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A NOTE ON THE CURVE
Y 2 = (X + p)(X2 + p2)

ALLAN J. MACLEOD

ABSTRACT. It is shown that infinite order rational points,
on the curves of the title, can be found for p ≡ 7 mod 8
by adapting a Heegner point computation used by Elkies
for congruent numbers. It is possible to find points with
extremely large height in a matter of minutes.

1. Introduction. In [4], Stroeker and Top present a detailed
analysis of the family of elliptic curves

(1) Ep : y2 = (x+ p)(x2 + p2)

with p prime. They show that the curve has rank 0 if p = 2 and
p ≡ ±3 mod 8. On the basis of the Birch and Swinnerton-Dyer
conjecture, they find that rank Ep is 1 if p ≡ 7 mod 8, and 1 or 3
if p ≡ 1 mod 8.

The later sections of the paper are devoted to the problem of con-
structing generators for the rank 1 or 3 curves. Numerical evidence is
given to show that the heights of such generators can be quite large,
especially for p ≡ 7 mod 8. The authors describe a descent procedure
suitable for points with small heights but state that it failed for larger
heights. They then describe a specialized descent provided by Bremner
which they used for the difficult points. We quote the following state-
ment “In the following lines we shall only give an outline, as the details
are rather messy.”

The present author performed the height calculations for a much
larger set of p-values and found some enormous heights. For example,
p = 3167 gives an estimated height of 511.3. It would be anticipated
that even Bremner’s method might struggle for such points.

In this note we wish to point out that we can apply a variant of the
method used by Elkies [1] for the congruent number problem. This
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allows us to calculate points on Ep, which have a very large height, in
minutes.

2. Method. The method used is an application of the techniques
used by Elkies, with the following specific differences.

Firstly, we use the transformations y = wp
√−p and x = −pz to show

that Ep is isomorphic to

(2) E : w2 = z3 − z2 + z − 1
over the field Q(

√−p). In this field, the prime 2 splits if p ≡ 7 mod 8,
which we now assume.

The curve E is modular with rank 0 and conductor 128, so that

φ(τ ) =
∞∑

n=1

anq
n,

with q = exp(2πiτ), is a modular form of weight 2 for Γ0(128).

To compute the ai terms in the congruent number case, there is an
expansion involving the Dedekind η function, but this does not occur in
the current problem, so we must compute the coefficients directly from
the elliptic curve E. This can be time-consuming for a large number
of coefficients, but need only be done once. It should be noted that
ai = 0 for i even, so we only need to compute for odd i.

For each ideal class in Q(
√−p), we have to compute a Heegner

point, which can be done by manipulations of the underlying primitive
quadratic forms. This is not as trivial as a reading of Elkies might
suggest. The algorithmic paper of Stephens [3] also does not describe
how to do the computation. There is, however, an excellent analysis
and algorithm in the first chapter of Liverance’s Ph.D. thesis [2].

We then need to evaluate the images of these Heegner points under
the modular parametrization X0(128)→ E, given by the formula

(3) I(τ ) =
∞∑

n=1

an

n
qn

with q = exp(2πiτ). The following properties hold

(4) I(τ + 1/2) = −I(τ ), I(−1/128τ ) + I(τ ) = 2I(i/
√
128)
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the second of which means that we use (3) with τ if |τ | ≥ 1/
√
128, and

with −1/128τ otherwise.
The remainder of the computations are identical to those described

by Elkies.

3. Liverance’s method. At the suggestion of the referee, we now
describe the basic steps of the method given in Eric Liverance’s thesis.

Let N be the conductor of the underlying elliptic curve, and let
(A,B,C) denote a primitive quadratic form, representing an ideal class
in Q(

√−d).
Let ρ be an integer satisfying ρ2 ≡ ∆ mod 4N , with ∆ the discrim-

inant of the quadratic field. If such an integer does not exist, neither
do the Heegner points. For moderately sized conductors N , ρ can be
found easily by a simple search.

The Heegner point for this class can be represented by an equivalent
quadratic form (A′, B′, C ′) with A′ ≡ 0 mod N and B′ ≡ ρ mod 2N .
We thus need to find an integer matrix

(
α β
γ δ

)

with determinant 1, such that

(5)
A′ = Aα2 +Bαγ + Cγ2

B′ = 2Aαβ +B(αδ + βγ) + 2Cγδ
C ′ = Aβ2 +Bβδ + Cδ2

Liverance shows that, if α and γ satisfy

(6)
(
A B+ρ

2
B−ρ

2 C

) (
α
γ

)
=

(
0
0

)
mod N

then A′ and B′ satisfy the required congruences.

He shows that a solution exists with gcd (α, γ) = 1, which leads
to easily finding β and δ. If N is of moderate size, a simple search
procedure finds these values quickly.
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From the quadratic form (A′, B′, C ′) we compute I(τ ) with τ =
(−B′ +

√
∆)/2A′).

4. Results. The above method was initially programmed in
UBASIC to allow easy algorithmic development and run on a variety of
PCs. Obviously, as the projected height of a rational point increases,
the required precision needs to increase which implies that the number
of ai values will need to increase.

To show that the method works we present the results for p =
983 and p = 3167, with all computations on a 500 MHz laptop.
Initial computations, using the Birch and Swinnerton-Dyer conjecture,
suggest the height of the generator for p = 983 is 180.9 (or 361.8 using
the alternative height normalization), and that this is the largest height
for p < 1000.

For p = 983, UBASIC was used with approximately 400 digits of
precision and 90000 terms in the expansion (3). The resulting point
has 158 digits in the numerator and 154 in the denominator, and took
231 secs to find. To present the results in a slightly more accessible
form, we define z = x+ p so that Ep can be given in the form

y2 = z(z2 − 2pz + 2p2).

For points on this curve we have z = du2/v2 with d squarefree and
d|2p. We find d = 2 and

u = 3085 71914 43709 39902
33433 99991 88834 72641 67331 15053
73245 14611 90376 17889 71942 65438

v = 63 69985 26667 08251
29230 73741 10006 03633 98297 61221
87572 91823 10442 21945 71135 75137

For p = 3167, the precision limitations on complex numbers in
UBASIC meant that the program failed. We wrote an equivalent code
in Pari (the code is available upon request by e-mail to the author) and
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ran it with 1500 digits of precision and 400000 terms in I(τ ). The run
took 10 hours and 1 minute to find the point with d = 2 and

u = 69 01613 10202 52680 42405
73517 04507 63661 42083 83406 42504 63908 40041
79732 68216 72661 23502 59096 15251 66074 00849
65335 84997 43546 70249 99551 51546 76605 89090
56942 40602 77475 94442 58760 98468 39122 68927
15778 61022 52820 20110 84837 62369 70802 35492

v = 2 02726 63074 73110 52096
03134 18523 58835 54466 14932 93926 35340 01680
89379 22475 30662 78033 19210 50588 56975 76843
83369 38746 35241 51903 40483 66031 49779 08497
60995 59565 56180 46331 68128 10248 79111 32631
56201 21667 96054 09502 91256 82388 75524 25031
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