A CRITERION FOR LINEAR INDEPENDENCE OF SERIES

JAROSLAV HANČL

ABSTRACT. The paper establishes a criterion for linear independence of infinite series which consist of rational numbers. A criterion for irrationality is obtained as a consequence.

1. Introduction. There are many papers concerning the algebraic independence of infinite series. Among them we can cite Töpfer [14], Loxton and Poorten [11] and Kubota [10]. A nice survey of results of this kind can be found in the book of Nishioka [12].

Other results of this nature include the linear independence of logarithms of special rational numbers which can be found in Sorokin [13] and Bezivin's result in [3] which proves linear independence of roots of special functional equations.

A special case of linear independence is irrationality. In [1] Badea proved the following theorem.

Theorem 1.1. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences of positive integers such that, for every large n,

$$a_{n+1} > \frac{b_{n+1}}{b_n} a_n^2 - \frac{b_{n+1}}{b_n} a_n + 1.$$

Then the series $\sum_{n=1}^{\infty} \frac{b_n}{a_n}$ is an irrational number.

This result is improved in [2]. Another criterion of irrationality was proved by Duverney in [6]. In 1992 in [4] Borwein proved that the series $\sum_{n=1}^{\infty} \frac{1}{q^n+r}$ is irrational and not Liouville whenever q is an integer $(q \neq 0, \pm 1)$ and r is a nonzero rational number $(r \neq q^n)$. The same author together with Zhou in [5] proved the following theorem.

AMS Mathematics Subject Classification. 11J72. Supported by grants no. 201/01/0471 and no. 201/04/0393 of the Czech Grant Agency.

Theorem 1.2. Let q be an integer greater than one and r and s any positive rationals such that $1 + q^m r - q^{2m} s \neq 0$ for all integers $m \geq 0$. Then the series

$$\sum_{j=0}^{\infty} \frac{1}{1 + q^j r - q^{2j} s}$$

is irrational and is not a Liouville number.

In 1968 in [8] Erdös and Strauss proved the following two theorems.

Theorem 1.3. Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of positive integers. Assume that

$$\limsup_{k \to \infty} \frac{n_k^2}{n_{k+1}} \le 1$$

and

$$\limsup_{k \to \infty} \frac{N_k}{n_{k+1}} \left(\frac{n_{k+1}^2}{n_{k+2}} - 1 \right) \le 0.$$

Then $\sum_{k=1}^{\infty} 1/n_k$ is irrational except when $n_{k+1} = n_k^2 - n_k + 1$ for all $k \geq k_0$ where N_k is the least common multiple of n_1, \ldots, n_k .

Theorem 1.4. Let $\{a_n\}_{n=1}^{\infty}$, $n \ge 1$, be a sequence of positive integers such that

$$a_{n+1} \ge a_1 a_2 \dots a_n$$

for each n. Furthermore, assume that, for every C>0 there is a natural number n>C with the property that

$$a_{n+1} \neq a_n^2 - a_n + 1.$$

Then $\sum_{n=1}^{\infty} 1/a_n$ is an irrational number.

Later Erdös in [7] proved

Theorem 1.5. Let $n_1 < n_2 < \cdots$ be an infinite sequence of positive integers satisfying

$$\limsup_{k\to\infty} n_k^{1/2^k} = \infty$$

and

$$n_k > k^{1+\varepsilon}$$

for fixed $\varepsilon > 0$ and for every $k > k_0(\varepsilon)$. Then

$$\alpha = \sum_{k=1}^{\infty} \frac{1}{n_k}$$

is irrational.

If the series tends to infinity very fast, then we can define the so-called linearly unrelated sequences.

Definition 1.1. Let $\{a_{i,n}\}_{n=1}^{\infty}$, $i=1,\ldots,K$, be the sequences of positive real numbers. If for every sequence $\{c_n\}_{n=1}^{\infty}$ of positive integers the numbers $\sum_{n=1}^{\infty} 1/(a_{1,n}c_n), \sum_{n=1}^{\infty} 1/(a_{2,n}c_n), \ldots, \sum_{n=1}^{\infty} 1/(a_{K,n}c_n)$ and 1 are linearly independent, then the sequences $\{a_{i,n}\}_{n=1}^{\infty}$, $i=1,\ldots,K$, are linearly unrelated.

This definition can be found in [9] where we also find the following theorem.

Theorem 1.6. Let $\{a_{i,n}\}_{n=1}^{\infty}, \{b_{i,n}\}_{n=1}^{\infty}, i = 1, \dots, K-1, be$ sequences of positive integers, and let $\varepsilon > 0$ be a real number such that

$$\frac{a_{1,n+1}}{a_{1,n}} \ge 2^{K^{n-1}}, \ a_{1,n}/a_{1,n+1} \quad (a_{1,n} \ divides \ a_{1,n+1})$$

$$b_{i,n} < 2^{K^{n-(\sqrt{2}+\varepsilon)\sqrt{n}}}, \quad i = 1, \dots, K-1,$$

$$\lim_{n \to \infty} \frac{a_{i,n}b_{j,n}}{b_{i,n}a_{j,n}} = 0 \quad \text{for all } j, i \in \{1, \dots, K-1\}, \quad i > j,$$

and

$$a_{i,n} 2^{-K^{n-(\sqrt{2}+\varepsilon)\sqrt{n}}} < a_{1,n} < a_{i,n} 2^{K^{n-(\sqrt{2}+\varepsilon)\sqrt{n}}}, \quad i = 1, \dots, K-1$$

hold for every sufficiently large natural number n. Then the sequences $\{\frac{a_{i,n}}{b_{i,n}}\}_{n=1}^{\infty}$, $i=1,\ldots,K-1$, are linearly unrelated.

The main result of this paper is a criterion for linear independence of series of rational numbers and one which is in Section 2. In Section 3 we

give reasons why it is impossible to prove that the relevant sequences are linearly unrelated, and we also give a criterion for a series to be irrational.

2. Main result.

Theorem 2.1. Let K be a positive integer, and let α , ε , A_1 and A_2 be positive real numbers such that $0 < \alpha < 1$, $1 \le A_1 < A_2$. Let $\{a_{i,n}\}_{n=1}^{\infty}$ and $\{b_{i,n}\}_{n=1}^{\infty}$, $i = 1, \ldots, K$, be sequences of positive integers such that $\{a_{1,n}\}_{n=1}^{\infty}$ is nondecreasing and

(1)
$$\limsup_{n \to \infty} a_{1,n}^{1/(K+1)^n} = A_2,$$

(2)
$$\lim_{n \to \infty} \inf a_{1,n}^{1/(K+1)^n} = A_1,$$

$$(3) a_{1,n} \ge n^{1+\varepsilon},$$

(4)
$$b_{i,n} < 2^{(\log_2 a_{1,n})^{\alpha}}, \quad i = 1, \dots, K,$$

(5)
$$\lim_{n \to \infty} \frac{a_{i,n} b_{j,n}}{b_{i,n} a_{j,n}} = 0 \quad \text{for all } j, i \in \{1, \dots, K\}, \quad i > j,$$

and

(6)
$$a_{i,n} 2^{-(\log_2 a_{1,n})^{\alpha}} < a_{1,n} < a_{i,n} 2^{(\log_2 a_{1,n})^{\alpha}}, \quad i = 2, \dots, K$$

hold for every sufficiently large natural number n. Then the series $\sum_{n=1}^{\infty} \frac{b_{1,n}}{a_{1,n}}, \ldots, \sum_{n=1}^{\infty} \frac{b_{K,n}}{a_{K,n}}$ and the number 1 are linearly independent over the rational numbers.

Proof. We start in the usual way. Assume that there is a K-tuple of integers $\beta_1, \beta_2, \ldots, \beta_K$ (not all equal to zero) such that the sum

(7)
$$\beta = \sum_{j=1}^{K} \beta_j \sum_{n=1}^{\infty} \frac{b_{j,n}}{a_{j,n} c_n}$$

is a rational number. Let R be a maximal index such that $\beta_R \neq 0$. This and (7) imply

(8)
$$\beta = \sum_{j=1}^{K} \beta_j \sum_{n=1}^{\infty} \frac{b_{j,n}}{a_{j,n}c_n} = \sum_{n=1}^{\infty} \sum_{j=1}^{R} \beta_j \frac{b_{j,n}}{a_{j,n}c_n} = \sum_{n=1}^{\infty} \frac{b_{R,n}}{a_{R,n}c_n} \left(\sum_{j=1}^{R-1} \beta_j \frac{b_{j,n}a_{R,n}}{a_{j,n}b_{R,n}} + \beta_R \right).$$

From this and (5) we obtain that the number

$$\sum_{j=1}^{R-1} \beta_j \, \frac{b_{j,n} a_{R,n}}{a_{j,n} b_{R,n}}$$

is sufficiently small. From this and (8) we can assume, without loss of generality, that

(9)
$$\sum_{i=1}^{K} \beta_i \frac{b_{i,n}}{a_{i,n}} > 0$$

for every sufficiently large n. Let a and b be integers such that b > 0 and $\beta = a/b$. Then, from (7) and (9), we obtain that

$$B_N = \left(a - b \sum_{i=1}^K \beta_i \sum_{n=1}^{N-1} \frac{b_{i,n}}{a_{i,n}}\right) \prod_{n=1}^{N-1} \prod_{i=1}^K a_{i,n}$$
$$= b \left(\prod_{n=1}^{N-1} \prod_{i=1}^K a_{i,n}\right) \sum_{i=1}^K \beta_i \sum_{n=N}^{\infty} \frac{b_{i,n}}{a_{i,n}}$$

is a positive integer for every sufficiently large N. This implies that

(10)
$$1 \le Q_1 \left(\prod_{n=1}^{N-1} \prod_{i=1}^K a_{i,n} \right) \sum_{i=1}^K \sum_{n=N}^{\infty} \frac{b_{i,n}}{a_{i,n}}$$

holds for every sufficiently large N, where Q_1 is a suitable positive real constant, which does not depend on N. From (1) we obtain that, for every sufficiently large n,

$$(11) a_{1,n} < (2A_2)^{(K+1)^n}.$$

Now (4), (6), (10) and (11) imply
$$1 \leq Q_{1} \left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i,n} \right) \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i,n}}{a_{i,n}}$$

$$\leq Q_{2} \left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{1,n} 2^{(\log_{2} a_{1,n})^{\alpha}} \right) \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{2^{(\log_{2} a_{1,n})^{\alpha}}}{a_{1,n} 2^{-(\log_{2} a_{1,n})^{\alpha}}}$$

$$\leq Q_{2} \left(\prod_{n=1}^{N-1} a_{1,n} \right)^{K} 2^{K} \sum_{n=1}^{N-1} (\log_{2} a_{1,n})^{\alpha} K \sum_{n=N}^{\infty} \frac{2^{2(\log_{2} a_{1,n})^{\alpha}}}{a_{1,n}}$$

$$\leq Q_{3} \left(\prod_{n=1}^{N-1} a_{1,n} \right)^{K} 2^{K} \sum_{n=1}^{N-1} (\log_{2} (2A_{2})^{(K+1)^{n}})^{\alpha} \sum_{n=N}^{\infty} \frac{2^{2(\log_{2} a_{1,n})^{\alpha}}}{a_{1,n}}$$

$$\leq Q_{3} \left(\prod_{n=1}^{N-1} a_{1,n} \right)^{K} 2^{\log_{2} (2A_{2})(K+1)^{N_{\alpha}}} \sum_{n=N}^{\infty} \frac{2^{2(\log_{2} a_{1,n})^{\alpha}}}{a_{1,n}}$$

where Q_2 , Q_3 and γ are suitable positive real constants which do not depend on N and $1 > \gamma > \alpha$. Let $S_n = a_{1,n}^{1/(K+1)^n}$. Now the proof falls into two cases.

1. First assume that, for every sufficiently large n,

 $\leq \bigg(\prod_{i=1}^{N-1} a_{1,n}\bigg)^{K} 2^{(K+1)^{N\gamma}} \sum_{m=-N}^{\infty} \frac{2^{(\log_{2} a_{1,n})^{\gamma}}}{a_{1,n}},$

$$(13) a_n \ge 2^n.$$

Then (13) and the fact that the function $2^{(\log_2 x)^{\gamma}} x^{-1}$ is decreasing for sufficiently large x imply

(14)

$$\begin{split} \sum_{n=N}^{\infty} \frac{2^{(\log_2 a_{1,n})^{\gamma}}}{a_{1,n}} &= \sum_{n \leq \log_2 a_{1,N}} \frac{2^{(\log_2 a_{1,n})^{\gamma}}}{a_{1,n}} + \sum_{n > \log_2 a_{1,n}} \frac{2^{(\log_2 a_{1,N})^{\gamma}}}{a_{1,n}} \\ &\leq \frac{2^{2(\log_2 a_{1,N})^{\gamma}}}{a_{1,N}} + \sum_{n > \log_2 a_{1,N}} \frac{2^{(\log_2 2^n)^{\gamma}}}{2^n} \\ &= \frac{2^{2(\log_2 a_{1,N})^{\gamma}}}{a_{1,N}} + \sum_{n > \log_2 a_{1,N}} \frac{1}{2^{n-n^{\gamma}}} \\ &\leq \frac{2^{2(\log_2 a_{1,N})^{\gamma}}}{a_{1,N}} + C \frac{1}{2^{\log_2 a_{1,N} - (\log_2 a_{1,N})^{\gamma}}} \leq \frac{2^{(\log_2 a_{1,N})^{\omega}}}{a_{1,N}}, \end{split}$$

for sufficiently large N, where ω and C are positive real constants which do not depend on N and such that $1 > \omega > \gamma$.

For a sufficiently small positive real number δ , it follows from (1) and (2) that there exists a positive integer s_0 which is sufficiently large such that for every $n \geq s_0$,

$$\max(1, A_1 - \delta) < S_n < A_2 + \delta.$$

This implies that for every $n \geq s_0$

(15)
$$\max(1, (A_1 - \delta))^{(K+1)^n} < a_{1n} < (A_2 + \delta)^{(K+1)^n}.$$

Let s_1 be the least positive integer greater than $(K+1)^{s_0+1}$ such that

$$\max(1, A_1 - \delta) < S_{s_1} < A_1 + \delta.$$

Then

(16)
$$\max(1, (A_1 - \delta))^{(K+1)^{s_1}} < a_{1,s_1} < (A_1 + \delta)^{(K+1)^{s_1}}.$$

Let s_2 be the least positive integer greater than s_1 such that

$$(17) A_2 - \delta < S_{s_2} < A_2 + \delta$$

and s_3 be the least positive integer greater than s_1 such that

(18)
$$S_{s_3} > (1 + (1/s_3^2)) \max_{s_1 < j < s_3} (S_j, A_2 - 2\delta)$$

and $s_1 < s_3 \le s_2$. Such a number s_3 must exist since otherwise using (17) we obtain

$$A_{2} - \delta < S_{s_{2}} < \left(1 + \frac{1}{s_{2}^{2}}\right) \max_{s_{1} \leq j < s_{2}} (S_{j}, A_{2} - 2\delta)$$

$$< \left(1 + \frac{1}{s_{2}^{2}}\right) \left(1 + \frac{1}{(s_{2} - 1)^{2}}\right) \max_{s_{1} < j < s_{2} - 1} (S_{j}, A_{2} - 2\delta) < \cdots$$

$$< \prod_{j=s_{1}}^{s_{2}} \left(1 + \frac{1}{j^{2}}\right) (A_{2} - 2\delta),$$

a contradiction for a sufficiently large s_0 .

From (11), (15), (16), (18) and the fact that δ is a sufficiently small positive number, we obtain (19)

$$\begin{split} a_{1,s_3} &= S_{s_3}^{(K+1)^{s_3}} > \left(1 + \frac{1}{s_3^2}\right)^{(K+1)^{s_3}} \left(\max_{s_1 \leq j < s_3} (S_j, A_2 - 2\delta)\right)^{(K+1)^{s_3}} \\ &\geq \left(1 + \frac{1}{s_3^2}\right)^{(K+1)^{s_3}} \max_{s_1 \leq j < s_3} (S_j, A_2 - 2\delta)^{K((K+1)^{s_3-1} + (K+1)^{s_3-2} + \dots + 1)} \\ &\geq \left(1 + \frac{1}{s_3^2}\right)^{(K+1)^{s_3}} \left(\prod_{j=s_1+1}^{s_3-1} a_{1,j}\right)^K (A_2 - 2\delta)^{K((K+1)^{s_1} + (K+1)^{s_1-1} + \dots + 1)} \\ &\geq \left(1 + \frac{1}{s_3^2}\right)^{(K+1)^{s_3}} \left(\prod_{j=1}^{s_3-1} a_{1,j}\right)^K \\ &\times \prod_{j=s_0} \left(\frac{(A_2 - 2\delta)^{(K+1)^j}}{a_{1,j}}\right)^K \frac{1}{(\prod_{j=1}^{s_0-1} a_{1,j})^K} \\ &\geq \left(1 + \frac{1}{s_3^2}\right)^{(K+1)^{s_3}} \left(\prod_{j=1}^{s_3-1} a_{1,j}\right)^K \left(\frac{A_2 - 2\delta}{A_1 + \delta}\right)^{K(K+1)^{s_1}} \\ &\times \prod_{j=s_0}^{s_1-1} \left(\left(\frac{A_2 - 2\delta}{A_2 + \delta}\right)^{(K+1)^j}\right)^K \frac{Q_4}{\prod_{j=1}^{s_0-1} (2A_2)^{K(K+1)^j}} \\ &\geq \left(1 + \frac{1}{s_3^2}\right)^{(K+1)^{s_3}} \left(\prod_{j=1}^{s_3-1} a_{1,j}\right)^K \\ &\times \left(\prod_{j=s_0}^{s_1-1} \left(\frac{(A_2 - 2\delta)^2}{(A_1 + \delta)(A_2 + \delta)}\right)^{(K+1)^j}\right)^K (3A_2)^{-(K+1)^{s_0+1}} \\ &\geq \left(1 + \frac{1}{s_3^2}\right)^{(K+1)^{s_3}} \left(\prod_{j=1}^{s_3-1} a_{1,j}\right)^K (3A_2)^{-s_3}, \end{split}$$

where Q_4 is a positive real constant which does not depend on s_0 . Now

from (11), (12), (14) and (19), we obtain

$$\begin{split} &1 \leq \bigg(\prod_{n=1}^{s_3-1} a_{1,n}\bigg)^K 2^{(K+1)^{\gamma s_3}} \sum_{n=s_3}^{\infty} \frac{2^{(\log_2 a_{1,n})^{\gamma}}}{a_{1,n}} \\ &\leq \bigg(\prod_{n=1}^{s_3-1} a_{1,n}\bigg)^K 2^{(K+1)^{\gamma s_3}} \frac{2^{(\log_2 a_{1,s_3})^{\omega}}}{a_{1,s_3}} \\ &\leq \bigg(\prod_{n=1}^{s_3-1} a_{1,n}\bigg)^K 2^{(K+1)^{\gamma s_3}} \frac{2^{(\log_2 (2A_2)^{(K+1)^{s_3}})^{\omega}}}{(1+(1/s_3^2))^{(K+1)^{s_3}} (\prod_{j=1}^{s_3-1} a_{1,j})^K (3A_2)^{-s_3}} \\ &= 2^{-(\log_2 (1+(1/s_3^2)))(K+1)^{s_3} + (K+1)^{\gamma s_3} + (\log_2 (2A_2))^{\omega} (K+1)^{\omega s_3} + \log_2 (3A_2) s_3} \,. \end{split}$$

a contradiction for a sufficiently large number s_3 .

2. Now assume that there exist infinitely many n such that

$$(20) a_n < 2^n.$$

Then (3) and the fact that the function $2^{(\log_2 x)^{\gamma}} x^{-1}$ is decreasing for a sufficiently large x imply

$$\sum_{n=N}^{\infty} \frac{2^{(\log_2 a_{1,n})^{\gamma}}}{a_{1,n}} = \sum_{n < a_{1,N}^{\alpha}} \frac{2^{(\log_2 a_{1,n})^{\gamma}}}{a_{1,n}} + \sum_{n > a_{1,N}^{\alpha}} \frac{2^{(\log_2 a_{1,n})^{\gamma}}}{a_{1,n}}$$

$$\leq \frac{2^{(\log_2 a_{1,n})^{\gamma} a_{1,N}^{\alpha}}}{a_{1,N}} + \sum_{n > a_{1,N}^{\alpha}} \frac{2^{(\log_2 n^{1+\varepsilon})^{\gamma}}}{n^{1+\varepsilon}}$$

$$\leq a_{1,N}^{\frac{\alpha-1}{2}} + \sum_{n > a_{1,N}^{\alpha}} \frac{1}{n^{1+\varepsilon/2}}$$

$$\leq a_{1,N}^{\frac{\alpha-1}{2}} + \frac{1}{(a_{1,N}^{\alpha})^{\varepsilon/3}} \leq a_{1,N}^{-B}$$

for a sufficiently large N, where B is a suitable positive real constant, which does not depend on N. On the other hand, let $A = (1 + A_2)/2 = (A_1 + A_2)/2$. From this and (1) we obtain that there is a sufficiently large k such that

$$(22) a_{1,k} > A^{(K+1)^k}.$$

Let k_0 be a greatest positive integer less than k such that (20) holds. Let k_1 be a least positive integer such that

(23)
$$S_{k_1} > \left(1 + \frac{1}{k_1^2}\right) \max_{k_0 \le j < k_1} S_j,$$

and $k_0 < k_1 \le k$. As in the previous case such a k_1 must exist, since, otherwise,

$$1 < A \le S_k < \left(1 + \frac{1}{k_1^2}\right) \max_{k_0 \le j < k_1} S_j$$

$$< \left(1 + \frac{1}{k_1^2}\right) \left(1 + \frac{1}{(k_1 - 1)^2}\right) \max_{k_0 \le j < k_1 - 1} S_j$$

$$< \dots < \prod_{j = k_1}^k \left(1 + \frac{1}{j^2}\right) S_{k_0},$$

a contradiction for a sufficiently large number k_0 . From (23) and the fact that the sequence $\{a_{1,n}\}_{n=1}^{\infty}$ is nondecreasing we obtain

(24)

$$\begin{split} a_{1,k_1} &= S_{k_1}^{(K+1)^{k_1}} > \left(1 + \frac{1}{k_1^2}\right)^{(K+1)^{k_1}} (\max_{k_0 \leq j < k_1} S_j)^{(K+1)^{k_1}} \\ &\geq \left(1 + \frac{1}{k_1^2}\right)^{(K+1)^{k_1}} (\max_{k_0 \leq j < k_1} S_j)^{K((K+1)^{k_1-1} + (K+1)^{k_1-2} + \dots + 1)} \\ &\geq \left(1 + \frac{1}{k_1^2}\right)^{(K+1)^{k_1}} \left(\prod_{j=1}^{k_1-1} a_{1,j}\right)^K \left(\prod_{j=1}^{k_0} a_{1,j}\right)^{-K} \\ &\geq \left(1 + \frac{1}{k_1^2}\right)^{(K+1)^{k_1}} \left(\prod_{j=1}^{k_1-1} a_{1,j}\right)^K 2^{-k_1^2}. \end{split}$$

The definition of k_1 implies that, for every N, $k_0 < N < k_1$,

$$S_N \le \left(1 + \frac{1}{N^2}\right) \max_{k_0 \le j < N} S_j.$$

Thus

(25)
$$S_N \le \left(\prod_{j=k_0}^N \left(1 + \frac{1}{j^2}\right)\right) S_{k_0} < C,$$

where C is a constant which depends on k_0 and C tends to 1 as k_0 tends to infinity. From (25) we obtain that for every $N = k_0, \ldots, k_1 - 1$,

$$a_{1,N} \le C^{(K+1)^n}.$$

This implies

(26)
$$\left(\prod_{j=1}^{k_1-1} a_{1,j} \right)^K = \left(\prod_{j=1}^{k_0-1} a_{1,j} \right)^K \left(\prod_{j=k_0}^{k_1-1} a_{1,j} \right)^K \le 2^{Kk_0^2} C^{(K+1)^{k_1}}.$$

Inequalities (14) and (21) and the definitions of k_1 and k imply

(27)
$$\sum_{n=k_{1}}^{\infty} \frac{2^{(\log_{2} a_{1,n})^{\gamma}}}{a_{1,n}} = \sum_{n=k_{1}}^{k-1} \frac{2^{(\log_{2} a_{1,n})^{\gamma}}}{a_{1,n}} + \sum_{n=k}^{\infty} \frac{2^{(\log_{2} a_{1,n})^{\gamma}}}{a_{1,n}} \\ \leq \frac{2^{(\log_{2} a_{1,k_{1}})^{\omega}}}{a_{1,k_{1}}} + \frac{1}{a_{1,k}^{B}}.$$

Now from (11), (12), (22), (24), (26) and (27), we obtain

$$\begin{split} &1 \leq \bigg(\prod_{n=1}^{k_1-1} a_{1,n}\bigg)^K 2^{(K+1)^{\gamma k_1}} \sum_{n=k_1}^{\infty} \frac{2^{(\log_2 a_{1,n})^{\gamma}}}{a_{1,n}} \\ &\leq \frac{(\prod_{n=1}^{k_1-1} a_{1,n})^K 2^{(K+1)^{\gamma k_1}} 2^{(\log_2 a_{1,k_1})^{\omega}}}{a_{1,k_1}} + \frac{(\prod_{n=1}^{k_1-1} a_{1,n})^K 2^{(K+1)^{\gamma k_1}}}{a_{1,k_k}^B} \\ &\leq \frac{(\prod_{n=1}^{k_1-1} a_{1,n})^K 2^{(K+1)^{\gamma k_1}} 2^{(\log_2 a_{1,k_1})^{\omega}}}{(1+(1/k_1^2))^{(K+1)^{k_1}} (\prod_{j=1}^{k_1-1} a_{1,j})^K 2^{-k_1^2}} + \frac{C^{(K+1)^{k_1}} 2^{(K+1)^{\gamma k_1}}}{A^{B(K+1)^k}} \\ &\leq \frac{2^{(K+1)^{\gamma k_1}} 2^{(\log_2 ((2A_2)^{(K+1)^n}))^{\omega}}}{(1+(1/k_1^2))^{(K+1)^{k_1}} 2^{-k_1^2}} + \frac{C^{(K+1)^{k_1}} 2^{(K+1)^{\gamma k_1}}}{A^{B(K+1)^k}} \\ &\leq 2^{-\log_2 (1+(1/k_1^2))(K+1)^{k_1}} + (K+1)^{\gamma k_1} + (\log_2 (2A_2))^{\omega} (K+1)^{n\omega} + k_1^2} \\ &+ 2^{(-B\log_2 A + \log_2 C)(K+1)^k} + (K+1)^{\gamma k}, \end{split}$$

a contradiction for a sufficiently large k_0 .

3. Comments and examples.

Theorem 3.1. Let α, ε, A_1 and A_2 be positive real numbers such that $0 < \alpha < 1$ and $1 \le A_1 < A_2$. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences of positive integers where $\{a_n\}_{n=1}^{\infty}$ is nondecreasing and

$$\limsup_{n \to \infty} a_n^{1/2^n} = A_2,$$

$$\liminf_{n \to \infty} a_n^{1/2^n} = A_1,$$

$$a_n \ge n^{1+\varepsilon},$$

and

$$b_n < 2^{(\log_2 a_n)^{\alpha}}$$

hold for every sufficiently large n. Then the series $\sum_{n=1}^{\infty} b_n/a_n$ is irrational.

By putting K=1 in Theorem 2.1, we immediately obtain Theorem 3.1.

Remark 3.1. The problem in Theorem 2.1 and Theorem 3.1 remains open for $A_1 = A_2 > 1$. If a_1 is a positive integer greater than 1 and for every n > 1 $a_{n+1} = a_n^2 - a_n + 1$, then the series $\sum_{n=1}^{\infty} 1/a_n$ is rational and $\lim_{n\to\infty} a_n^{1/2^n} > 1$. On the other hand, the series $\sum_{n=1}^{\infty} 1/2^{2^n}$ is an irrational number.

Open problem 3.1. Is it the case that for every sequence $\{c_n\}_{n=1}^{\infty}$ of positive integers the series

$$\sum_{n=1}^{\infty} \frac{2^{2^n} + 1}{(3^{2^n} + n!)c_n}, \quad \sum_{n=1}^{\infty} \frac{3^{2^n} + 1}{(4^{2^n} + n!)c_n}$$

and the number 1 are linearly independent?

Open problem 3.2. Is it the case that for every sequence $\{c_n\}_{n=1}^{\infty}$ of positive integers the series

$$\sum_{n=1}^{\infty} \frac{1}{(3^{2^n} + 2^n)c_n}$$

is an irrational number?

Example 3.1. Let $\pi(x)$ be the number of primes less than or equal to x, [x] the greatest integer less than or equal to x, and K a positive integer greater than 1. Then the series

$$\sum_{n=1}^{\infty} \frac{3^{j2\pi([n/4])} + n!}{2^{K^{2[\log_2 n]}} + 3^n},$$

 $j=1,\ldots,K,$ and the number 1 are linearly independent over rational numbers.

Example 3.2. Let [x] and $\pi(x)$ be defined as in the previous case. Then the series

$$\sum_{n=1}^{\infty} \frac{3^{\pi(n)}+1}{2^{2^{2^{2^{\lceil \log_2\log_2 n \rceil}}}+n}} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{2^{\pi(n)}+3}{2^{2^{2^{2^{\lceil \log_2\log_2 n \rceil}}}+2n}}$$

are irrational.

Acknowledgment. I would like to thank Professor James E. Carter of the College of Charleston for his help with the presentation of this paper.

REFERENCES

- 1. C. Badea, The irrationality of certain infinite series, Glasgow Math. J. 29 (1987), 221–228.
- 2. ——, A theorem on irrationality of infinite series and applications, Acta Arith. 63 (1993), 313–323.
- 3. J.P. Bezivin, Linear independence of the values of transcendental solutions of some functional equations, Manuscripta Math. 61 (1988), no. 1, 103–129.
- **4.** P.B. Borwein, On the irrationality of $\sum (1/q^n + r)$, J. Number Theory **37** (1991), 253–259.
- **5.** P.B. Borwein and P. Zhou, On the irrationality of certain q series, Proc. Amer. Math. Soc. **127**, no. 6, (1999), 1605–1613.
- **6.** D. Duverney, Sur les series de nombres rationnels a convergence rapide, C.R. Acad. Sci. Ser. I, Math. **328**, no. 7, (1999), 553–556.
- 7. P. Erdös, Some problems and results on the irrationality of the sum of infinite series, J. Math. Sci. 10 (1975), 1–7.

- 8. P. Erdös and E.G. Straus, On the irrationality of certain Ahmes series, J. Indian Math. Soc. 27 (1968), 129–133.
- $\bf 9.~$ J. Hančl, Linearly~unrelated~sequences, Pacific J. Math. $\bf 190~$ (1999), no. 2, 299–310.
- 10. K.K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9–50.
- 11. J.H. Loxton and A.J. van der Poorten, Algebraic independence properties of the Fredholm series, J. Austral. Math. Soc. Ser. A, 26 (1978), 31–45.
- 12. K. Nishioka, Mahler functions and transcendence, Lecture Notes in Math. 1631, Springer, New York, 1996.
- $\bf 13.$ V.N. Sorokin, Linear independence of logarithm of some rational numbers, Mat. Zametki $\bf 46$ (1989), no. 3, 74–79, 127; Math. Notes $\bf 46$ (1989), no. 3-4, 727–730 (in English).
- 14. T. Töpfer, Algebraic independence of the values of generalized Mahler functions, Acta Arith. 70 (1995), 161–181.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSTRAVA, DVOŘÁKOVA 7, 701 03 OSTRAVA 1, CZECH REPUBLIC

 $E\text{-}mail\ address: \verb|hancl@osu.cz||$