v + q′ > v′ + q,
(q − q′ − w + 2)p
+r + r′ − 2 if j = v + q′ − 1 and

v′ + q′ + 1 ≤ v + q′ − 1 ≤ v′ + q,
p+ r′ − 1 if j = v + q′ − 1 and

v′ + q + 1 ≤ v + q′ − 1.

(3) Suppose that v′ = v. Then

hj =



0 if j > v + q,
r − 1 if j = v + q,
p+ r − 1 if j = v + q − 1.

Proof. (1) is immediate from 3.1 and 3.2.

(2)(a) For j ∈ N, j ≥ v′ + q − 1, we have

j ∈




J2215 if j > v′ + q,
J2213 if j = v′ + q,
J2212 if j = v′ + q − 1 and

v + q′ = v′ + q − 1,
J2213 if j = v′ + q − 1 and

v + q′ < v′ + q − 1.

Therefore the assertion follows from 3.3.
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(b) For j ∈ N, j ≥ v + q′ − 1, we have

j ∈




J2215 if j > v + q′,
J2212 if j = v + q′ and v + q′ = v′ + q,
J2214 if j = v + q′ and v + q′ > v′ + q,
J2212 if j = v + q′ − 1 and

v′ + q′ + 1 ≤ v + q′ − 1 ≤ v′ + q,
J2214 if j = v + q′ − 1 and

v′ + q + 1 ≤ v + q′ − 1.

Therefore the assertion follows from 3.3.

(3) Since v′ = v, w = 0 and for j ∈ N, j ≥ v + q − 1, we have

j ∈




J2215 if j > v + q,
J2211 if j = v + q and q′ = q,
J2213 if j = v + q and q′ < q,
J2211 if j = v + q − 1 and q′ ≥ q − 1,
J2213 if j = v + q − 1 and q′ < q − 1.

Therefore the assertion follows from 3.3.

3.6 Corollary. Let p, d,m ∈ N+, mi = m + id for i = 0, . . . , p
and n any positive integer with gcd (m, d, n) = 1. Let K be a field,
A := K[[Tm0 , . . . , Tmp , Tn]] ⊆ K[[T ]] and let m be the maximal ideal
of A. Suppose that m0 < n, µ �= 0 (see 2.3) and grm(A) is Cohen-
Macaulay. Then the degree deg hA of the h-polynomial is

deg hA
=




v′ + q − 1 if v′ < v, v + q′ < v′ + q and r = 1,
v′ + q if v′ < v, v + q′ < v′ + q and r �= 1,
max{q, v + q′ − 1} if v′ < v, v + q′ = v′ + q, r = 1 and r′ = 1,
max{q, v + q′} if v′ < v, v + q′ = v′ + q and

either r �= 1 or r′ �= 1,
max{q, v + q′ − 1} if v′ < v, v + q′ > v′ + q and r′ = 1,
max{q, v + q′} if v′ < v, v + q′ > v′ + q and r′ �= 1,
v + q − 1 if v′ = v and r = 1,
v + q if v′ = v and r �= 1.
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Now we give examples to illustrate the use of 3.1, 3.2, 3.3, 3.4 and
3.6 to compute the h-polynomial and its degree. Note that in each of
the following examples grm(A) is the Cohen-Macaulay (since in each of
them, we have m0 < n and µ �= 0, we can use [4, Theorem (3.4)] and
just need to verify the inequalities λ+ w ≥ q + 1 and v ≤ µ+ qz + 1).

3.7 Example (see [5, Corollary (1.10)]). Let a be an integer ≥ 2,
p, b ∈ N, p ≥ 1, b ∈ [0, p], m := a(p + 1) + b, d an integer ≥ 1 with
gcd (m, d) = 1 and let mi := m + id for i = 0, 1, . . . , p + 1. Note that
we are taking n := mp=1. Then

u = p+ 1, λ = 1, w = 1, q = 1, r = 1,

v =
{

a if b = 0,

a+ 1 if b �= 0,

µ = d+ a, z =
{ 0 if b = 0,

p+ 1− b if b �= 0, ,

v′ = v − w = v − 1 =
{

a− 1 if b = 0,

a if b �= 0,

u′ = u− z =
{

u if b = 0,

b if b �= 0,

q′ =
{ 1 if b = 0,

0 if b �= 0, r′ =
{ 1 if b = 0,

b if b �= 0.



3.
7.

1
C

as
e:

b
=

0

J
1

=
[0

,a
−

1
]

J
1
1

=
[0

,1
]

J
1
2

=
∅

J
1
3

=
∅

J
1
4

=
[2

,a
−

1
]

J
1
5

=
∅

J
1
6

=
∅

h
0

=
1
,

h
j

=
p

+
1
,

h
1

=
p

+
1

2
≤

j
≤

a
−

1

J
2

=
[a

,∞
)

J
2
1

=
∅

J
2
1
1

=
∅

J
2
1
2

=
∅

J
2
1
3

=
∅

J
2
1
4

=
∅

J
2
2

=
[a

,∞
)

J
2
2
1

=
[a

,a
+

1
]

J
2
2
2

=
[a

+
2
,∞

)

J
2
2
1
1

=
{a

}
J
2
2
1
2

=
∅

J
2
2
1
3

=
∅

J
2
2
1
4

=
{a

+
1
}

J
2
2
1
5

=
∅

h
a

=
p

h
a
+

1
=

0
h

j
=

0
,

j
≥

a
+

2

h
A

=
d
eg

h
A

=

1
+

∑
a
−

1

j
=

1
(p

+
1
)Z

j
+

p
Z

a
a

=
m

a
x
{q

,v
+

q
′ −

1
}

3.
7.

2
C

as
e:

b
�=

0

J
1

=
[0

,
a
]

J
1
1

=
{0

}
J
1
2

=
{1

}
J
1
3

=
∅

J
1
4

=
[2

,
a
]

J
1
5

=
∅

J
1
6

=
∅

h
0

=
1
,

h
1

=
p

+
1

h
j

=
p

+
1
,

2
≤

j
≤

a

J
2

=
[a

+
1
,
∞

)

J
2
1

=
∅

J
2
1
1

=
∅

J
2
1
2

=
∅

J
2
1
3

=
∅

J
2
1
4

=
∅

J
2
2

=
[a

+
1
,
∞

)
J
2
2
1

=
[a

+
1
,
a

+
2
]

J
2
2
2

=
[a

+
3
,
∞

)

J
2
2
1
1

=
∅

J
2
2
1
2

=
{a

+
1
}

J
2
2
1
3

=
∅

J
2
2
1
4

=
∅

J
2
2
1
5

=
{a

+
2
}

h
a
+

1
=

b
−

1
h

a
+

2
=

0
h

j
=

0
,

j
≥

a
+

3

h
A

=
d
e
g

h
A

=

1
+

∑
a j
=

1
(p

+
1
)Z

j
+

(b
−

1
)Z

a
+

1
{

a
=

m
a
x
{q

,
v

+
q
′ −

1
},

if
b

=
1
,

a
+

1
=

m
a
x
{q

,
v

+
q
′ }

,
if

b
≥

2
.



3.
8

E
x
am

p
le

.
L
et

a
be

an
in

te
ge

r
≥

2,
p
∈

N
,

p
≥

1,
m

i
:=

2a
(2

p
+

1)
−

p
+

i
fo

r
i

=
0,

1,
..

.
,p

,
an

d
le

t
n

:=
m

0
+

2p
+

1.
T

he
n

u
=

2p
+

1,
λ

=
2,

w
=

1,
q

=
2,

r
=

1,
v

=
2a

,µ
=

2a
,z

=
p
,v

′ =
v
−w

=
v
−1

=
2a

−1
,
u
′ =

u
−z

=
p
+

1,
q′

=
1,

r′
=

1.

J
1

=
[0

,2
a
−

1
]

J
1
1

=
[0

,1
]

J
1
2

=
{2

}
J
1
3

=
∅

J
1
4

=
[3

,2
a
−

1
]

J
1
5

=
∅

J
1
6

=
∅

h
0

=
1
,

h
2

=
2
p

+
1

h
j

=
2
p

+
1
,

h
1

=
p

+
1

3
≤

j
≤

2
a
−

1

J
2

=
[2

a
,∞

)

J
2
1

=
∅

J
2
1
1

=
∅

J
2
1
2

=
∅

J
2
1
3

=
∅

J
2
1
4

=
∅

J
2
2

=
[2

a
,∞

)
J
2
2
1

=
[2

a
,2

a
+

2
]

J
2
2
2

=
[2

a
+

3
,∞

)

J
2
2
1
1

=
{2

a
}

J
2
2
1
2

=
{2

a
+

1
}

J
2
2
1
3

=
∅

J
2
2
1
4

=
∅

J
2
2
1
5

=
{2

a
+

2
}

h
a

=
2
p

h
2
a
+

1
=

0
h
2
a
+

2
=

0
h

j
=

0
,

j
≥

2
a

+
3

h
A

=
d
eg

h
A

=

1
+

(p
+

1
)Z

+
∑

2
a
−

1

j
=

2
(2

p
+

1
)Z

j
+

2
p
Z

2
a

2
a

=
m

a
x
{q

,v
+

q
′ −

1
}



3.
9

E
x
am

p
le

.
L
et

p
,r

,q
,v

∈
N

,
p
≥

r
≥

1,
v

>
q
≥

2,
m

i
:=

(v
−1

)(
qp

+
r)

+
i+

1
fo

r
i
=

0,
1,

..
.
,p

,
an

d
le

t
n

:=
v
(q

p
+

r)
+

1.
T

he
n

u
=

qp
+

r,
λ

=
q,

w
=

1,
µ

=
v
−q

,
z

=
qp

+
r
−1

,
v
′ =

v
−w

=
v
−1

,
u
′ =

1,
q′

=
0,

r′
=

1.

J
1
=

[0
,v

−
1
]

J
1
1
=
{0

}
J
1
2
=

[1
,q

]
J
1
3
=

∅
J
1
4
=

[q
+

1
,v

−
1
]

J
1
5
=

∅
J
1
6
=

∅

h
0
=

1
h

j
=

jp
+

1
,

h
j
=

q
p
+

r
,

1
≤

j
≤

q
q
+

1
≤

j
≤

v
−

1

J
2
=

[v
,∞

)

J
2
1
=

∅
J
2
1
1
=

∅
J
2
1
2
=

∅
J
2
1
3
=

∅
J
2
1
4
=

∅

J
2
2
=

[v
,∞

)
J
2
2
1
=

[v
,v

+
q
]

J
2
2
2
=

[v
+

q
+

1
,∞

)

J
2
2
1
1
=

∅
J
2
2
1
2
=
{v

}
J
2
2
1
3
=

[v
+

1
,v

′ +
q
]

J
2
2
1
4
=

∅
J
2
2
1
5
=
{v

+
q
}

h
v
=

(q
−

1
)p

+
r
−

1
h

j
=

(q
−

j
+

v
′ )

p
+

r
−

1
,

h
v
+

q
=

0
h

j
=

0
,

v
+

1
≤

j
≤

v
′ +

q
j
≥

q
+

3

h
A

=
d
eg

h
A

=

1
+

∑
q j
=

1
(j

p
+

1
)Z

j
+

∑
v
−

1

j
=

q
+

1
(q

p
+

r
)Z

j
{

v
+

q
−

2
=

v
′ +

q
−

1
,

if
r

=
1
,

v
+

q
−

1
=

v
′ +

q
,

if
r
�=

1
.

+
[(

q
−

1
)p

+
r
−

1
]Z

v

+
∑

v
+

q
−

1

j
=

v
+

1
[(

q
−

j
+

v
′ )

p
+

r
−

1
]Z

j



3.
10

E
x
am

p
le

.
L
et

p
,r

,q
,d

,q
′′ ,

r′
′

be
po

si
ti

ve
in

te
ge

rs
w

it
h

p
≥

r
≥

r′
′
≥

1,
d

:=
q′

′ p
+

r′
′ a

nd
q

>
3d

.
L
et

m
:=

m
0

:=
(q

p
+

r)
d

an
d

n
:=

m
+

d
+

1.
T

he
n

u
=

qp
+

r,
λ

=
q+

2,
w

=
0,

v
=

d
,µ

=
d−

q′
′ −1

,z
=

d+
1,

v
′ =

v
=

d
,u

′ =
u−

z
=

(q
−q

′′ )
p+

(r
−r

′′ )
+

1,
q′

=
q
−q

′′ ,
r′

=
r
−r

′′ +
1.

J
1
=

[0
,d

−
1
]

J
1
1
=

[0
,d

−
1
]

J
1
2
=

∅
J
1
3
=

∅
J
1
4
=

∅
J
1
5
=

∅
J
1
6
=

∅

h
j
=

jp
+

1

0
≤

j
≤

d
−

1

J
2
=

[d
,∞

)

J
2
1
=

[d
,q

]
J
2
1
1
=

[d
,q

′ ]
J
2
1
2
=

(q
′ ,

q
]

J
2
1
3
=

∅
J
2
1
4
=

∅

h
j
=

d
p
,

h
j
=

d
p
,

d
≤

j
≤

q
′

q
′ <

j
≤

q

J
2
2

=
J
2
2
1
=

[q
+

1
,d

+
q
]

J
2
2
2

=

[q
+

1
,∞

)
[d

+
q
+

1
,∞

)

J
2
2
1
1
=

[q
+

1
,d

+
q
′ ]

J
2
2
1
2
=

∅
J
2
2
1
3
=

[d
+

q
′ +

1
,d

+
q
]

J
2
2
1
4
=

∅
J
2
2
1
5
=

∅

h
j
=

(q
−

j
+

d
)p

+
r
−

1
h

j
=

(q
−

j
+

d
)p

+
r
−

1
,

h
j
=

0
,

q
+

1
≤

j
≤

d
+

q
′

d
+

q
′ +

1
≤

j
≤

d
+

q
j
≥

d
+

q
+

1

h
A

=
d
eg

h
A

=
∑

d
−

1

j
=

0
(j

p
+

1
)Z

j
+

∑
q j
=

d
(d

p
)Z

j
{

d
+

q
−

1
=

v
+

q
−

1
,

if
r
=

1
,

d
+

q
=

v
+

q
,

if
r
�=

1
.

+
∑

d
+

q
′

j
=

q
+

1
[(

q
−

j
+

d
)p

+
(r
−

1
)]

Z
j

+
∑

d
+

q

j
=

d
+

q
′ +

1
[(

q
−

j
+

d
)p

+
(r
−

1
)]

Z
j



ON THE H-POLYNOMIAL OF CERTAIN CURVES 307

Acknowledgments. Part of this work was done while the first au-
thor was visiting the Department of Mathematics, Genova University,
Genova, Italy, and the final manuscript was written during the DAAD
sponsored visit of the first author at the Department of Mathemat-
ics, Ruhr Universität Bochum, Germany. The first author thanks both
the Departments for their hospitality and gives special thanks to Dr.
Hartmut Wiebe for helping to draw the picture using Corel-Draw.

REFERENCES

1. J. Elias, On the conjecture of Sally on the Hilbert function for curve singular-
ities, J. Algebra 160 (1993), 42 49.

2. J. Elias, M.E. Rossi and G. Valla, On the coefficients of the Hilbert polynomial,
J. Pure Appl. Algebra 108 (1996), 35 60.

3. A. Garcia, Cohen-Macaulayness of the associated graded ring of a semigroup
ring, Comm. Algebra 10 (1982), 393 415.

4. S. Molinelli, D.P. Patil and G. Tamone, On the Cohen-Macaulayness of
the associated graded ring of certain monomial curves, Beiträge zur Algebra und
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