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SPECTRAL PROPERTIES OF THE NONHOMOGENEOUS
KLEIN-GORDON s-WAVE EQUATIONS

ELGIZ BAIRAMOV

ABSTRACT. In this article we investigate the eigenvalues
and the spectral singularities of the boundary value problem

y′′ + [λ − p(x)]2y = f(x), x ∈ R+ = [0,∞),

αy′(0)− βy(0) = 0,

in the space L2(R+) where p and f are complex-valued
functions and α, β ∈ C, with |α|+ |β| �= 0.

1. Introduction. Let L denote the operator generated in L2(R+)
by the differential expression

l(y) = −y′′ + q(x)y, x ∈ R+ = [0,∞),

with the boundary condition y′(0) − hy(0) = 0, where q is a complex-
valued function and h ∈ C. The study of the spectral analysis of L was
begun by Naimark [18]. He proved that the spectrum of L consists of
the eigenvalues, the continuous spectrum and the spectral singularities.
The spectral singularities are poles of the kernel of the resolvent and are
also imbedded in the continuous spectrum, but they are not eigenvalues.

Lyance [16] showed that the spectral singularities play an important
role in the spectral analysis of L. He also investigated the effect of
the spectral singularities in the spectral expansion. The spectral sin-
gularities of dissipative Schrödinger operators with rapidly decreasing
potential were considered by Hruscev [9]. In [1] and [15], by means of
the uniqueness theorems of analytic functions, the dependence of the
structure of the spectral singularities of Quadratic Pencil of Schrödinger
Operators (QPSO) was studied. A two-fold spectral expansion in terms
of the principal functions of QPSO with spectral singularities has been
derived in [2]. In that article the effect of the spectral singularities
in the spectral expansion of QPSO has also been investigated via the

Received by the editors on November 20, 2000.

Copyright c©2004 Rocky Mountain Mathematics Consortium

1



2 E. BAIRAMOV

regularization of divergent integrals. Using the analytical properties of
the generalized spectral function in the sense of Marchenko [17], the
role of the spectral singularities in the spectral expansion of discrete
Dirac operators have been studied in [3].

Let us consider the boundary value problem (BVP)

y′′ + [λ− p(x)]2y = 0, x ∈ R+,(1.1)
y(0) = 0.(1.2)

In relativistic quantum mechanics the equation (1.1) is called the Klein-
Gordon s-wave equation for a particle of zero mass with static potential
p [8]. The spectrum of the BVP (1.1) (1.2) for a real-valued function
p and for a complex-valued function p were studied in [5, 6, 10, 11]
and in [4], respectively.

In the space L2(R+) we consider the following nonhomogeneous BVP

y′′ + [λ− p(x)]2y = f(x), x ∈ R+,(1.3)
αy′(0) − βy(0) = 0,(1.4)

where p and f are complex-valued functions, p is continuously differ-
entiable on R+ and α, β ∈ C, with |α| + |β| �= 0.

In this paper we discuss the eigenvalues and the spectral singularities
of the BVP (1.3) (1.4) and prove that this BVP has a finite number
of eigenvalues and spectral singularities and each of them is of a finite
multiplicity under the conditions

lim
x→∞ p(x) = 0, sup

x∈R+

[|p′(x)|eε
√

x] <∞,

and
sup

x∈R+

[|f(x)|eεx1+δ

] <∞, ε > 0, δ > 0.

Some results on the study of the spectral analysis of the nonhomoge-
neous Schrödinger operators may be found in [12 14].

2. Jost solutions of homogeneous equation (1.1). Let us
suppose that

(2.1) lim
x→∞ p(x) = 0,

∫ ∞

0

x|p′(x)| dx <∞.
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We will denote the solutions of (1.1) satisfying

lim
x→∞ y(x, λ)e−iλx = 1 for λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0},

and

lim
x→∞ y(x, λ)eiλx = 1 for λ ∈ C− := {λ : λ ∈ C, Imλ ≤ 0},

by e+(x, λ) and e−(x, λ), respectively. The solutions e+(x, λ) and
e−(x, λ) are called the Jost solutions of (1.1). Under the condition
(2.1) the Jost solutions have the representations [10],

(2.2) e+(x, λ) = eiw(x)+iλx +
∫ ∞

x

K+(x, t)eiλt dt,

and

(2.3) e−(x, λ) = e−iw(x)−iλx +
∫ ∞

x

K−(x, t)e−iλt dt,

for λ ∈ C+ and λ ∈ C−, respectively, where w(x) =
∫ ∞

x
p(t) dt, and

the kernels K±(x, t) may be expressed in terms of p · K±(x, t) are
continuously differentiable with respect to their arguments and

|K±(x, t)| ≤ C
∫ ∞

(x+t)/2

θ(s) ds,(2.4)

|K±
xi

(x1, x2)| ≤ C
{∫ ∞

(x1+x2)/2

θ(t) dt+ θ
(
x1 + x2

2

)}
, i = 1, 2,

(2.5)

where C > 0 is a constant and

θ(x) = |p(x)|2 + |p′(x)|.

Therefore e+(x, λ) and e−(x, λ) are analytic with respect to λ in
C+ := {λ : λ ∈ C, Imλ > 0} and C− := {λ : λ ∈ C, Imλ < 0},
respectively, and continuous on the real axis. e±(x, λ) also satisfy

e±(x, λ) = e±i[w(x)+λx] +O
(
e∓x Im λ

|λ|
)
, λ ∈ C±|λ| −→ ∞.
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According to (2.2) (2.5), the Wronskian of e+(x, λ) and e−(x, λ) is

W [e+(x, λ), e−(x, λ)] = −2iλ,

for λ ∈ R = (−∞,∞).

Let ϕ+(x, λ) and ϕ−(x, λ) denote the unbounded solutions of (1.1)
subject to the conditions limx→∞ eiλxϕ+(x, λ) = 1 for λ ∈ C+ and
limx→∞ e−iλxϕ−(x, λ) = 1 for λ ∈ C−, respectively. Then

W [e±(x, λ), ϕ±(x, λ)] = ∓2iλ, λ ∈ C±.

3. Discrete spectrum of (1.3) (1.4). Let us define the following
functions

(3.1)
A±(λ) =

∫ ∞

0

f(x)e±(x, λ) dx+ αe±x (0, λ) − βe±(0, λ),

β±(λ) =
∫ ∞

0

f(x)ϕ±(x, λ) dx+ αϕ±
x (0, λ) − βϕ±(0, λ).

It is obvious that the functions

(3.2)

E±(x, λ) = ± 1
2iλ

{
ϕ±(x, λ)

∫ ∞

x

f(t)e±(t, λ) dt

− e±(x, λ)
∫ ∞

x

f(t)ϕ±(t, λ) dt

+B±(λ)e±(x, λ) −A±(λ)ϕ±(x, λ)
}
,

are the solutions of the BVP (1.3) (1.4).

Let us denote the eigenvalues and the spectral singularities of
(1.3) (1.4) by σp and σss, respectively.

Lemma 3.1. If (2.1) and

(3.3) sup
x∈R+

[|f(x)|eεx1+δ

] <∞, ε > 0, δ > 0,

hold, then

(3.4) σp = {λ : λ ∈ C+, A
+(λ) = 0} ∪ {λ : λ ∈ C−, A−(λ) = 0}.



SPECTRAL PROPERTIES OF s-WAVE EQUATIONS 5

Proof. Let λ0 ∈ C+. From (2.2) and (2.4), we get that e+(x, λ0) ∈
L2(R+) and ϕ+(x, λ0) /∈ L2(R+). Since

ϕ+(x, λ)
∫ ∞

x

f(t)e+(t, λ) dt = O(e−(ε/2)x1+δ

), x→ ∞,

and

e+(x, λ)
∫ ∞

x

f(t)ϕ+(t, λ) dt = O(e−(ε/2)x1+δ

), x→ ∞,

it follows from (3.2) that E+(x, λ0) belongs to L2(R+) if and only if
A+(λ0) = 0. Let λ0 ∈ C−. Similarly E−(x, λ0) belongs to L2(R+) if
and only if A−(λ0) = 0.

Analogously to the homogeneous Schrödinger and Klein-Gordon
equations we have

(3.5) σss = {λ : λ ∈ R∗, A+(λ) = 0} ∪ {λ : λ ∈ R∗, A−(λ) = 0},
where R∗ = R \ {0}, [1, 4].

From (3.4) and (3.5) we see that in order to investigate the structure
of the eigenvalues and the spectral singularities of the BVP (1.3) (1.4)
we need to discuss the structure of the zeros of A+ and A− in C+ and
C−, respectively. For the sake of simplicity we will consider only the
zeros of A+ in C+.

Let us define

P±
1 = {λ : λ ∈ C±, A±(λ) = 0}, P±

2 = {λ : λ ∈ R, A±(λ) = 0}.

It follows from (3.4) and (3.5) that

(3.6) σp = P+
1 ∪ P−

1 , σss = {P+
2 ∪ P−

2 } \ {0}.

Lemma 3.2. If (2.1) and (3.3) hold, then

(i) The set P+
1 is bounded and has at most a countable number of

elements, and its limit points can lie only in a bounded subinterval of
the real axis.
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(ii) The set P+
2 is compact and its linear Lebesgue measure is zero.

Proof. Equations (2.2) and (3.1) yield that A+ is analytic in C+,
continuous in C+, and has the form

(3.7) A+(λ) = iλαeiw(0) + η +
∫ ∞

0

g(t)eiλt dt,

where
η = −α[ip(0)eiw(0) +K+(0, 0)] − βeiw(0),

(3.8) g(t) = f(t)eiw(t) +
∫ t

0

f(x)K+(x, t) dx+αK+
x (0, t)−βK+(0, t).

By (3.8), we have g ∈ L1(R+), hence (3.7) implies that

(3.9) A+(λ) = iλαeiw(0) + η + 0(1), λ ∈ C+, |λ| −→ ∞,

which shows that the boundedness of the set P+
1 and P+

2 . Since the
function A+ is analytic in C+, we get that P+

1 has at most a countable
number of elements and its limit points can lie only in a bounded
subinterval of the real axis. By the boundary value uniqueness theorem
of analytic function we obtain that the set P+

2 is closed and its linear
Lebesgue measure is zero [7].

From (3.6) and Lemma 3.2 we immediately get the following.

Theorem 3.3. Under the conditions (2.1) and (3.3), we have

(i) The set of eigenvalues of the BVP (1.3) (1.4) is bounded, is
no more than countable and its limit points can lie only in a bounded
subinterval of the real axis.

(ii) The set of spectral singularities of the BVP (1.3) (1.4) is bounded
and its linear Lebesgue measure is zero.

Defintion 3.4. The multiplicity of zero A+, or A−, in C+, or C−, is
defined as the multiplicity of the corresponding eigenvalue or spectral
singularity of the BVP (1.3) (1.4).
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Theorem 3.5. If (3.3) and

(3.10) lim
x→∞ p(x) = 0, sup

x∈R+

[eεx|p′(x)|] <∞, ε > 0,

hold, then the BVP (1.3) (1.4) has a finite number of eigenvalues and
spectral singularities and each of them is of a finite multiplicity.

Proof. From (2.4), (2.5), (3.3), (3.8) and (3.10), we find that

(3.11) |g(t)| ≤ Ce−(ε/4)t,

where C > 0 is a constant. Equations (3.7) and (3.11) show that the
function A+ has an analytic continuation from the real axis to the half-
plane Imλ > −ε/4. So the limit points of the set P+

1 and P+
2 cannot

lie in R, i.e., the bounded sets P+
1 and P+

2 have no limit points (see
Lemma 3.2). Therefore, we have the finiteness of the zeros of A+ in
C+. Moreover, all zeros of A+ in C+ has a finite multiplicity. Similarly,
we get that the function A− has a finite number of zeros with a finite
multiplicity in C−.

It is seen that the conditions (3.3) and (3.10) guarantee the analytic
continuation of A+ and A− from the real axis to lower and upper
half-planes, respectively. So the finiteness of eigenvalues and spectral
singularities of the BVP (1.3) (1.4) are obtained as a result of this
analytic continuation.

Now let us suppose that

(3.12)

lim
x→∞ p(x) = 0, sup

x∈R+

{eεxγ |p′(x)|} <∞, ε > 0,
1
2
≤ γ < 1,

hold, which is weaker than (3.10). It is evident that, under the condi-
tions (3.3) and (3.12), the function A+ is analytic in C+ and infinitely
differentiable on the real axis. But A+ does not have an analytic con-
tinuation from the real axis to the lower half-plane. Similarly A− does
not have an analytic continuation from the real axis to the upper half-
plane. Therefore, under the conditions (3.3) and (3.12), the finiteness
of eigenvalues and spectral singularities of the BVP (1.3) (1.4) cannot
be proved by the same technique used in Theorem 3.5.
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Let us denote the set of all limit points of P+
1 and P+

2 by P+
3 and P+

4 ,
respectively, and the set of all zeros of A+ with infinite multiplicity in
C+ by P+

5 .

It is obvious that

P+
1 ∩ P+

5 = φ, P+
3 ⊂ P+

2 , P
+
4 ⊂ P+

2 , P
+
5 ⊂ P+

2

and the linear Lebesgue measures of P+
3 , P+

4 and P+
5 are zero. Using

the continuity of all derivatives of A+ on the real axis, we get

(3.13) P+
3 ⊂ P+

5 , p
+
4 ⊂ P+

5 .

To prove the next result, we will use the following uniqueness theorem
for the analytic functions on the upper half-plane.

Theorem 3.6 [1]. Let us assume that the function u is analytic in
C+, all of is derivatives are continuous up to the real axis and there
exist T > 0 such that

(3.14) |u(n)(z)| ≤ Cn, n = 0, 1, . . . , z ∈ C+, |z| < 2T,

and

(3.15)
∣∣∣∣
∫ −T

−∞

ln |u(x)|
1 + x2

dx

∣∣∣∣ <∞,
∣∣∣∣
∫ ∞

T

ln |u(x)|
1 + x2

dx

∣∣∣∣ <∞.

If the set Q with linear Lebesgue measure zero is the set of all zeros of
the function u with infinite multiplicity, and if

∫ h

0

lnF (s) dµ(Qs) = −∞,

where F (s) = inf
n

(Cns
n/n!), n = 0, 1, 2, . . . , µ(Qs) is the linear

Lebesgue measure of s-neighborhood of Q and h is an arbitrary pos-
itive constant, then u(z) = 0.

Lemma 3.7. If (3.3) and (3.12) hold, then P+
5 = φ.
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Proof. It is easy to see from Lemma 3.2 and (3.7), (3.8) that A+

satisfies (3.14) and (3.15). Since the function A+ is not equal to zero
identically, then by Theorem 3.6, P+

5 satisfies

(3.16)
∫ h

0

lnF (s) dµ(P+
5,s) > −∞,

where F (s) = infn(Cns
n/n!), µ(P+

5,s) is the linear Lebesgue measure of
s-neighborhood of P+

5 and h > 0 is a constant.

Using (2.4), (2.5), (3.7), (3.8) and (3.12), we obtain

(3.17)
∣∣∣∣ d

n

dλn
A+(λ)

∣∣∣∣ ≤ Cn = 2nC

∫ ∞

0

xne−εxγ

dx ≤ Ddnn!nn(1−γ/γ),

where D and d are constants depending on ε, δ, γ and C. Substituting
(3.17) in the definition of F (s) we arrive at

F (s) = inf
n

Cns
n

n!
≤ D exp

{
− 1 − γ

γ
e−1/(1−γ)d−γ/(1−γ)s−γ/(1−γ)

}
,

or

(3.18)
∫ h

0

s−γ/(1−γ) dµ(P+
5,s) <∞,

by (3.16). Since γ/(1 − γ) ≥ 1, consequently (3.18) holds for arbitrary
s if and only if µ(P+

5,s) = 0 or P+
5 = φ.

Theorem 3.8. Under the conditions (3.3) and (3.12), the (BVP)
(1.3) (1.4) has a finite number of eigenvalues and spectral singularities,
and each of them is of a finite multiplicity.

Proof. To be able to prove the theorem we have to show that the
functions A+ and A− have a finite number of zeros with a finite
multiplicities in C+ and C−, respectively. We will prove it only for
A+.

From (3.13) and Lemma 3.7, we find that P+
3 = P+

4 = φ. So the
bonded sets P+

1 and P+
2 have no limit points, i.e., the function A+ has
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only a finite number of zeros in C+. Since P+
5 = φ these zeros are of

finite multiplicity.

It follows from Theorem 3.8 that the weakest conditions which guar-
antee the finiteness of eigenvalues and spectral singularities of the BVP
(1.3) (1.4) are

lim
x→∞ p(x) = 0, sup

x∈R+

[eε
√

x|p′(x)|] <∞,

sup
x∈R+

[eεx1+δ |f(x)|] <∞, ε > 0, δ > 0.
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105 118, 119 137.

12. A.M. Krall, A nonhomogeneous eigenfunction expansion, Trans. Amer. Math.
Soc. 117 (1965), 352 361.



SPECTRAL PROPERTIES OF s-WAVE EQUATIONS 11

13. , Existence of solutions of nonhomogeneous linear differential equa-
tions of second order in L2, Duke Math. J. 32 (1965), 97 102.

14. , Nonhomogeneous differential operators, Michigan Math. J. 12 (1965),
247 255.
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