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A CRITERION FOR
LINEAR INDEPENDENCE OF SERIES

JAROSLAV HANČL

ABSTRACT. The paper establishes a criterion for linear in-
dependence of infinite series which consist of rational numbers.
A criterion for irrationality is obtained as a consequence.

1. Introduction. There are many papers concerning the algebraic
independence of infinite series. Among them we can cite Töpfer [14],
Loxton and Poorten [11] and Kubota [10]. A nice survey of results of
this kind can be found in the book of Nishioka [12].

Other results of this nature include the linear independence of loga-
rithms of special rational numbers which can be found in Sorokin [13]
and Bezivin’s result in [3] which proves linear independence of roots of
special functional equations.

A special case of linear independence is irrationality. In [1] Badea
proved the following theorem.

Theorem 1.1. Let {an}∞n=1 and {bn}∞n=1 be two sequences of positive
integers such that, for every large n,

an+1 >
bn+1

bn
a2

n − bn+1

bn
an + 1.

Then the series
∑∞

n=1
bn

an
is an irrational number.

This result is improved in [2]. Another criterion of irrationality was
proved by Duverney in [6]. In 1992 in [4] Borwein proved that the
series

∑∞
n=1

1
qn+r is irrational and not Liouville whenever q is an integer

(q �= 0,±1) and r is a nonzero rational number (r �= qn). The same
author together with Zhou in [5] proved the following theorem.

AMS Mathematics Subject Classification. 11J72.
Supported by grants no. 201/01/0471 and no. 201/04/0393 of the Czech Grant

Agency.

Copyright c©2004 Rocky Mountain Mathematics Consortium

173



174 J. HANČL

Theorem 1.2. Let q be an integer greater than one and r and s any
positive rationals such that 1 + qmr − q2ms �= 0 for all integers m ≥ 0.
Then the series ∞∑

j=0

1
1 + qjr − q2js

is irrational and is not a Liouville number.

In 1968 in [8] Erdös and Strauss proved the following two theorems.

Theorem 1.3. Let {nk}∞k=1 be an increasing sequence of positive
integers. Assume that

lim sup
k→∞

n2
k

nk+1
≤ 1

and

lim sup
k→∞

Nk

nk+1

(
n2

k+1

nk+2
− 1

)
≤ 0.

Then
∑∞

k=1 1/nk is irrational except when nk+1 = n2
k − nk + 1 for all

k ≥ k0 where Nk is the least common multiple of n1, . . . , nk.

Theorem 1.4. Let {an}∞n=1, n ≥ 1, be a sequence of positive integers
such that

an+1 ≥ a1a2 . . . an

for each n. Furthermore, assume that, for every C > 0 there is a
natural number n > C with the property that

an+1 �= a2
n − an + 1.

Then
∑∞

n=1 1/an is an irrational number.

Later Erdös in [7] proved

Theorem 1.5. Let n1 < n2 < · · · be an infinite sequence of positive
integers satisfying

lim sup
k→∞

n
1/2k

k = ∞

and
nk > k1+ε
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for fixed ε > 0 and for every k > k0(ε). Then

α =
∞∑

k=1

1
nk

is irrational.

If the series tends to infinity very fast, then we can define the so-called
linearly unrelated sequences.

Definition 1.1. Let {ai,n}∞n=1, i = 1, . . . ,K, be the sequences of
positive real numbers. If for every sequence {cn}∞n=1 of positive integers
the numbers

∑∞
n=1 1/(a1,ncn),

∑∞
n=1 1/(a2,ncn), . . . ,

∑∞
n=1 1/(aK,ncn)

and 1 are linearly independent, then the sequences {ai,n}∞n=1, i =
1, . . . ,K, are linearly unrelated.

This definition can be found in [9] where we also find the following
theorem.

Theorem 1.6. Let {ai,n}∞n=1, {bi,n}∞n=1, i = 1, . . . ,K − 1, be
sequences of positive integers, and let ε > 0 be a real number such
that

a1,n+1

a1,n
≥ 2Kn−1

, a1,n/a1,n+1 (a1,n divides a1,n+1)

bi,n < 2Kn−(
√

2+ε)
√

n

, i = 1, . . . ,K − 1,

lim
n→∞

ai,nbj,n
bi,naj,n

= 0 for all j, i ∈ {1, . . . ,K − 1}, i > j,

and

ai,n2−Kn−(
√

2+ε)
√

n

< a1,n < ai,n2Kn−(
√

2+ε)
√

n

, i = 1, . . . ,K − 1

hold for every sufficiently large natural number n. Then the sequences
{ai,n

bi,n
}∞n=1, i = 1, . . . ,K − 1, are linearly unrelated.

The main result of this paper is a criterion for linear independence of
series of rational numbers and one which is in Section 2. In Section 3 we
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give reasons why it is impossible to prove that the relevant sequences
are linearly unrelated, and we also give a criterion for a series to be
irrational.

2. Main result.

Theorem 2.1. Let K be a positive integer, and let α, ε, A1 and
A2 be positive real numbers such that 0 < α < 1, 1 ≤ A1 < A2. Let
{ai,n}∞n=1 and {bi,n}∞n=1, i = 1, . . . ,K, be sequences of positive integers
such that {a1,n}∞n=1 is nondecreasing and

lim sup
n→∞

a
1/(K+1)n

1,n = A2,(1)

lim inf
n→∞ a

1/(K+1)n

1,n = A1,(2)

a1,n ≥ n1+ε,(3)

bi,n < 2(log2 a1,n)α

, i = 1, . . . ,K,(4)

lim
n→∞

ai,nbj,n
bi,naj,n

= 0 for all j, i ∈ {1, . . . ,K}, i > j,(5)

and

ai,n2−(log2 a1,n)α

< a1,n < ai,n2(log2 a1,n)α

, i = 2, . . . ,K(6)

hold for every sufficiently large natural number n. Then the series∑∞
n=1

b1,n

a1,n
, . . . ,

∑∞
n=1

bK,n

aK,n
and the number 1 are linearly independent

over the rational numbers.

Proof. We start in the usual way. Assume that there is a K-tuple of
integers β1, β2, . . . , βK (not all equal to zero) such that the sum

(7) β =
K∑

j=1

βj

∞∑
n=1

bj,n
aj,ncn
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is a rational number. Let R be a maximal index such that βR �= 0.
This and (7) imply

(8)

β =
K∑

j=1

βj

∞∑
n=1

bj,n
aj,ncn

=
∞∑

n=1

R∑
j=1

βj
bj,n
aj,ncn

=
∞∑

n=1

bR,n

aR,ncn

( R−1∑
j=1

βj
bj,naR,n

aj,nbR,n
+ βR

)
.

From this and (5) we obtain that the number

R−1∑
j=1

βj
bj,naR,n

aj,nbR,n

is sufficiently small. From this and (8) we can assume, without loss of
generality, that

(9)
K∑

i=1

βi
bi,n
ai,n

> 0

for every sufficiently large n. Let a and b be integers such that b > 0
and β = a/b. Then, from (7) and (9), we obtain that

BN =
(
a− b

K∑
i=1

βi

N−1∑
n=1

bi,n
ai,n

) N−1∏
n=1

K∏
i=1

ai,n

= b

( N−1∏
n=1

K∏
i=1

ai,n

) K∑
i=1

βi

∞∑
n=N

bi,n
ai,n

is a positive integer for every sufficiently large N . This implies that

(10) 1 ≤ Q1

( N−1∏
n=1

K∏
i=1

ai,n

) K∑
i=1

∞∑
n=N

bi,n
ai,n

holds for every sufficiently large N , where Q1 is a suitable positive real
constant, which does not depend on N . From (1) we obtain that, for
every sufficiently large n,

(11) a1,n < (2A2)(K+1)n

.
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Now (4), (6), (10) and (11) imply

(12)

1 ≤ Q1

( N−1∏
n=1

K∏
i=1

ai,n

) K∑
i=1

∞∑
n=N

bi,n
ai,n

≤ Q2

( N−1∏
n=1

K∏
i=1

a1,n2(log2 a1,n)α

) K∑
i=1

∞∑
n=N

2(log2 a1,n)α

a1,n2−(log2 a1,n)α

≤ Q2

( N−1∏
n=1

a1,n

)K

2K
∑N−1

n=1
(log2 a1,n)α

K
∞∑

n=N

22(log2 a1,n)α

a1,n

≤ Q3

( N−1∏
n=1

a1,n

)K

2K
∑N−1

n=1
(log2(2A2)

(K+1)n
)α

∞∑
n=N

22(log2 a1,n)α

a1,n

≤ Q3

( N−1∏
n=1

a1,n

)K

2log2(2A2)(K+1)Nα

∞∑
n=N

22(log2 a1,n)α

a1,n

≤
( N−1∏

n=1

a1,n

)K

2(K+1)Nγ

∞∑
n=N

2(log2 a1,n)γ

a1,n
,

where Q2, Q3 and γ are suitable positive real constants which do not
depend on N and 1 > γ > α. Let Sn = a

1/(K+1)n

1,n . Now the proof falls
into two cases.

1. First assume that, for every sufficiently large n,
(13) an ≥ 2n.

Then (13) and the fact that the function 2(log2 x)γ

x−1 is decreasing for
sufficiently large x imply

(14)
∞∑

n=N

2(log2 a1,n)γ

a1,n
=

∑
n≤log2 a1,N

2(log2 a1,n)γ

a1,n
+

∑
n>log2 a1,n

2(log2 a1,N )γ

a1,n

≤ 22(log2 a1,N )γ

a1,N
+

∑
n>log2 a1,N

2(log2 2n)γ

2n

=
22(log2 a1,N )γ

a1,N
+

∑
n>log2 a1,N

1
2n−nγ

≤ 22(log2 a1,N )γ

a1,N
+ C

1
2log2 a1,N−(log2 a1,N )γ ≤ 2(log2 a1,N )ω

a1,N
,
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for sufficiently large N , where ω and C are positive real constants which
do not depend on N and such that 1 > ω > γ.

For a sufficiently small positive real number δ, it follows from (1) and
(2) that there exists a positive integer s0 which is sufficiently large such
that for every n ≥ s0,

max(1, A1 − δ) < Sn < A2 + δ.

This implies that for every n ≥ s0

(15) max(1, (A1 − δ))(K+1)n

< a1,n < (A2 + δ)(K+1)n

.

Let s1 be the least positive integer greater than (K + 1)s0+1 such that

max(1, A1 − δ) < Ss1 < A1 + δ.

Then

(16) max(1, (A1 − δ))(K+1)s1
< a1,s1 < (A1 + δ)(K+1)s1

.

Let s2 be the least positive integer greater than s1 such that

(17) A2 − δ < Ss2 < A2 + δ

and s3 be the least positive integer greater than s1 such that

(18) Ss3 > (1 + (1/s23)) max
s1≤j<s3

(Sj , A2 − 2δ)

and s1 < s3 ≤ s2. Such a number s3 must exist since otherwise using
(17) we obtain

A2 − δ < Ss2 <

(
1 +

1
s22

)
max

s1≤j<s2
(Sj , A2 − 2δ)

<

(
1 +

1
s22

)(
1 +

1
(s2−1)2

)
max

s1<j<s2−1
(Sj , A2−2δ) < · · ·

<

s2∏
j=s1

(
1 +

1
j2

)
(A2 − 2δ),

a contradiction for a sufficiently large s0.
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From (11), (15), (16), (18) and the fact that δ is a sufficiently small
positive number, we obtain

(19)

a1,s3 = S(K+1)s3

s3
>

(
1+

1
s23

)(K+1)s3

( max
s1≤j<s3

(Sj , A2−2δ))(K+1)s3

≥
(
1+

1
s23

)(K+1)s3

max
s1≤j<s3

(Sj , A2−2δ)K((K+1)s3−1+(K+1)s3−2+···+1)

≥
(
1+

1
s23

)(K+1)s3( s3−1∏
j=s1+1

a1,j

)K

(A2−2δ)K((K+1)s1+(K+1)s1−1+···+1)

≥
(
1+

1
s23

)(K+1)s3( s3−1∏
j=1

a1,j

)K

×
s1∏

j=s0

(
(A2 − 2δ)(K+1)j

a1,j

)K 1
(
∏s0−1

j=1 a1,j)K

≥
(
1+

1
s23

)(K+1)s3( s3−1∏
j=1

a1,j

)K(
A2 − 2δ
A1 + δ

)K(K+1)s1

×
s1−1∏
j=s0

((
A2 − 2δ
A2 + δ

)(K+1)j )K
Q4∏s0−1

j=1 (2A2)K(K+1)j

≥
(
1+

1
s23

)(K+1)s3( s3−1∏
j=1

a1,j

)K

×
( s1−1∏

j=s0

(
(A2 − 2δ)2

(A1 + δ)(A2 + δ)

)(K+1)j )K

(3A2)−(K+1)s0+1

≥
(
1+

1
s23

)(K+1)s3( s3−1∏
j=1

a1,j

)K

(3A2)−s3 ,

where Q4 is a positive real constant which does not depend on s0. Now
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from (11), (12), (14) and (19), we obtain

1 ≤
( s3−1∏

n=1

a1,n

)K

2(K+1)γs3
∞∑

n=s3

2(log2 a1,n)γ

a1,n

≤
( s3−1∏

n=1

a1,n

)K

2(K+1)γs3 2(log2 a1,s3)ω

a1,s3

≤
( s3−1∏

n=1

a1,n

)K

2(K+1)γs3 2(log2(2A2)
(K+1)s3

)ω

(1+ (1/s23))(K+1)s3 (
∏s3−1

j=1 a1,j)K(3A2)−s3

= 2−(log2(1+(1/s2
3)))(K+1)s3+(K+1)γs3+(log2(2A2))

ω(K+1)ωs3+log2(3A2)s3 ,

a contradiction for a sufficiently large number s3.

2. Now assume that there exist infinitely many n such that

(20) an < 2n.

Then (3) and the fact that the function 2(log2 x)γ

x−1 is decreasing for
a sufficiently large x imply

(21)

∞∑
n=N

2(log2 a1,n)γ

a1,n
=

∑
n<aα

1,N

2(log2 a1,n)γ

a1,n
+

∑
n>aα

1,N

2(log2 a1,n)γ

a1,n

≤ 2(log2 a1,n)γaα
1,N

a1,N
+

∑
n>aα

1,N

2(log2 n1+ε)γ

n1+ε

≤ a
α−1

2
1,N +

∑
n>aα

1,N

1
n1+ε/2

≤ a
α−1

2
1,N +

1
(aα

1,N )ε/3
≤ a−B

1,N

for a sufficiently large N , where B is a suitable positive real constant,
which does not depend on N . On the other hand, let A = (1+A2)/2 =
(A1 + A2)/2. From this and (1) we obtain that there is a sufficiently
large k such that

(22) a1,k > A(K+1)k

.
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Let k0 be a greatest positive integer less than k such that (20) holds.
Let k1 be a least positive integer such that

(23) Sk1 >

(
1 +

1
k2
1

)
max

k0≤j<k1
Sj ,

and k0 < k1 ≤ k. As in the previous case such a k1 must exist, since,
otherwise,

1 < A ≤ Sk <

(
1 +

1
k2
1

)
max

k0≤j<k1
Sj

<

(
1 +

1
k2
1

)(
1 +

1
(k1 − 1)2

)
max

k0≤j<k1−1
Sj

< · · · <
k∏

j=k1

(
1 +

1
j2

)
Sk0 ,

a contradiction for a sufficiently large number k0. From (23) and the
fact that the sequence {a1,n}∞n=1 is nondecreasing we obtain

(24)

a1,k1 = S
(K+1)k1

k1
>

(
1 +

1
k2
1

)(K+1)k1

( max
k0≤j<k1

Sj)(K+1)k1

≥
(
1 +

1
k2
1

)(K+1)k1

( max
k0≤j<k1

Sj)K((K+1)k1−1+(K+1)k1−2+···+1)

≥
(
1 +

1
k2
1

)(K+1)k1 ( k1−1∏
j=1

a1,j

)K( k0∏
j=1

a1,j

)−K

≥
(
1 +

1
k2
1

)(K+1)k1 ( k1−1∏
j=1

a1,j

)K

2−k2
1 .

The definition of k1 implies that, for every N , k0 < N < k1,

SN ≤
(
1 +

1
N2

)
max

k0≤j<N
Sj .

Thus

(25) SN ≤
( N∏

j=k0

(
1 +

1
j2

))
Sk0 < C,
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where C is a constant which depends on k0 and C tends to 1 as k0 tends
to infinity. From (25) we obtain that for every N = k0, . . . , k1 − 1,

a1,N ≤ C(K+1)n

.

This implies

(26)
( k1−1∏

j=1

a1,j

)K

=
( k0−1∏

j=1

a1,j

)K( k1−1∏
j=k0

a1,j

)K

≤ 2Kk2
0C(K+1)k1

.

Inequalities (14) and (21) and the definitions of k1 and k imply

(27)

∞∑
n=k1

2(log2 a1,n)γ

a1,n
=

k−1∑
n=k1

2(log2 a1,n)γ

a1,n
+

∞∑
n=k

2(log2 a1,n)γ

a1,n

≤ 2(log2 a1,k1 )ω

a1,k1

+
1

aB
1,k

.

Now from (11), (12), (22), (24), (26) and (27), we obtain

1 ≤
( k1−1∏

n=1

a1,n

)K

2(K+1)γk1
∞∑

n=k1

2(log2 a1,n)γ

a1,n

≤ (
∏k1−1

n=1 a1,n)K2(K+1)γk12(log2 a1,k1 )ω

a1,k1

+
(
∏k1−1

n=1 a1,n)K2(K+1)γk1

aB
1,k

≤ (
∏k1−1

n=1 a1,n)K2(K+1)γk12(log2 a1,k1 )ω

(1 + (1/k2
1))(K+1)k1 (

∏k1−1
j=1 a1,j)K2−k2

1

+
C(K+1)k12(K+1)γk1

AB(K+1)k

≤ 2(K+1)γk12(log2((2A2)
(K+1)n

))ω

(1 + (1/k2
1))(K+1)k12−k2

1
+
C(K+1)k12(K+1)γk1

AB(K+1)k

≤ 2− log2(1+(1/k2
1))(K+1)k1+(K+1)γk1+(log2(2A2))

ω(K+1)nω+k2
1

+ 2(−B log2 A+log2 C)(K+1)k+(K+1)γk

,

a contradiction for a sufficiently large k0.
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3. Comments and examples.

Theorem 3.1. Let α, ε,A1 and A2 be positive real numbers such
that 0 < α < 1 and 1 ≤ A1 < A2. Let {an}∞n=1 and {bn}∞n=1 be two
sequences of positive integers where {an}∞n=1 is nondecreasing and

lim sup
n→∞

a1/2n

n = A2,

lim inf
n→∞ a1/2n

n = A1,

an ≥ n1+ε,

and
bn ≤ 2(log2 an)α

hold for every sufficiently large n. Then the series
∑∞

n=1 bn/an is
irrational.

By putting K = 1 in Theorem 2.1, we immediately obtain Theo-
rem 3.1.

Remark 3.1. The problem in Theorem 2.1 and Theorem 3.1 remains
open for A1 = A2 > 1. If a1 is a positive integer greater than 1 and for
every n > 1 an+1 = a2

n − an + 1, then the series
∑∞

n=1 1/an is rational
and limn→∞ a

1/2n

n > 1. On the other hand, the series
∑∞

n=1 1/2
2n

is
an irrational number.

Open problem 3.1. Is it the case that for every sequence {cn}∞n=1

of positive integers the series
∞∑

n=1

22n

+ 1
(32n + n!)cn

,

∞∑
n=1

32n

+ 1
(42n + n!)cn

and the number 1 are linearly independent?

Open problem 3.2. Is it the case that for every sequence {cn}∞n=1

of positive integers the series
∞∑

n=1

1
(32n + 2n)cn
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is an irrational number?

Example 3.1. Let π(x) be the number of primes less than or equal
to x, [x] the greatest integer less than or equal to x, and K a positive
integer greater than 1. Then the series

∞∑
n=1

3j2π([n/4]) + n!

2K2[log2 n]
+ 3n

,

j = 1, . . . ,K, and the number 1 are linearly independent over rational
numbers.

Example 3.2. Let [x] and π(x) be defined as in the previous case.
Then the series

∞∑
n=1

3π(n) + 1

2222
[log2 log2 n]

+ n
and

∞∑
n=1

2π(n) + 3

2222
[log2 log2 n]

+ 2n

are irrational.
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