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ARCHIMEDEAN CLOSED
LATTICE-ORDERED GROUPS

YUANQIAN CHEN, PAUL CONRAD AND MICHAEL DARNEL

ABSTRACT. We show that, if an abelian lattice-ordered
group is archimedean closed, then each principal l-ideal is
also archimedean closed. This has given a positive answer
to the question raised in 1965 and hence proved that the
class of abelian archimedean closed lattice-ordered groups is
a radical class. We also provide some conditions for lattice-
ordered group F (∆, R) to be the unique archimedean closure
of

∑
(∆, R).

Introduction. Throughout, let G be a lattice-ordered group (l-
group).

Let Γ be a root system, that is, Γ is a partially ordered set for which
{α ∈ Γ | α ≥ γ} is totally ordered, for any γ ∈ Γ. Let {Hγ | γ ∈ Γ} be
a collection of abelian totally-ordered groups indexed by Γ. V (Γ, Hγ)
is the set of all functions v on Γ for which v(γ) ∈ Hγ and the support of
each v satisfies ascending chain condition. V (Γ, Hγ) is an abelian group
under addition. Furthermore, if we define an element of V (Γ, Hγ) to
be positive, if it is positive at each maximal element of its support,
then V (Γ, Hγ) is an abelian l-group, which we call a Hahn group on
Γ.

∑
(Γ, Hγ) is the l-subgroup of V (Γ, Hγ) whose elements have finite

supports. A root in a root system Γ is a totally ordered subset of Γ.
F (Γ, Hγ) is the l-subgroup of V (Γ, Hγ) such that the support of each
element is contained in a finite number of roots in Γ.

A convex l-subgroup which is maximal with respect to not containing
some g ∈ G is called regular and is a value of g. Element g is special if
it has a unique value, and in this case the value is called a special value.
A convex l-subgroup P of G is prime if a∧b = 0 in G implies that either
a ∈ P or b ∈ P . Regular subgroups of G are prime and form a root
system under inclusion, written Γ(G). A subset ∆ ⊆ Γ(G) is plenary if
∩∆ = {0} and ∆ is a dual ideal in Γ(G); that is, if δ ∈ ∆, γ ∈ Γ(G) and
γ > δ, then γ ∈ ∆. If G is an abelian l-group, then G is l-isomorphic to
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an l-subgroup of V (Γ(G), R) such that if γ ∈ Γ(G) is a value of g ∈ G,
then γ is a maximal component of g after the embedding, where R is
the set of real numbers. Such a value-preserving l-isomorphism is called
a v-isomorphism. This is the result of the Conrad-Harvey-Holland
embedding theorem for abelian lattice-ordered groups. In fact, we do
not need the entire root system to obtain such an embedding. For any
abelian l-group G, there exists a Conrad-Harvey-Holland embedding
into V (∆, R), where ∆ is any plenary subset of Γ(G) [13]. An n-
automorphism of V (Γ, R) is a v-automorphism that induces identity
on each V γ/Vγ , where V γ = {v ∈ V (Γ, R) | vα = 0 for all α > γ}, and
Vγ = {v ∈ V (Γ, R) | vα = 0 for all α ≥ γ}.
For any g∈G, G(g)={h∈G | |h|≤n|g|, for some positive integer n},

the principal convex l-subgroup of G generated by g is the least convex
l-subgroup of G that contains g.

An element b of G is basic if the set {g ∈ G | 0 < g ≤ b} is totally-
ordered. An l-group G has a basis if G possesses a maximal pairwise
disjoint set of elements gλ and, in addition, each G(gλ) is a totally-
ordered l-subgroup.

An l-group is archimedean if for any elements g and h, ng ≤ h for
all positive integers n implies that g ≤ 0. An archimedean l-group is
necessarily abelian. Given two positive elements g and h of an l-group
G, we say that they are archimedean equivalent (a-equivalent) if there
exists a positive integer n so that g ≤ nh and h ≤ ng. If G is an
l-subgroup of H and, for each h ∈ H+, there exists g ∈ G+ so that h
and g are a-equivalent, then we say that H is an archimedean extension
(a-extension) of G. H is a-closed if H admits no a-extensions. H is an
a-closure of G if H is an a-closed a-extension of G.

For any subset X of an l-group G, X ′ = {g ∈ G | |g| ∧ |x| =
0, for all x ∈ X} is a polar subgroup of G. We denote by g′ and g′′ the
polar subgroups {g}′ and {g}′′.
An l-group G is finite-valued if every element of G has only a finite

number of values; this is equivalent to the statement that every element
of G can be expressed as a finite sum of disjoint special elements. An
l-group G is special-valued if G has a plenary subset of special values;
this is equivalent to the statement that each positive element of G can
be expressed as the join of a set of pairwise disjoint positive special
elements.
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An l-group G has property F , if each 0 < g ∈ G exceeds at most a
finite number of disjoint elements, or equivalently each bounded disjoint
subset of G is finite.

Let Γ be a root system. For α, β in Γ, we define α ∼ β if α and
β lie on the same roots of Γ. This is an equivalence relation and we
shall denote the equivalence class that contains α by α and the set of
all equivalence classes by Γ. Define β > α if β̄ �= α and β > α, or
equivalently if β > α and β > γ, with α‖γ. Then Γ is also a root
system consisting of “branch points” of Γ [5].

Let G be an l-group and Γ(G) the root system of regular subgroups of
G. For α, β ∈ Γ(G), α ∼ β if and only if Gα and Gβ contain the same
set of minimal primes if and only if {Gδ | δ and α are comparable} =
{Gδ | δ and β are comparable}.
The class of l-groups G for which the set Γ(G) satisfies the descending

chain condition (DCC) is denoted D, and D is a torsion class, i.e., it
is closed under convex l-subgroups, l-homomorphic images, and joins
of convex l-subgroups [5].

1. Abelian a-closed lattice-ordered groups. It was shown in [7]
that if the principal l-ideal G(g) is a-closed for each g > 0 in an l-group
G, then G is a-closed. In this section we will show that the converse of
the above statement is true for abelian l-groups.

Theorem 1.1. Let G be an abelian l-group. If G is a-closed, then
G(g) is a-closed for each g ∈ G+.

Proof. 1. Let H be a proper a-extension of G(g0) where 0 < g0 ∈ G.
We claim that H �⊆ G.

For if H ⊆ G, then we will have G(g0) ⊆ H ⊆ G. So, for each
h ∈ H, h ∈ G and h is a-equivalent to some g ∈ G(g0). Thus h ∈ G(g0)
and hence H ⊆ G(g0). This contradicts the fact that H is a proper
a-extension of G(g0).

2. Since G is abelian, we may assume that G(g0) ⊆ G ⊆ V (Γ(G), R),
by Conrad-Harvey-Holland embedding theorem for abelian lattice-
ordered groups.

By lifting the identity map i : G(g0) → V (Γ(G), R), to a map from
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H to V (Γ(G), R), we may assume that H ⊆ V (Γ(G), R). Now let
K = 〈G,H〉 be the l-subgroup generated by H and G in V (Γ(G), R).

3. K is an a-extension of G.

We first show that every positive element in the group generated by
G and H is a-equivalent to some g ∈ G+. Consider g + h > 0, where
g ∈ G and h ∈ H. We have g = (g ∧ g0) + (g − g ∧ g0), hence

g + h = (h+ g ∧ g0) + (g − g ∧ g0),

where h + g ∧ g0 ∈ H. Moreover, h + g ∧ g0 is positive. For
h+g∧g0 = (h+g)∧(h+g0), where h+g > 0. We can make h+g0 > 0
by replacing g0 with some ng0 > −h. Thus h+g∧g0 = (h+g)∧(h+g0)
is a positive element of H, but H is an a-extension of G(g0); hence,
there exists g ∈ G(g0)+ such that h+ g ∧ g0 is a-equivalent to g. Now
we have that g + h = (h + g ∧ g0) + (g − g ∧ g0) is a-equivalent to
g+g−g∧g0 ∈ G+, because g and g−g∧g0 are both positive elements
of G, and there are no cancellations in their maximal components.

We hence have shown that every positive element in the subgroup of
V (Γ(G), R) generated by G and H is a-equivalent to some g ∈ G+.

To show that every positive element in the l-subgroup generated by
G and H is a-equivalent to some g ∈ G+, we first observe that if
(g1+h1)∧(g2+h2) > 0 with g1, g2 ∈ G and h1, h2 ∈ H, then g1+h1 > 0
and g2 + h2 > 0.

From the above argument, g1 + h1 is a-equivalent to some g1 ∈ G+,
and g2 + h2 is a-equivalent to some g2 ∈ G+. Therefore (g1 + h1) ∧
(g2 + h2) is a-equivalent to g1 ∧ g2 ∈ G+.

We now show (g1+h1)∨(g2+h2) > 0 is a-equivalent to some positive
element in G. Although (g1 + h1) ∨ (g2 + h2) > 0 does not imply that
g1 + h1 > 0 and g2 + h2 > 0, we observe that (g1 + h1) ∨ (g2 + h2) is
equal to (g1+h1)+∨ (g2+h2)+; hence, it suffices to show that (g+h)+

is a-equivalent to some g ∈ G+ where g ∈ G and h ∈ H.

Now (g+ h)+ = (g+ h)∨ 0 = h+ (g ∨ (−h)) = h+ (g ∨ (−h))∧ g0 +
(g∨ (−h))− ((g∨ (−h))∧g0) = f1+f2, where f1 = h+(g∨ (−h))∧g0,
and f2 = (g ∨ (−h))− ((g ∨ (−h)) ∧ g0). We will show that f1 and f2

are a-equivalent to some positive elements in G.

We observe that f1 = h+(g∨(−h))∧g0 = ((g+h)∨0)∧(h+g0) ≥ 0,
for we can always make h+ g0 ≥ 0 by replacing g0 with ng0, where n is
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a positive integer with ng0 ≥ −h. Also f1 = h+(g∧g0)∨ (g0−h) ∈ H,
hence f1 is a-equivalent to some g ∈ G(g0)+.

Now consider f2 = (g ∨ (−h))− ((g ∨ (−h)) ∧ g0) ≥ 0.

Let A = {γ ∈ Γ(G) | γ is a maximal component of f2 and a maximal
component of g ∨ (−h)}, and let B = {γ ∈ Γ(G) | γ is a maximal
component of f2 but not a maximal component of g ∨ (−h)}.
There are no cancellations at maximal components that belong to

A when we subtract (g ∨ (−h)) ∧ g0 from g ∨ (−h) to get f2 because
each maximal component γ ∈ A of g ∨ (−h) lies above some maximal
component of g0. Since we can always replace g0 with ng0 > −h, we
may assume that f2 = (g∨ (−h))− ((g∨ (−h))∧ g0) and g− g∧ g0 take
the same value on γ ∈ A.

However, there are cancellations at maximal components lying above
some element in B when we subtract (g ∨ (−h)) ∧ g0 from g ∨ (−h) to
get the value of f2 on γ ∈ B. We observe that f2 = (g ∨ (−h))− ((g ∨
(−h))∧g0) > g−g∧g0 on γ ∈ B and that elements in B lie below some
maximal component of g0. Hence there exists some h ∈ H such that
nf2 > h and nh > f2 on γ ∈ B for some n ∈ Z+. Therefore there exists
some g0 ∈ G(g0)+ such that nf2 > g0 and ng0 > f2 on γ ∈ B for some
n ∈ Z+ and g0 � f2 on γ ∈ A. Hence we have nf2 > g − g ∧ g0 + g0

and n(g − g ∧ g0 + g0) > f2. We now have that f2 is a-equivalent to
some element in G+.

Now we have shown that (g + h)+ = f1 + f2 is a-equivalent to
g + g − g ∧ g0 + g0 ∈ G+ which means that K = 〈H,G〉 is an a-
extension of G. This contradicts the fact that G is a-closed. Thus
we must have H ⊆ G which implies that H = G(g0), hence G(g0) is
a-closed.

Corollary 1.2. Let G be an abelian l-group. If G has a unique
a-closure, then G(g) has a unique a-closure for each g ∈ G.

Proof. Assume that G has a unique a-closure K. We then have that
K(g) is an a-extension of G(g) for each g ∈ G+ and K(g) is a-closed.
If H is another a-closure of G(g) which is not isomorphic to K(g), then
H �⊆ K. Now from the proof of Theorem 1.1, the l-subgroup 〈G,H〉 of
V (Γ(G), R) generated by G and H is an a-extension of G which is not
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contained in K. This contradicts the fact that K is the a-closure of G.

Let G be an l-group and Γ(G) the set of regular subgroups of G. For
α, β in Γ, we define α ∼ β if α and β lie on the same roots of Γ. This is
an equivalence relation and we shall denote the equivalence class that
contains α by α and the set of all equivalence classes by Γ(G). Define
β > α if β �= α and β > α, or equivalently if β > α and β > γ, with
α ‖ β. Then Γ(G) is also a root system, and the map α → α is an
o-homomorphism of Γ(G) onto Γ(G) with a ‖ β if and only if α ‖ β.
Since β > α implies that β > γ for some γ with α ‖ γ, it follows that
Γ(G) is a root system of “branch points.” For each γ ∈ Γ(G), we define
Gγ = ∪α∈γG

α and Gγ = ∩α∈γGα [5].

If an l-group G satisfies property F , then each g in G has only a
finite number of values in Γ(G); hence each Gγ is special, and therefore
Gγ ! Gγ for all γ in Γ(G).

Theorem 1.3. Let G be a lattice-ordered group. If G has property
F and Γ satisfies DCC and Gγ/Gγ

∼= R for each γ ∈ Γ(G), then G is
a-closed.

Proof. Let H be an a-extension of G. First we assume that G has a
finite basis of n elements and that Γ satisfies DCC and Gγ/Gγ

∼= R

for each γ ∈ Γ(G). Then Γ(G) has exactly n roots [13] and we use
induction on n.

If n = 1, then Γ(G) is totally-ordered, and Γ contains a single
element. Thus G = Gγ , H = Hγ , Gγ = Hγ = 0. If H �= G, then
Gγ/Gγ = Gγ ⊂ Hγ = Hγ/Hγ . This contradicts the fact that Gγ/Gγ

is a-closed.

If n > 1, then from the structure theorem for an l-group with a
finite basis [15], it follows that G = lex(A ⊕ B) where A and B are
nonzero convex l-subgroups of G, and A and B have bases of fewer
than n elements. By induction hypothesis, A and B are a-closed; thus,
A ⊕ B is a-closed [7]. A ⊕ B is the subgroup of G generated by non-
units, hence it is also the subgroup of H generated by non-units. Thus
A⊕B !H [11]. Therefore H/(A⊕B) is an a-extension of G/(A⊕B),
but since G/(A⊕B) is a-closed o-group by the argument used for n = 1,
it follows that H = G. Hence G is a-closed.
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To prove the theorem, it suffices to show that G(g) is a-closed for
each 0 < g ∈ G [7]. Since G has property F , each G(g) has a finite
basis. Thus, in order to complete the proof, it suffices to show that
Γ(G(g)) satisfies DCC and each G(g)γ/G(g)γ ∼= R.

By Theorem 3.7 in [6], G(g) = G(g1)⊕· · ·⊕G(gk), where each G(gi)
is a lexico-extension of a proper l-ideal. Clearly it suffices to show
that each Γ(G(gi)) satisfies DCC. Thus, without loss of generality, we
may assume that G(g) is a lexico-extension of a proper l-ideal. Then
(G(g)+G(g)′)+ consists of all elements in G+ that do not exceed G(g)
[11]. Let x ∈ G(g), and let M be a convex l-subgroup of G(g) that
is maximal without x. Then we claim that M ⊕ G(g)′ is a maximal
convex l-subgroup of G without x. Then we claim that M ⊕ G(g)′ is
a maximal convex l-subgroup of G without x. For suppose x /∈ N ,
where N is a convex l-subgroup of G and N ⊃ M ⊕ G(g)′. Pick
0 < z ∈ N \ (M ⊕G(g)′) and, N ∩G(g) ⊇ M . If N ∩G(g) ⊃ M , then
x ∈ N , this contradicts that x /∈ N . Thus, if z = z1+z2 ∈ G(g)+G(g)′,
then z − z2 = z1 ∈ N ∩ G(g) = M and hence z ∈ M + G(g)′,
a contradiction. Therefore, M ⊕ G(g)′ ∈ Γ(G) is maximal without
containing x. Thus since Γ(G) satisfies DCC it follows that Γ(G(g))
satisfies DCC.

Now we show that G(g)γ/G(g)γ ∼= R. Since G(g) has a finite basis,
each G(g)γ is special, hence G(g)γ ! G(g)γ . As above, we can assume
that G(g) is a lexico-extension of a proper l-ideal. Then G(g)γ ⊕G(g)′

is a special convex l-subgroup of G and
G(g)γ

G(g)γ
∼= G(g)γ ⊕G(g)′

G(g)γ ⊕G(g)′
∼= R.

We observe that if H is a-closed, then it does not follow that Hγ/Hγ

is a-closed. For example, let G be the splitting extension on
                                                       Z

                                             R                  R
i.e., G is the splitting extension of R ⊕ R by Z determined by

α : Z → Auto (R ⊕ R) such that (r1, r2)α(z) = (r1, r2) if z is even;
(r1, r2)α(z) = (r2, r1), if z is odd. Define (z(r1, r2)) to be positive if
z > 0 or z = 0 and r1, r2 ≥ 0. If H is an a-closure of G, then H is
an extension of R⊕R by an l-group K, but K cannot be divisible and
Hγ/Hγ is not a-closed.
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However, if G is an abelian l-group, and G has property F , then G
is a-closed if and only if G ∼= F (Γ, R) for some root system Γ. But
we also know that G ∼= F (Γ, Gγ/Gγ) [5], and there is a natural l-
isomorphism from F (Γ, R) to F (Γ, V (γ,R)). Hence it is easy to see
Gγ/Gγ

∼= V (γ,R). Therefore Gγ/Gγ is a-closed.

2. The class of abelian a-closed lattice-ordered groups. We
recall that a nonempty class � of l-groups is a radical class if it is closed
with respect to convex l-subgroups and joins of convex l-subgroups.

Lemma 2.1. Let H be an a-extension of an l-group G, and let C
be an a-closed convex l-subgroup of G. Then C = H〈C〉, the convex
l-subgroup of H generated by C.

Proof. Let 0 < h ∈ H〈C〉. Then there exists c ∈ C such that
0 < h ≤ c. And there exists a positive element g ∈ G such that h and
g are a-equivalent. Since g ≤ nh ≤ nc for some positive integer n, we
have g ∈ C. So H〈C〉 is an a-extension of C, and thus C = H〈C〉.

Lemma 2.2. Let A and B be abelian a-closed convex l-subgroups of
an l-group G. Then A ∨B = A+B is a-closed.

Proof. Suppose A+B is not a-closed. Let H be a proper a-extension
of A + B, and let 0 < h ∈ H \ (A + B). There exist 0 < a ∈ A
and 0 < b ∈ B such that h ≤ a + b. Thus, there exist 0 ≤ c1 ≤ a
and 0 ≤ c2 ≤ b such that h = c1 + c2. Since c1 ∈ H〈A〉 = A, and
c2 ∈ H〈B〉 = B, we have that h ∈ A+B.

Theorem 2.3. The class of abelian a-closed lattice-ordered groups
is a radical class.

Proof. Let M = {Cλ} be the set of all abelian a-closed convex l-
subgroups of an l-group G. Let C be a chain in {Cλ}. Then, for each
g ∈ ∪C, G(g) is a-closed and so ∪C is a-closed. So M has maximal
element. But by the above lemma, there must be a unique maximal
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convex l-subgroup of G in M. For, if A and B are maximal elements,
then so is A ∨B.

3. Conditions for F (∆, R) to be the unique a-closure of∑
(∆, R). Let ∆ be a root system. It is shown in [7] that F (∆, R)

is an abelian a-closure of
∑
(∆, R). It is also shown in [3] that F (∆, R)

is the unique a-closure of
∑
(∆, R) if and only if ∆ does not contain a

copy of

We will provide more conditions equivalent to F (∆, R) being the
unique a-closure of Σ(∆, R).

Lemma 3.1. Let ∆ be a root system and G an l-subgroup of V (∆, R)
and Λ = {λ ∈ ∆ | gλ is a maximal component of some g ∈ G}. Let
VΛ = {v ∈ V (∆, R) | support of v is contained in Λ}.
(1) Λ is a root system.

(2) VΛ is an l-subgroup of V (∆, R).

(3) VΛ
∼= V (Λ, R).

(4) The projection ρ of V (∆, R) onto VΛ induces an l-isomorphism
of G into VΛ.

Proof. 1. Λ is a subset of a root system, hence it is a root system.

2. If the support of v is contained in Λ, then so is that of v ∨ 0.

3. There is a natural isomorphism of VΛ into V (Λ, R). This iso-
morphism is also onto, for if v ∈ V (Λ, R), then it is the image of
v ∈ V (∆, R) with support in Λ.

4. The projection ρ induces an isomorphism of G into VΛ, for g and gρ
have the same maximal components. Actually, it is an l-isomorphism.
For if x is a special negative component of g, then xρ is a special
negative component of gρ, hence (g ∨ 0)ρ = gρ ∨ 0.

Let G be a vector lattice, and let ∆ be a plenary subset of Γ(G).
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Then there exists a linear v-isomoprhism τ of G into V (∆, R). We say
that G has the projective property if there exists an embedding τ of G
into V (∆, R) so that the projection of Gτ onto each dual ideal of ∆
belongs to Gτ .

Let Fv be the torsion class of finite-valued lattice-ordered groups and
D the torsion class of l-groups whose root system of “branch points”
of regular subgroups satisfies the descending chain condition [5].

Theorem 3.2 [14]. If G belongs to the torsion class Fv ∩D, then G
has the projective property.

Theorem 3.3. For a root system ∆, the following are equivalent.

(1)
∑

(∆, R) belongs to torsion class D.

(2) ∆ contains no copies of Λ =

(3) ∆ satisfies the descending chain condition.

(4) F (∆, R) is the unique abelian a-closure of
∑

(∆, R).

(5) If K is a finite-valued l-subgroup of V (∆, R) such that
∑
(∆, R) ⊆

K ⊆ V (∆, R), then K ⊆ F (∆, R).

Proof. 1, 2 and 3 are clearly equivalent since ∆ can be identified with
the regular subgroups of

∑
(∆, R).

(2→4). Suppose H is an a-closure of
∑
(∆, R). Without loss of

generality, H ⊆ V (∆, R). If H is not isomorphic to F (∆, R), then
there exists h ∈ H such that the support of h is not contained in
finitely many roots in ∆. h is finite-valued since it is a-equivalent to
some g ∈ ∑

(∆, R). Hence h can be represented as h = ∨n
i=1hi where

hi are disjoint and special, and there is at least one hi with support
not contained in finitely many roots of ∆. So we may assume that h is
special and the support of h is not contained in finitely many roots of
∆.
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Since ∆ contains no copy of Λ, each bounded root in ∆ has only
finitely many branch points.

Let δ be the value of h and hδ is the projection of h onto δ where
δ = {α ∈ support of h | α < δ, α belongs to the equivalence class
in Γ containing δ}. Then hδ ∈ H, since each H ∈ Fv ∩ D has the
projective property. Thus h1 = h − hδ ∈ H is finite-valued. Now let
Γ = {δ ∈ ∆ | δ is a maximal component of h1}, and let h2 = h1 − hΓ,
where hΓ = (projection of h1 onto the union of δ with δ ∈ Γ). Then
hΓ ∈ H, and h2 ∈ H is finite-valued. Since each bounded root has only
a finite number of branch points, we may keep projecting onto δ with δ
a maximal component until there is no branch point in the support, and
this only takes finitely many steps. Thus the support of h is contained
in finitely many roots. Hence h ∈ F (∆, R). This contradicts the fact
that h ∈ H \ F (∆, R).

(4→2). Suppose that ∆ contains a copy of Λ. By the results in [4],∑
(Λ, R) has uncountably many non-isomorphic a-closures. Let A be

an a-closure of
∑
(Λ, R) in V (Λ, R) that is not isomorphic to F (Λ, R),

and let B =
∑

(∆ \ Λ, R). There exist natural embeddings of A and
B into V (∆, R) so we may assume that A and B are l-subgroups of
V (∆, R). The support of A is contained in Λ, and the support of B is
contained in ∆ \ Λ. Also ∑

(∆, R) ⊆ A⊕B is a subgroup of V (∆, R).

Actually, A ⊕ B is a finite-valued l-subgroup of V (∆, R), and hence
an a-extension of

∑
(∆, R). We need to show that a + b ∈ A ⊕ B

implies that (a+ b) ∨ 0 ∈ A⊕B. Suppose a = a1 + a2 + · · ·+ an, and
b = b1 + b2 + · · · + bm, where ai and bj are special, |ai| ∧ |aj | = 0 and
|bi| ∧ |bj | = 0, if i �= j. Supports of a and b are disjoint, hence a+ b can
be written as c1+c2+· · ·+cl, where each ck is special, and |ck|∧|cj | = 0.
Each ck is either in the form of ck = ai+

∑
bj , where the values of bj are

less than that of ais or in the form of ck = bi +
∑

aj , where the values
of aj are less than that of bis. Therefore, (a+ b)∨0 = c1+ c2+ · · ·+ cn,
where ck > 0 are all the positive components from the representation
of a+ b, hence (a+ b) ∨ 0 ∈ A⊕B.

Let C be an abelian a-closure of A⊕B in V (∆, R). C is an abelian a-
closure of

∑
(∆, R). By assumption, C is isomorphic to F (∆, R). Thus

there exists an l-isomorphism σ such that Aσ ⊆ Cσ = F (∆, R) ⊆
V (∆, R). Since A is finite-valued, we have Λ ∼= Γ(A) ∼= Γ(Aσ) where
Aσ is finite-valued and Γ(Aσ) corresponds to the maximal components
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of Aσ. Thus, without loss of generality, we assume Γ(Aσ) = Λ ⊆ ∆.
Now the projection ρ of V (∆, R) onto VΛ induces an l-isomorphism of
Aσ to VΛ, and since Aσ ⊆ F (∆, R), Aσρ ⊆ FΛ(∆, R) ∼= F (Λ, R) which
is an a-extension of

∑
(Λ, R). This contradicts our choice of A as an

a-closure of
∑
(Λ, R) that is not isomorphic to F (Λ, R).

(2→5). Let K be finite-valued. We have that
∑

(∆, R) ⊆ K ⊆
V (∆, R). We claim that K ⊆ F (∆, R). Suppose not, then there exists
some k ∈ K, such that the support of k is not contained in a finite
number of roots of ∆. Since the support of k does not contain a copy
of Λ it must contain a copy of

Without loss of generality, assume the support of

k =

Let δ be the maximal component of the support of k. The char-
acteristic function χδ on δ belongs to

∑
(∆, R) ⊆ K. It follows that

k − k(δ)χδ ∈ K, where k(δ) is the value of k at δ. But now k − k(δ)χδ

is not finite-valued. This contradicts the fact that k − k(δ)χδ
∈ K.

(5→4). Let K be an abelian a-closure of
∑
(∆, R). By the Conrad-

Harvey-Holland embedding theorem, we can extend the identity map
on

∑
(∆, R) to an l-isomorphism of K into V (∆, R) so, without loss of

generality,
∑
(∆, R) ⊆ K ⊆ V (∆, R). By (5), K ⊆ F (∆, R), and since

F (∆, R) is an a-extension of
∑
(∆, R), we have K = F (∆, R).

We observe that the assumption that K is a finite-valued l-group of
V (∆, R) does not imply that K ⊆ F (∆, R). For example, let

∆ =
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and χ be the characteristic function on ∆. Then K = Rχ+
∑∞

i=1 Ri

is a finite-valued l-group, but K �⊆ F (∆, R).

Theorem 3.4. For a root system ∆, the following are equivalent.

(1) Each finite-valued vector lattice G with Γ(G) = ∆ has a unique
abelian a-closure.

(2) ∆ satisfies the descending chain condition.

If this is the case, then F (∆, R) is the abelian a-closure of G.

Proof. (2 → 1). Each finite-valued vector lattice G with Γ(G) = ∆
can be embedded into V (∆, R) such that

∑
(∆, R) ⊆ G ⊆ V (∆, R) and

G is an a-extension of
∑
(∆, R). But we know F (∆, R) is the unique

a-closure of
∑
(∆, R) and hence the unique a-closure of G.

(1→ 2) is the result of Theorem 3.3.

Corollary 3.5. The above theorem holds for an abelian l-group G.
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