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THREE-DESCENT AND THE BIRCH
AND SWINNERTON-DYER CONJECTURE

ANDREA BANDINI

ABSTRACT. We give a three-descent procedure to bound
and, in some cases, compute the three-part of the Selmer
and Tate-Shafarevich group of the curves y2 = x3 + a, a a
nonzero integer. This enables us to verify the whole Birch
and Swinnerton-Dyer conjecture for some of such curves.

1. Introduction. Let E be an elliptic curve defined over Q
with complex multiplication by the ring of integers OF of a quadratic
imaginary field F . Let X(E/Q) be the Tate-Shafarevich group of E
over Q. The Birch and Swinnerton-Dyer conjecture (first formulation
[1], 1965, refined in [5], 1982) relates the rank of E(Q) and the order
of X(E/Q) to the behavior of a certain L-function, associated with E,
at 1.

The first major step towards a proof of the conjecture was made by
Coates and Wiles in 1977 in two papers ([3, 4]) in which they proved
that for an elliptic curve E with complex multiplication

rankE(Q) ≥ 1 =⇒ L(E/Q, 1) = 0.

Later Rubin in a series of papers ([7, 8 and many others]) proved,
among other important results, that if rankE(Q) = 0 then the conjec-
ture holds up to primes dividing #O∗

F .

In this paper we deal with curves Ea : y2 = x3 + a with a ∈ Z − {0}
which admit complex multiplication by the ring of integers of Q(

√−3).
This is the only case in which 3 divides #O∗

F and our goal is to bound
or, in some cases, compute exactly the order of the three-part of the
Tate-Shafarevich group of such curves.

In Section 2 we shall give precise definitions for the groups we are
interested in and fix notations for the rest of the paper.
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14 A. BANDINI

In Section 3 we shall define a number field K and describe a descent
procedure to embed the three-part of the Selmer group of Ea into
a subgroup of K∗/(K∗)3 (Theorem 3.6). The three-rank of such a
subgroup turns out to be always finite and easy to bound (Lemma 3.4).

In Section 4 we shall give some applications for the three-descent. In
some special cases we will be able to compute exactly the three-part of
the Selmer and Tate-Shafarevich groups and, with the help of Rubin’s
results, we will verify the whole conjecture for some curves of the form
y2 = x3 + b3.

2. Definitions and notations. Let E,E′ be elliptic curves defined
overQ with an isogeny ϕ of odd degree defined between them. Consider
the exact sequence

0 −→ E[ϕ] −→ E(Q)
ϕ−→ E′(Q) −→ 0

where Q is an algebraic closure of Q.

Taking cohomology with respect to the group G = Gal (Q/Q) and
doing the same with local fields, one obtains the diagram

0 w E′(Q)/ϕE(Q)

u

w H1(G, E[ϕ])

u

resp

w H1(G, E(Q))

u

resp

0 w E′(Qp)/ϕE(Qp) w H1(Gp, E[ϕ]) w H1(Gp, E(Qp))

where Gp = Gal (Qp/Qp) and resp is the usual restriction map.

Definition 2.1. The Selmer group of E, relative to ϕ, is

S(ϕ)(E/Q) = {x ∈ H1(G,E[ϕ]) :
resp(x) ∈ Im (E′(Qp)/ϕE(Qp)) for all p}.

The Tate-Shafarevich group of E is

X(E/Q) = {x ∈ H1(G,E(Q)) : resp(x) = 0 for all p}.

These groups fit into the exact sequence

0 −→ E′(Q)/ϕE(Q) −→ S(ϕ)(E/Q) −→ X(E/Q)[ϕ] −→ 0.
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Now assume that E admits complex multiplication by OF , the ring
of integers of an imaginary quadratic field F . Let L(E/Q, s) be the
L-function associated to E and let Ω ∈ C∗ be an OF generator of the
period lattice of a minimal model of E.

Theorem 2.2. Assume L(E/Q, 1) 	= 0. Then rankE(Q) = 0 and,
for any prime p not dividing #O∗

F , one has

#E(F )
L(E/Q, 1)

Ω
	≡ 0 (mod p) =⇒ X(E/Q)[p] = 0.

Proof. See [7, p. 528].

As a consequence we see that the computation of the three-part of the
Tate-Shafarevich group becomes crucial for the verification of the whole
conjecture if 3 divides #O∗

F . This happens if and only if F = Q(
√−3),

i.e., only for the curves of the form Ea : y2 = x3 + a with a 	= 0, and
we restrict our attention to them from now on.

Some curves of this type have been studied before. For example,
Stephens in [15] considers the case a = −2433D2 with D ∈ Z − {0}
square-free. With the help of Theorem 2.2 and of a formula by Schaefer
(see Section 4) we are able to go a bit further in the verification of the
conjecture.

3. The 3-descent. Let a be a nonzero integer not divisible
by any sixth power, and let Ea be the elliptic curve given by the
minimal Weierstrass equation y2 = x3 + a. Such a curve Ea = E has
discriminant ∆(E) = −2433a2, j-invariant j(E) = 0 and has complex
multiplication by the ring of integers of Q(

√−3).
It is easy to see that the 3-torsion subgroup of E contains the cyclic

subgroup C = {O, (0,√a), (0,−√
a)}, which is invariant under the

action of Gal (Q/Q). Then a curve E′ and an isogeny ϕ : E → E′

exist, both defined over Q, such that Ker (ϕ) = C.

Explicitly (see [17, p. 306]) we have

E′ : η2 = ξ3 − 27a and ϕ(x, y) =
(
y2 + 3a
x2

,
y(x3 − 8a)

x3

)
.
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The same remarks also hold for E′ and C ′={O, (0,√−27a), (0,−√−27a)}
so the dual isogeny ψ : E′ → E, such that ψϕ = [3] on E and ϕψ = [3]
on E′, is defined over Q as well.

Remark 3.1. Note that if 27 divides a, then the Weierstrass equation
for E′ is not minimal. In that case we shall define

E′ : η2 = ξ3 − a

27

and analogous small modifications are needed for ϕ and ψ.

Our goal is to embed the Selmer group S(ϕ)(E/Q) into a more
understandable group which we shall soon describe. We start with
some Galois cohomology to build a commutative diagram which will
simplify our task.

Consider the exact sequence

0 −→ C −→ E(Q)
ϕ−→ E′(Q) −→ 0.

Let K be a quadratic extension of Q. Let G = Gal (Q/Q) and GK =
Gal (Q/K). Taking G-cohomology and using the inflation-restriction
sequence, where [K : Q] = 2 yields H1(Gal (K/Q), CGK ) = 0, one gets
injections

E′(Q)/ϕE(Q) ↪→ H1(G,C) ↪→ H1(GK , C).

There are two natural choices for K depending on the action we want
on C.

1. K = Q(
√
a): trivial action (see [10]) which yields

H1(GK , C) � Hom(GK ,Z/3Z).

2. K = Q(
√−3a): action by inversion (see [17]) which gives
H1(GK , C) � H1(GK , µ3) � K∗/(K∗)3

where the last isomorphism holds by Hilbert Theorem 90.

The first one has been described by Satgé in [10] so we are going to
focus on the second and our results will be complementary to the ones
of that paper.
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From now on, let K = Q(
√−3a). We have obtained an embedding

δ : E′(Q)/ϕE(Q) ↪→ K∗/(K∗)3

which can be extended to local fields as well. Let p be a prime in Q and
let p be a prime of K lying above p. Then, with the same procedure,
we find

δp : E′(Qp)/ϕE(Qp) ↪→ K∗
p/(K

∗
p)

3.

Considering the maximal abelian unramified extensions of Qp and Kp,
we can build the following diagram

(1)

E′(Q)/ϕE(Q)

u

νp

w
δ K∗/(K∗)3

u

γp

E′(Qp)/ϕE(Qp)

u

νun
p

w

δp
K∗

p/(K
∗
p)

3

u

γun
p

E′(Qun
p )/ϕE(Qun

p ) w

δun
p

Kun∗
p /(Kun∗

p )3

which holds for any p dividing p and where all the horizontal maps are
injective.

Remark 3.2. Note that the definition of S(ϕ)(E/Q) given in Defini-
tion 2.1 can be reformulated as follows

S(ϕ)(E/Q) = {α ∈ K∗/(K∗)3 s.t. γp(α) ∈ Im δp for any p}

in the language of the diagram above.

To go on we need to define the set in which we want to embed
S(ϕ)(E/Q).

Definition 3.3. Let OK be the ring of integers of K, and let S be a
finite set of finite primes of OK . We define

H(S) = {x ∈ K∗/(K∗)3 : vp(x) ≡ 0 (mod 3) for any p /∈ S}.
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Lemma 3.4. Let S be as above, let r3(K) be the 3-rank of the ideal
class group of K, and let UK be the group of units of OK . Then

dimF3H(S) ≤ r3(K) + dim F3UK/U
3
K +#S.

Proof. Let OS be the ring of S-integers in OK . Taking the 3-part in
the exact sequence on ideles one has

0 −→ O∗
S/(O

∗
S)

3 −→ H(S) −→ Cl (OS)[3]

where Cl (OS) is a quotient of the ideal class group of K. Dirichlet’s
theorem on rank (O∗

S) immediately yields the desired estimate for
dimF3H(S).

Lemma 3.5. For any p of OK not dividing 3 and x ∈ K∗/(K∗)3

vp(x) ≡ 0 (mod 3)⇐⇒ γunp γp(x) = 1.

Proof. vp(x) ≡ 0 (mod 3) ⇔ γp(x) is trivial or a unit in K∗
p/(K∗

p)3.
This happens if and only if Kp( 3

√
x) is Kp itself or the cubic unramified

extension of Kp, i.e., if and only if x ∈ (Kun∗
p )3 or, which is the same,

γunp γp(x) = 1.

Our final step consists in minimizing #S, the number of “exceptional”
primes, in order to find a sharper bound for dimF3S

(ϕ)(E/Q).

Theorem 3.6. S(ϕ)(E/Q) embeds into H(S) with

S = {p : p|p, p is of bad reduction for E,#E′(Qp)/ϕE(Qp) 	= 1}.

Proof. We distinguish two cases for the primes of Q.

1. Primes of good reduction. Let p be a prime of good reduction for
E, i.e., p 	= 2, 3 and p does not divide a. Then the reduction mod p
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map gives a commutative diagram

0 w E1(Qun
p )

u

ϕ

w E(Qun
p )

u

ϕ

w

modp
E(Fp)

u

ϕ

w 0

0 w E′
1(Q

un
p ) w E′(Qun

p ) w

modp
E′(Fp) w 0

where the right and left vertical arrows are surjective (the left one
because ϕψ = [3] and this is an isomorphism on E′

1(Q
un
p ) by [13]).

Therefore E′(Qun
p )/ϕE(Qun

p ) = 0 and Im δp ⊆ Ker γunp . By Re-
mark 3.2 and Lemma 3.5, one has

S(ϕ)(E/Q) ↪→ H (primes of K lying over primes of bad reduction).

2. Primes of bad reduction. Diagram (1) clearly shows that if
E′(Qp)/ϕE(Qp) = 0, then

S(ϕ)(E/Q) ↪→ {x ∈ K∗/(K∗)3 s.t. vp(x) ≡ 0 (mod 3) for any p|p}.

Hence such p’s can be erased from the exceptional set, thus giving the
desired embedding for S(ϕ)(E/Q).

4. Applications to the Birch and Swinnerton-Dyer conjec-
ture. To give examples and compute some explicit cases our main tool
will be a formula proved by Schaefer ([12, Lemma 3.8]) which states

#E′(Qp)/ϕE(Qp) =
|ϕ′(0)|−1

p #E(Qp)[ϕ]#E′(Qp)/E′
0(Qp)

#E(Qp)/E0(Qp)

where |ϕ′(0)|p is the p-adic normalized absolute value of the first
derivative of the power series expansion of ϕ evaluated at 0 (see [13]).

It is not hard to see that |ϕ′(0)|−1
p = 1 if p 	= 3 and

|ϕ′(0)|−1
3 =

{
3 if 27 divides a
1 otherwise

by Remark 3.1.
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Moreover, E(Qp)[ϕ] = C ∩E(Qp), so

#E(Qp)[ϕ] =
{
3 if a is a square in Qp

1 otherwise.

The remaining terms can be computed with Tate’s algorithm ([16,
14], or for the results [10]). For p of bad reduction different from 3 one
has

E(Qp)/E0(Qp) is
{
equal to 3 if a is a square in Qp

prime with 3 otherwise.

Finally E(Q3)/E0(Q3) has order 3 in the following cases

i) v3(a) = 2 and a/9 ≡ 1 (mod 3);

ii) v3(a) = 3 and a/27 ≡ 2, 4 (mod 9);

iii) v3(a) = 4 and a/81 ≡ 1 (mod 3)

and is prime with 3 in all the other cases.

Similar computations can be done for E′(Qp)/E′
0(Qp) substituting a

with −27a, or −a/27.
An immediate application is the following

Theorem 4.1. Let a =
∏
p|a p

vp(a) > 0 with 1 ≤ vp(a) < 6 and a not
a square. Then S(ϕ)(E/Q) = 0 if the following conditions are verified

1) r3(Q(
√−3a)) = 0;

2) for p of bad reduction but p 	= 2, 3, vp(a) ≡ 1 (mod 2),

or vp(a) ≡ 0 (mod 2) and −27a/pvp(a) is not a square mod p;

3) v2(a) ≡ 1 (mod 2),

or v2(a) ≡ 0 (mod 2) and a/2v2(a) ≡ 1, 3, 7 (mod 8);

4) a ≡ 2, 8 (mod 9), or v3(a) = 1 and a/3 ≡ 1 (mod 3),

or v3(a) = 2, or v3(a) = 3 and a/27 ≡ 2, 4 (mod 9).

Proof. We give the explicit computations for the easy case of p of bad
reduction different from 2 and 3.
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If vp(a) ≡ 1 (mod 2), then all the quantities involved are prime with
3 so E′(Qp)/ϕE(Qp) = 0.

If vp(a) ≡ 0 (mod 2) then the contributions of E(Qp)[ϕ] and
E(Qp)/E0(Qp) compensate and we are left with E′(Qp)/E′

0(Qp) which
gives

#E′(Qp)/ϕE(Qp) =
{
3 if −27a/pvp(a) is a square mod p
1 otherwise.

Note that this holds also in the case 27 | a because −27a and −a/27
differ by a square.

In the same way one computes the cases p = 2, 3 using the formulas
above.

#E′(Q2)/ϕE(Q2) is equal to
1 if v2(a) ≡ 1 (mod 2),

or v2(a) ≡ 0 (mod 2) and a/2v2(a) ≡ 1, 3, 7 (mod 8);

3 if v2(a) ≡ 0 (mod 2) and a/2v2(a) ≡ 5 (mod 8).
#E′(Q3)/ϕE(Q3) is equal to

1 if a ≡ 2, 8 (mod 9),
or v3(a) = 1 and a/3 ≡ 1 (mod 3),
or v3(a) = 2,
or v3(a) = 3 and a/27 ≡ 2, 4 (mod 9);

3 if a ≡ 1, 4, 5 (mod 9),
or v3(a) = 1 and a/3 ≡ 2 (mod 3),
or v3(a) = 3 and a/27 	≡ 2, 4 (mod 9),
or v3(a) = 4,
or v3(a) = 5 and a/243 ≡ 1 (mod 3);

9 if a ≡ 7 (mod 9),
or v3(a) = 5 and a/243 ≡ 2 (mod 3).

By Theorem 3.6 and conditions 2, 3 and 4, we have

S(ϕ)(E/Q) ↪→ H(∅).
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By Lemma 3.4, condition 1 and the fact that a is positive and not a
square, one has dimF3H(∅) = 0.

Remark 4.2. In [10] there are similar conditions regarding the nullity
of the rank of the same family of elliptic curves (Théorème 3.5).
Obviously the fact that S(ϕ)(E/Q) is trivial does not imply that the
rank is 0 (and vice versa). Moreover, our initial choice of the field K
gives us conditions which are complementary to those of that paper.
For example, Théorème 3.5 starts with the condition a ≡ 5, 7 (mod 9).

An interesting case is given by the curves

Eb3 : y2 = x3 + b3

with b a square-free integer. Such curves have a rational point of
order 2, namely P = (−b, 0), and it is possible to find the 2-part of the
Selmer group by explicit computation (see [13]). Together with our
procedure this might be useful to verify the full Birch and Swinnerton-
Dyer conjecture in some cases.

For these curves the previous theorem translates into

Theorem 4.3. Let a = b3 with b > 1 square-free. Then
S(ϕ)(E/Q) = 0 if the following conditions are verified:

1) r3(Q(
√−3b)) = 0;

2) 2 divides b or b ≡ 1, 3, 7 (mod 8);

3) b ≡ 2, 5, 8 (mod 9).

4.1. Example 1: S(ϕ)(E/Q) = 0. In the following tables we
give all the curves verifying the conditions of Theorems 4.1 or 4.3 for
2 ≤ a ≤ 102 and 5 ≤ b ≤ 119 (many computations were done using
the APECS program). The first entry is a, or b, and the second is the
rank of the curve E : y2 = x3 + a, or y2 = x3 + b3. Once we know
dimF3S

(ϕ)(E/Q) we can compute dimF3S
(ψ)(E′/Q) with a theorem

by Cassels [10, Proposition 1.17], and this is our third entry. The
fourth one is the order of the 3-part of the Tate-Shafarevich group.
In four cases our procedure only gives an estimate. In these four
cases, using the exact sequence of Section 2, it is easy to see that
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dimF3X(E/Q)[ψ] = 2, but this is not enough to compute X(E/Q)[3]
exactly.

TABLE 1. y2 = x3 + a.

a rank (E) S(ψ)(E′) X(E) a rank (E) S(ψ)(E′) X(E)
2 1 1 1 48 1 1 1
3 1 1 1 54 1 1 1
8 1 1 1 56 1 1 1
11 1 1 1 57 2 2 1
12 1 1 1 63 2 2 1
17 2 2 1 65 2 2 1
18 1 1 1 66 1 1 1
26 1 1 1 71 1 1 1
30 1 1 1 72 1 1 1
35 1 1 1 89 2 2 1
38 1 1 1 90 0 2 ≤ 9
39 1 1 1 92 1 1 1
44 1 1 1 99 1 1 1
47 1 1 1 102 1 1 1

TABLE 2. y2 = x3 + b3.

b rank (E) S(ψ)(E′) X(E) b rank (E) S(ψ)(E′) X(E)
11 1 1 1 59 1 1 1
14 1 1 1 65 2 2 1
17 0 2 ≤ 9 71 1 1 1
23 1 1 1 86 1 1 1
26 1 1 1 89 0 2 ≤ 9
35 1 1 1 95 1 1 1
38 1 1 1 107 1 1 1
41 0 2 ≤ 9 110 1 1 1
47 1 1 1 119 1 1 1
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The computations are easy: for example take a = 17. From the exact
sequence for the Selmer group, we get

S(ϕ)(E/Q) = 0 =⇒ E′(Q)/ϕE(Q) = X(E/Q)[ϕ] = 0

and Cassels’ theorem yields dimF3S
(ψ)(E′/Q) = 2. The sequence

0 −→ E′[ψ]/ϕE[3] −→ E′/ϕE −→ E/3E −→ E/ψE′ −→ 0

(where we omitted the Q’s for aesthetic reasons) and the fact that
rank (E) = 2 yield

dim F3E(Q)/ψE
′(Q) = 2.

Therefore E(Q)/ψE′(Q) � S(ψ)(E′/Q) =⇒ X(E′/Q)[ψ] = 0. Finally
the exact sequence

0 −→ X(E/Q)[ϕ] −→ X(E/Q)[3] −→ X(E′/Q)[ψ],

shows that X(E/Q)[3] = 0.

4.2. Example 2: the Birch and Swinnerton-Dyer conjecture.
Consider the curve E : y2 = x3 + 393 which has rank 0. Standard
computational methods show that the predicted order of the Tate-
Shafarevich group is 1 and that 2 is the only prime dividing

#E(Q(
√−3)) L(E/Q, 1)

Ω
.

Then by Theorem 2.2, X(E/Q)[p] = 0 for any p 	= 2, 3 and it suffices
to compute the 2 and 3 Sylow subgroups to verify the conjecture.

The presence of a rational point P = (−39, 0) of order 2 makes the
computation of the Selmer groups quite easy for the prime 2. Following
[13], one defines

Q(S, 2) = {±1,±2,±3,±13,±6,±26,±39,±78}.

With Silverman’s embedding for the 2-descent, one checks that

S(λ)(E/Q) � {1,−3} and S(ν)(E′′/Q) � {1, 3}
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where λ : E → E′′ and ν : E′′ → E are rational isogenies such that
νλ = [2] on E. It follows that

#X(E/Q)[λ] = 1 and #X(E′′/Q)[ν] = 1.

Hence the sequence

0 −→ X(E/Q)[λ] −→ X(E/Q)[2] −→ X(E′′/Q)[ν]

yields #X(E/Q)[2] = 1.

For the 3-part, Theorem 3.6 with K = Q(
√−13) shows that

S(ϕ)(E/Q) ↪→ H({p})

where p is the only prime ofK lying above 3. Therefore, dimF3S
(ϕ)(E/Q) ≤

1 and Cassels’ theorem yields dim F3S
(ϕ) = dimF3S

(ψ). So, by now,
we only get 1 ≤ #X(E/Q)[3] ≤ 9 which is not enough even if we know
from another theorem of Cassels (see [13]) that this order has to be a
square.

In this case we can solve this problem going into the details of the
computations done so far. Tracing back the maps in cohomology which
lead to the diagram in Section 3, one sees that

δp(ξ, η) = (η + 13
√−13)(K∗

p)
3

(see [11, Theorem 1.2] or [17]). Note that E′ : η2 = ξ3 − 133 and it is
easy to see that, for any (ξ, η) ∈ E′(Q3),

vp(η + 13
√−13) ≡ 0 (mod 3).

Hence we can take p out of our exceptional set and, by Lemma 3.5, we
get

S(ϕ)(E/Q) ↪→ H(∅),

i.e.,
dim F3S

(ϕ)(E/Q) = dimF3S
(ψ)(E′/Q) = 0

and eventually X(E/Q)[3] = 0.
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Therefore #X(E/Q) = 1 and the whole conjecture is verified. The
same procedure can be used, for example, for b = 66, 102, 111. We
only remark that, in the cases b = 66, 111, one finds

#X(E/Q)[3] = 1 and #X(E/Q)[2] = 4.

The expected size of X(E/Q) is 4 in both cases but, to conclude, one
needs to show that there are no elements of order 4 in X(E/Q)[4] and
this needs some more powerful techniques (see, for example, [2] or [6]).
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