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ON INFINITE TENSOR PRODUCTS
OF PROJECTIVE UNITARY REPRESENTATIONS

ERIK BÉDOS AND ROBERTO CONTI

ABSTRACT. We initiate a study of infinite tensor products
of projective unitary representations of a discrete group G.
Special attention is given to regular representations twisted by
2-cocycles and to projective representations associated with
CCR-representations of bilinear maps. Detailed computations
are presented in the case where G is a finitely generated free
abelian group. We also discuss an extension problem about
product type actions of G, where the projective representation
theory of G plays a central role.

1. Introduction. The theory of infinite tensor products of Hilbert
spaces started with the seminal paper by von Neumann [22]. Later on,
Guichardet [11, 12] approached this matter from a slightly different
point of view and developed a unified framework for treating several
related concepts involving operators, algebras and functionals. The
notion of infinite tensor product has been mainly used in this form in
operator algebras and quantum field theory over the last three decades,
see, e.g., [10] for a recent overview.

The existence of some infinite tensor product of representations of
a group has been established and used in some recent works. For
example, it was shown in [1] that a locally compact group is σ-compact
and amenable if and only if there exists an infinite tensor power of its
regular representation. Such an infinite tensor power construction was
then a useful tool for studying covariance of certain (induced) product-
type representations of generalized Cuntz algebras with respect to
natural product-type actions. This circle of ideas has been generalized
and thoroughly investigated in [4]. In another direction, the infinite
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tensor product of certain unitary representations of some group of
diffeomorphisms was shown to exist under suitable assumptions in [13].

In this paper we initiate a study of infinite tensor products of
projective unitary representations of a discrete group. It is in fact not
obvious that such infinite tensor products exist at all. Indeed it is quite
easy to realize that it is impossible to form the infinite tensor power
of a single projective unitary representation unless the associated 2-
cocycle vanishes. Besides its intrinsic interest, this new generality has
the potential advantage to allow for extensions of the analysis given in
[1, 4] to a broader class of product-type actions on the 0th-degree part
of extended Cuntz algebras. It is also relevant when studying extensions
of product-type actions from the algebraic to the von Neumann algebra
level. Finally it provides a way to represent faithfully on infinite tensor
product spaces some familiar C∗-algebras like noncommutative tori. To
avoid technicalities, we stick to the case of a discrete group, although it
could be of interest in the future to consider a locally compact, or even
just a topological, group and strongly continuous projective unitary
representations of such a group.

The paper is organized as follows. Section 2 is devoted to some pre-
liminaries on projective unitary representations, product sequences of
2-cocycles and infinite tensor products. Section 3 contains our main
existence results for infinite tensor products of projective unitary rep-
resentations. We especially display some sufficient conditions for count-
able amenable groups in the case of projective regular representations
and in the case of projective representations associated with CCR-
representations of bilinear maps. To illustrate our work we specialize
in Section 4 to the case of finitely generated free abelian groups. The
final section deals with infinite tensor products of actions of a discrete
group G on von Neumann algebras. We concentrate our attention to
the existence problem of such product actions in the case of unitarily
implemented actions. One of our results exhibits an obstruction for
extending some algebraic tensor power action of G to the weak closure
that lies in the second cohomology group H2(G,T). In another result,
the obstruction lies in the non-amenability of G.

2. Preliminaries. Throughout this note G denotes a non-trivial
discrete group, with neutral element e.
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A 2-cocycle, or multiplier, on G with values in the circle group T is
a map u : G×G→ T such that

u(x, y)u(xy, z) = u(y, z)u(x, yz), x, y, z ∈ G,

see, e.g., [5, Chapter IV]. We will consider only normalized 2-cocycles,
satisfying

u(x, e) = u(e, x) = 1, x ∈ G.

The set of all such 2-cocycles, which is denoted by Z2(G,T), becomes
an abelian group under pointwise product. We equip Z2(G,T) with
the topology of pointwise convergence.

A 2-cocycle v on G is called a coboundary whenever v(x, y) =
ρ(x)ρ(y)ρ(xy), (x, y ∈ G), for some ρ : G→ T, ρ(e) = 1, in which case
we write v = dρ (such a ρ is uniquely determined up to multiplication by
a character). The set of all coboundaries, which is denoted byB2(G,T),
is a subgroup of Z2(G,T), which is easily seen to be closed. (Indeed,
assume that (dρα) is a net in B2(G,T) converging to v ∈ Z2(G,T).
Due to Tychonov’s theorem, we may, by passing to a subnet if necessary,
assume that ρα converges pointwise to ρ, for some ρ : G→ T, ρ(e) = 1.
Then we have v = dρ.)

The quotient group H2(G,T) := Z2(G,T)/B2(G,T) is called the
second cohomology group of G with values in T. We denote elements
in H2(G,T) by [u] and write v ∼ u when [v] = [u] (u, v ∈ Z2(G,T)).
We also write v ∼ρ u when we have v = (dρ)u for some coboundary
dρ.

We recall a few facts concerning infinite products of complex numbers,
see [17]. Let (zi) denote a sequence of complex numbers. We say that
the infinite product

∏
i zi exists, or converges, if the limit of the net

(
∏
i∈J zi)J∈F exists, where F denotes the family of nonempty finite

subsets of N ordered by inclusion. We then also use
∏
i zi to denote

this limit. We will need the following result:

Assume that
∑
i |1 − zi| < ∞. Then

∏
i zi exists, and

∏
i zi �= 0 if all

zi’s are nonzero. Conversely, assume that
∏
i zi converges to a nonzero

element. Then
∑
i |1 − zi| <∞.

We shall be interested in product sequences in Z2(G,T): we call a
sequence (ui) in Z2(G,T) a product sequence whenever the (pointwise)
infinite product u =

∏
i ui exists on G × G (u being then obviously a

2-cocycle itself).
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A cohomological problem concerning product sequences is that per-
turbing a product sequence (by a coboundary in each component) does
not necessarily lead to a product sequence, as may be illustrated by
taking all ui’s to be 1 and perturbing by the same coboundary v �= 1 in
each component. The following lemma somewhat clarifies this problem.

Lemma 2.1. Let (ui) and (vi) be two sequences in Z2(G,T)
satisfying vi ∼ρi

ui for every i.

i) Assume that ρ :=
∏
i ρi exists. Then (vi) is a product sequence

if and only if (ui) is a product sequence, in which case we have∏
i vi ∼ρ

∏
i ui.

ii) Assume that (ui) and (vi) are both product sequences. Then∏
i vi ∼

∏
i ui, even if

∏
i ρi does not necessarily exist.

Proof. As i) is straightforward, we only show ii). So we assume that
u =

∏
i ui and v =

∏
i vi both exist. Then w :=

∏
i dρi =

∏
i uivi

also exists and is the limit of a net of 2-coboundaries. As B2(G,T) is
closed, this implies that w ∈ B2(G,T). Since v = wu, this shows that
v ∼ u, as asserted.

(To see that
∏
i ρi does not necessarily exist, assume that G possesses

a nontrivial character γ. Set ui = vi = 1 and ρi = γ for all i. Then
clearly vi ∼ρi

ui while
∏
i ρi does not exist.)

A projective unitary representation U of G on a Hilbert space H
associated with some u ∈ Z2(G,T) is a map from G into the group of
unitaries on H such that

U(x)U(y) = u(x, y)U(xy), x, y ∈ G.

If we pick a ρ : G → T satisfying ρ(e) = 1 and set V = ρU , then V
is also a projective unitary representation of G on H associated with a
2-cocycle v satisfying v ∼ρ u. Such a V is called a perturbation of U .

To each u ∈ Z2(G,T) one may associate the left u-regular projective
unitary representation λu of G on l2(G) defined by

(λu(x)f)(y) = u(y−1, x)f(x−1y), f ∈ l2(G), x, y ∈ G.
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Choosing u = 1 gives the left regular representation of G which we will
just denote by λ. It is well known, and easy to see, that if v ∼ρ u, then
λv is unitarily equivalent to ρλu.

For i = 1, 2, let Ui be a projective unitary representation of G
on a Hilbert space Hi associated with ui ∈ Z2(G,T). Then the
naturally defined tensor product representation U1 ⊗ U2 is easily seen
to be a projective unitary representation of G on the Hilbert space
H1 ⊗ H2 associated with the product cocycle u1u2. In the case of
ordinary unitary representations of a group, it is a classical result of
Fell (cf. [8]) that the left regular representation acts in an absorbing
way with respect to tensoring (up to multiplicity and equivalence). In
the projective case we have the following analogue.

Proposition 2.2. Let u, v be elements in Z2(G,T), and let V be any
projective unitary representation of G on a Hilbert space H associated
with v. Then the tensor product representation λu ⊗ V is unitarily
equivalent to λuv ⊗ idH, i.e., to (dim V ) · λuv.

Proof. We leave to the reader to check that the same unitary
operator W as in the nonprojective case, which is determined on
l2(G)⊗H (∼= l2(G,H)) by (W (f⊗ψ))(x) = f(x)V (x−1)ψ, implements
the asserted equivalence.

We conclude this section with a short review on infinite tensor
products of Hilbert spaces and operators. (See [11, 12] for more
information).

Let H = {Hi} denote a sequence of Hilbert spaces and φ = {φi} be
a sequence of unit vectors where φi ∈ Hi for each i ≥ 1. We denote by
Hφ or by

⊗φ
i Hi the associated infinite tensor product Hilbert space

of the Hi’s along the sequence φ.

For any sequence ψi ∈ Hi such that

∑
i

| 1 − ‖ψi‖ | <∞ and
∑
i

| 1 − (ψi, φi) | <∞,

there corresponds a so-called decomposable vector in Hφ denoted by



472 E. BÉDOS AND R. CONTI

⊗iψi. If ⊗iξi is another decomposable vector in Hφ, then

(⊗iψi,⊗iξi) =
∏
i

(ψi, ξi).

A decomposable vector of the form ψ1 ⊗ · · · ⊗ ψk ⊗ φk+1 ⊗ φk+2 ⊗ · · ·
is called elementary. The set of all elementary decomposable vectors is
total in Hφ.

Let T1, T2, . . . be a sequence of bounded linear operators where each
Ti acts on Hi. For each fixed n ∈ N there exists a unique bounded
linear operator T̃n acting on Hφ which is determined by

T̃n(⊗iψi) = T1ψ1 ⊗ · · · ⊗ Tnψn ⊗ ψn+1 ⊗ ψn+2 ⊗ · · ·

for each decomposable vector ⊗iψi. Similarly, one may define T̃J for
each (nonempty) finite J ⊂ N. Under certain assumptions, the net
{T̃J} converges in the strong operator topology to a bounded linear
operator on Hφ which is then denoted by ⊗iTi.

By [12, Proposition 6], a sufficient condition for ⊗iTi to exist is that
∏
i

‖Ti‖ exists,
∑
i

|1−‖Tiφi‖ | <∞ and
∑
i

|1−(Tiφi, φi) | <∞,

in which case we have (⊗iTi) (⊗iψi) = ⊗iTiψi for all elementary
decomposable vectors ⊗iψi.

When all Ti’s are unitaries (which is the case of interest in this paper)
we have the following result, which will be used several times in the
sequel.

Proposition 2.3. Let (Ti) be a sequence of unitaries where each Ti
acts on Hi. Then ⊗iTi exists on Hφ if and only if

(∗)
∑
i

|1 − (Tiφi, φi)| <∞,

in which case ⊗iTi is a unitary on Hφ satisfying (⊗iTi)∗ = ⊗iT ∗
i .

Proof. Assume first that (∗) holds. It is then quite elementary to
deduce from Guichardet’s result mentioned above that ⊗iTi and ⊗iT ∗

i
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both exist. Moreover, these two operators are then isometries, being
the strong limit of a net of unitaries, and they are easily seen to be the
inverse of each other. So both are unitaries satisfying (⊗iTi)∗ = ⊗iT ∗

i .

Assume now that T := ⊗iTi exists on Hφ. Then T is nonzero, being
an isometry, so there are elementary decomposable vectors ⊗iψi and
⊗iξi such that

0 �= c := (T ⊗i ψi,⊗iξi).
Let J be any finite subset of N large enough so that ψi = ξi = φi for
all i /∈ J. Then we have

(T̃J ⊗i ψi,⊗iξi) =
∏
i∈J

(Ti ψi, ξi).

Since T = limJ T̃J , we get c = limJ

∏
i∈J (Ti ψi, ξi), i.e.,

∏
i∈N(Ti ψi, ξi)

converges to a nonzero value.

Thus we get
∑
i |1− (Ti ψi, ξi)| <∞. Therefore

∑
i |1− (Ti φi, φi)| <

∞ since ψi = ξi = φi for all but finitely many i’s.

3. Infinite tensor products of projective unitary represen-
tations. Before attacking the main problem whether it is possible
to form an infinite tensor product of a sequence of projective unitary
representations, at least in some cases, we first show that this construc-
tion, when possible, produces a new projective unitary representation
of G, and also make some general observations.

Theorem 3.1. Let Ui be a sequence of projective unitary representa-
tions of G acting respectively on a Hilbert space Hi and with associated
ui ∈ Z2(G,T). Let φ = (φi) be a sequence of unit vectors where each
φi ∈ Hi. Assume that ⊗iUi(x) exists on Hφ = ⊗φiHi for each x ∈ G.
Then we have

i) (ui) is a product sequence in Z2(G,T).

ii) The map x→ Uφ(x) := ⊗iUi(x) is a projective unitary represen-
tation of G on Hφ with u =

∏
i ui as its associated 2-cocycle.

iii) If there exists one k such that Uk is unitarily equivalent to λuk
,

then Uφ is unitarily equivalent to λu ⊗ idH, for some Hilbert space H.

iv) λ⊗ Uφ is unitarily equivalent to λu ⊗ idHφ .
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Proof. Notice first that Proposition 2.3 implies that each Uφ(x) :=
⊗iUi(x) is a unitary.

i) Let g, h ∈ G. We must show that
∏
i ui(g, h) converges. Now

⊗iUi(gh)

and

(⊗iUi(g))(⊗iUi(h)) = ⊗iUi(g)Ui(h) = ⊗iui(g, h)Ui(gh)

are both unitaries. Putting ai = (Ui(gh)φi , φi ), we deduce from
Proposition 2.3 that

∑
i

| 1 − ai | <∞ and
∑
i

| 1 − ui(g, h)ai | <∞.

This implies that
∑
i | 1−ui(g, h) | <∞, and therefore that

∏
i ui(g, h)

converges, as desired. (We use here implicitly that whenever z ∈ T and
a ∈ C, then |1 − z| = |1 − z̄| ≤ |1 − a| + |a− z̄| = |1 − a| + |za− 1|).

ii) Using i) we get

Uφ(x)Uφ(y) = ⊗iui(x, y)Ui(xy)
=

(∏
i

ui(x, y)
)
⊗i Ui(xy)

= u(x, y)Uφ(xy)

for all x, y ∈ G, as asserted.

iii) and iv) follow easily from Proposition 2.2.

An obvious, but noteworthy consequence of part i) of this theorem is
that it is impossible to form the infinite tensor power of a single pro-
jective unitary representation unless the associated 2-cocycle vanishes.
In another direction, the case where infinitely many of the Ui’s are
projective regular representations of G cannot occur in this theorem
when G is uncountable or nonamenable, as easily follows from our next
theorem. (We refer to [17] or [18] for information on amenability).

Theorem 3.2. Let (ui) be a sequence in Z2(G,T) and set Ui = λui

for every i. Let φ = (φi) be a sequence of unit vectors in l2(G). Assume
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that ⊗iUi(x) exists on Hφ = ⊗φi l2(G) for each x ∈ G. Then G is
countable and amenable.

Proof. Using Proposition 2.3, it follows that
∑

i |1 − (Ui(x)φi, φi)| <
∞ for every x ∈ G. Notice that

|(Ui(x)φi, φi)| ≤ (λ(x)|φi|, |φi|) ≤ 1.

Hence we get
(λ(x)|φi| , |φi|) → 1 x ∈ G.

This means that the trivial one-dimensional representation of G is
weakly contained in λ and the amenability of G follows.

Moreover, setting fi(x) := (λ(x)|φi|, |φi|) ≥ 0 we have 0 ≤ fi ≤ 1,
fi ∈ C0(G) (cf. [8]) and fi → 1 pointwise. Then f−1

i ([1/2, 1]) =: Hi is
finite and G = ∪iHi, so G is countable.

In view of this theorem, it is quite natural to wonder whether some
converse holds. We shall provide a partial answer in Corollary 3.4. To
ease our exposition, we introduce some terminology. A sequence (Fi) of
nonempty, finite subsets of G will be called an F -sequence (respectively
σF -sequence) for G whenever

lim
i

#(Fi ∩ xFi)
#Fi

= 1 for all x ∈ G

(
resp.

∑
i

|1 − #(Fi ∩ xFi)
#Fi

| <∞ for all x ∈ G
)
.

An F -sequence (Fi) for G is often called a Fölner sequence in the
literature. We remark that the definition is usually phrased in a slightly
different, but equivalent, way (involving the symmetric difference of
sets) and that some authors also require that Fi ⊆ Fi+1 for every i.
Anyhow, thanks to Fölner (see [17, 18]) we know that G is countable
and amenable if and only if G has an F -sequence. Now, obviously, a
σF -sequence for G is also an F -sequence. Moreover, any F -sequence
has some subsequence which is a σF -sequence, as is easily checked.
Hence we can also conclude that G is countable and amenable if and
only if G has a σF -sequence.
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When F is a subset of G, we denote by χF its characteristic function.

Theorem 3.3. Let (ui) be a sequence in Z2(G,T). Assume that G
is countable and amenable, and has a σF -sequence (Fi) which satisfies

(∗)
∑
i

1
#Fi

∑
y∈Fi

|1 − ui(y−1, x)| <∞ for all x ∈ G.

Set Ui = λui
and φi := χFi

/(#Fi)
1/2 for every i. Then φ = (φi)

is a sequence of unit vectors in l2(G) such that ⊗iUi exists on Hφ =
⊗φi l2(G).

Proof. We first record some easy calculations. Let F be a finite
nonempty subset of G, and set φF := χF /(#F )1/2. Let u ∈ Z2(G,T).
Then we have

(λ(x)φF , φF ) =
1

#F
#(F ∩ xF )

for every x ∈ G. More generally we have

(λu(x)φF , φF ) =
1

#F

∑
y∈F∩xF

u(y−1, x)

and therefore

( (λ(x) − λu(x))φF , φF ) =
1

#F

∑
y∈F∩xF

(1 − u(y−1, x))

for all x ∈ G.

Using the triangle inequality and the above computations, we get∑
i

|1 − (Ui(x)φi, φi)|

≤
∑
i

|1 − (λ(x)φi, φi)| +
∑
i

|( (λ(x)− Ui(x))φi, φi )|

=
∑
i

∣∣∣1 − #(Fi ∩ xFi)
#Fi

∣∣∣ +
∑
i

1
#Fi

∣∣∣ ∑
y∈Fi∩xFi

(1 − ui(y−1, x))
∣∣∣

≤
∑
i

∣∣∣1 − #(Fi ∩ xFi)
#Fi

∣∣∣ +
∑
i

1
#Fi

∑
y∈Fi

|1 − ui(y−1, x)|
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for all x ∈ G. Since (Fi) is a σF -sequence for G satisfying (∗), both
sums above converge for all x ∈ G. Hence,

∑
i |1 − (Ui(x)φi, φi)| < ∞

for all x ∈ G and the assertion follows from Proposition 2.3.

Clearly, if ui = 1 for all but finitely many i’s, any σF -sequence (Fi)
for G trivially satisfies (∗). In this case, the above theorem could also
have been deduced from [7].

Corollary 3.4. Let G be countable and amenable, and let (vj) be a
product sequence in Z2(G,T). Then there exist a subsequence (ui) of
(vj) and a sequence φ = (φi) of unit vectors in l2(G) such that ⊗iλui

exists on Hφ = ⊗φi l2(G).

Proof. First we pick a σF -sequence (Fi) for G and a growing sequence
(Hi) of nonempty finite subsets of G satisfying ∪iHi = G. Since the
(pointwise) product

∏
j vj exists, we can choose a subsequence (ui) of

(vj) satisfying

|1 − ui(y−1, x)| ≤ 1/i2 for all x ∈ Hi, y ∈ Fi, i ∈ N.

Let x ∈ G and choose N ∈ N such that x ∈ HN . Then we get

∑
i

1
#Fi

∑
y∈Fi

|1 − ui(y−1, x)|

≤
∑
i<N

2 +
∑
i≥N

1
#Fi

∑
y∈Fi

1/i2 = 2(N − 1) +
∑
i≥N

1/i2 <∞.

This shows that (Fi) satisfies (∗) in Theorem 3.3, from which the result
then clearly follows.

Corollary 3.5. Let G be countable and amenable. Then there
always exist some product sequence (ui) in Z2(G,T) satisfying ui �= 1
for all i and some sequence φ = (φi) of unit vectors in l2(G) such
that ⊗iλui

exists on Hφ = ⊗φi l2(G). If H2(G,T) is nontrivial and
1 �= [u] ∈ H2(G,T), then the sequence (ui) above may be chosen so
that u =

∏
i ui.
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Proof. We call a product sequence (ui) in Z2(G,T) 1-free if ui �= 1 for
all i. It is easy to see that 1-free product sequences do exist in B2(G,T).
As 1-freeness is clearly preserved when passing to subsequences, the
first assertion follows from the previous corollary. The 1-free product
sequence (ui) is then in B2(G,T). Therefore (by closedness)

∏
i ui ∈

B2(G,T), so we may write it as dρ for some normalized ρ : G → T.
Assume now H2(G,T) is non-trivial and 1 �= [u] ∈ H2(G,T). Set
v1 = dρ u and vi = ui−1, i > 1. Then (vi) is a 1-free product sequence
satisfying u =

∏
i vi. Further we can define a new sequence ψ = (ψi)

of unit vectors in l2(G), by setting ψ1 = δe and ψi = ψi−1, i > 1.
It is then obvious that ⊗iλvi

exists on Hψ, which proves the second
assertion.

Remarks. 1) It follows from Theorem 3.1 iii) that representations
obtained as the infinite tensor product of projective regular represen-
tations are never irreducible.

2) Let G be countable and amenable, and let (ui) and (vi) be two
sequences in Z2(G,T) satisfying vi ∼ρi

ui for every i. Assume that
⊗iλui

exists on Hφ = ⊗φi l2(G) for some sequence φ = (φi) of unit
vectors in l2(G). As

∏
i vi does not necessarily exist, it may happen

that ⊗iλvi
cannot be formed at all, cf. Theorem 3.1. However, it is quite

clear that ρ1λv1 ⊗ ρ2λv2 ⊗ · · · exists on ⊗ψi l2(G), where ψi is defined
by ψi(x) = ρi(x−1)φi(x), and this may be considered as a problem of
gauge fixing. On the other hand, let us also assume that ⊗iλvi

exists
on Hψ = ⊗ψi l2(G) for some sequence ψ = (ψi) of unit vectors in l2(G).
Then we may conclude that ⊗iλvi

is, up to unitary equivalence, just a
perturbation of ⊗iλui

.

(To prove this, we first appeal to Theorem 3.1 and obtain that both
u =

∏
i ui and v =

∏
i vi exist. Using Lemma 2.1 we may then write

v = dρ u for some normalized ρ : G → T. Now, using that λv � ρλu
and Theorem 3.1, we get

⊗iλvi
� λv ⊗ id � ρ(λu ⊗ id) � ρ(⊗iλui

),

where id denotes the identity representation of G on any infinite
separable Hilbert space.)

3) To produce examples of infinite tensor product of projective uni-
tary representations of not necessarily amenable groups, one can pro-
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ceed as follows. Let G be any countable group possessing a nontriv-
ial amenable factor group K (one can here for instance let G be any
non-perfect, non-amenable group, e.g., any non-abelian countable free
group, since the abelianized group G/[G,G] is then nontrivial and
abelian) and let (vi) be a sequence in Z2(K,T) such that ⊗iλvi

ex-
ists on ⊗φi l2(K). Using the canonical homomorphism π : G → K,
we may lift each vi to a ui ∈ Z2(G,T) in the obvious way. Set
Ui(x) := λvi

(π(x)), x ∈ G, for each i. It is then a simple matter to
check that each Ui is a projective unitary representation of G on l2(K)
associated to ui, and that ⊗iUi exists on ⊗φi l2(K).

We now turn to another class of examples which is in spirit related
to the setting of the Stone-Mackey-von Neumann theorem, i.e., with
so-called CCR-representations of a locally compact abelian group and
its dual, cf. [19].

Let A and B be two discrete groups and σ : A × B → T be a
bilinear map. We call a triple {V,W,H} for a CCR-representation of σ
whenever V and W are unitary representations of respectively A and
B on H which satisfy the CCR-relation

V (a)W (b) = σ(a, b) W (b)V (a)

for all a ∈ A, b ∈ B.

We now set G = A×B and define uσ : G×G→ T by

uσ( (a1, b1), (a2, b2) ) = σ(a2, b1).

It is an easy exercise to check that uσ is a 2-cocycle on G (in fact a
bicharacter, i.e., a bilinear map on G ×G into T). When both A and
B are abelian, then [uσ] �= 1 in H2(G,T) whenever σ is nontrivial,
as follows from [16] since uσ is then clearly nonsymmetric. Note that
there is a one-to-one correspondence between CCR-representations of σ
and projective unitary representations of G associated with uσ (being
given by setting U(a, b) = V (a)W (b) whenever {V,W,H} is a CCR-
representation of σ).

There is a canonical way to produce a CCR-representation of σ on
l2(B), to which we may associate a projective unitary representation
Uσ of G on l2(B) associated with uσ. We recall this construction (and
remark that a similar construction can be done on l2(A) in an analogous
way):
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For each a ∈ A, b ∈ B we set σa(b) = σ(a, b), so the map (a �→ σa)
belongs to Hom (A, B̂) where B̂ := Hom(B,T). Let then Vσ(a) denote
the multiplication operator by the function σa on l2(B) and λB be the
left regular representation of B on l2(B). By computation we have

Vσ(a)λB(b) = σ(a, b) λB(b)Vσ(a)

for all a ∈ A, b ∈ B. Hence, the triple {Vσ, λB, l2(B)} is a CCR-
representation of σ and we can put Uσ(a, b) := Vσ(a)λB(b) for all
(a, b) ∈ G.

Assume now that (σi) is a sequence of bilinear maps from A × B

into T. The question whether is it possible to form ⊗iUσi
on ⊗φi l2(B)

for some sequence φ = (φi) of unit vectors in l2(B) is then clearly
equivalent to whether it is possible to form the infinite tensor product
of the CCR-representations associated with the σi’s. In the case of
a positive answer, the product

∏
i uσi

will exist (as a consequence
of Theorem 3.1) so

∏
i σi will then exist too and the infinite tensor

product of the CCR-representations associated with the σi’s will be a
CCR-representation of this product map.

Quite similarly to Theorem 3.2 and Theorem 3.3 we have:

Theorem 3.6. Let (σi) be a sequence of bilinear maps from G =
A×B into T. Set Ui := Uσi

.

i) Assume that ⊗iUi exists on ⊗φi l2(B) for some sequence φ = (φi)
of unit vectors in l2(B). Then B is countable and amenable.

ii) Assume that B is countable and amenable, and that (Fi) be a
σF-sequence for B satisfying

∑
i

1
#(Fi)

∑
b∈Fi

|1 − σi(a, b)| <∞

for every a ∈ A. Set φ = (φi) where φi := χFi
/#(Fi)1/2.

Then ⊗iUi exists on ⊗φi l2(B).

Proof. i) Since Ui(e, b) = λB(b), this follows from [1] (or Theorem
3.2).
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ii) Let B be countable and amenable, and (Fi) be as in ii). Since
(Fi) is a σF-sequence for B, it follows from [7] (or Theorem 3.3) that
⊗iUi(e, b) = ⊗iλB(b) exists on ⊗φi l2(B) for every b ∈ B. The existence
of ⊗iUi on ⊗φi l2(B) reduces then to whether ⊗iVσi

exists on ⊗φi l2(B),
i.e., whether

∑
i

|1 − (Vσi
(a)φi, φi)| =

∑
i

|1 − ((σi)a φi, φi)| <∞

holds for every a ∈ A. As we have

|1−((σi)a φi, φi)| =
1

#(Fi)

∣∣∣ ∑
b∈Fi

(1−σi(a, b))
∣∣∣ ≤ 1

#(Fi)

∑
b∈Fi

|1−σi(a, b)|

for every a ∈ A, this follows from the assumption on (Fi).

We leave it to the reader to deduce from this theorem the analogous
versions of Corollary 3.4 and Corollary 3.5 in this setting.

4. The case of free abelian groups. The purpose of this section
is to exemplify the results of the previous section in the concrete case
where G is a finitely generated free abelian group.

We let N ∈ N and set G = ZN .

When x = (x1, . . . , xN ) ∈ G, we set |x|1 =
∑N
j=1 |xj |.

When m ∈ N, we define Km ⊂ G by

Km = {x ∈ G | 0 ≤ xi ≤ m, i = 1 . . .N } (= {0, 1, . . . ,m}N ).

To each N ×N real matrix A, one may associate uA ∈ Z2(G,T) by

uA(x, y) = eix·(Ay).

In fact, every element in H2(G,T) may be written as [uA] for some
skew-symmetric A, see [2, 3]. Without loss of generality, we can assume
that A ∈MN ((−π, π]), i.e., all of A’s coefficients belong to (−π, π]. We
set

|A|∞ = max{|aij |, 1 ≤ i, j ≤ N}.
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We first record a technical lemma.

Lemma 4.1. Let A ∈MN ((−π, π]), x, y ∈ G and m ∈ N. Then

(1) |1 − uA(x, y)| ≤ |A|∞|x|1|y|1
(2)

∑
x∈Km

|x|1 =
Nm(m+1)N

2

(3) 1 − #((x+Km) ∩Km)
#Km

≤ |x|1
m+1

.

Proof. 1) follows from |1 − eix·(Ay)| ≤ |x · (Ay)| ≤ |A|∞|x|1|y|1.

2)
∑
x∈Km

|x|1 =
N∑
j=1

∑
x∈Km

|xj | = N(m+1)N−1
( m∑
k=0

k
)

=
Nm(m+1)N

2
.

3) 1 − #((x+Km) ∩Km)
#Km

=
#(Km\(x+Km))

#Km
≤ (m+1)N−1

(m+1)N
|x|1

=
|x|1
m+1

.

Proposition 4.2. Let (Ai) be a sequence in MN ((−π, π]) and (mi)
be a sequence in N. For each i ∈ N, we set

Fi = Kmi
⊂ G,

φi =
1

(#Fi)1/2
χFi

∈ l2(G),

ui = uAi
∈ Z2(G,T).

Then we have:

(1) (Fi) is an F -sequence for G if and only if mi → +∞.

(2) (Fi) is a σF -sequence for G if and only if
∑∞
i=1

1
mi

<∞.

(3)
∏
i ui exists ⇔ ∑

i |Ai|∞ <∞.

(4) The projective unitary representation ⊗iλui
of G exists on

⊗φi

i l
2(G) whenever

∞∑
i=1

1
mi

<∞ and
∞∑
i=1

mi|Ai|∞ <∞
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(and
∏
i ui is then the associated 2-cocycle).

Proof. The nontrivial parts of (1) and (2) are consequences of
Lemma 4.1, part (3). Assertion (3) relies on the inequality 2|θ|/π ≤
|1 − eiθ| ≤ |θ| which holds when |θ| ≤ π. Concerning (4) let x, y ∈ G.
Then we have

1
#Fi

∑
y∈Fi

|1 − ui(−y, x)|

≤ 1
(mi + 1)N

( ∑
y∈Fi

|Ai|∞|x|1|y|1
)

(by Lemma 4.1, (1))

=
|x|1|Ai|∞
(mi+1)N

∑
y∈Fi

|y|1

=
|x|1|Ai|∞
(mi+1)N

Nmi(mi+1)N

2
(by Lemma 4.1, (2))

=
N |x|1

2
mi|Ai|∞

for every i ∈ N. Hence we have

∑
i

1
#Fi

∑
y∈Fi

|1 − ui(−y, x)| ≤ N |x|1
2

∑
i

mi|Ai|∞.

Now if we assume that
∑∞
i=1 1/mi <∞ and

∑∞
i=1mi|Ai|∞ <∞, then

{Fi} is a σF -sequence for G (by (2)) and

∑
i

1
#Fi

∑
y∈Fi

|1 − ui(−y, x)| <∞

for all x ∈ G, and the conclusion follows from Theorem 3.3.

Example. Let A ∈ MN ((−π, π]). Set Ai = 2−iA and ui = uAi

(i ∈ N). Then clearly uA =
∏
i ui. Further, if we let mi = i2, then

∑
i

1
mi

<∞ and
∑
i

mi|Ai|∞ = |A|∞
∑
i

i2

2i
<∞
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so (4) in the above proposition applies. Theorem 3.1 then gives

λuA
⊗ id ∼= ⊗iλui

,

thus producing an infinite tensor product decomposition of the amplifi-
cation of λuA

. It is well known that the C*-algebra C∗(λuA
) generated

by λuA
on l2(G) is a so-called noncommutative N -torus. Using this

decomposition result, we can clearly obtain a faithful representation of
C∗(λuA

) onto the C∗-algebra generated by ⊗iλui
on ⊗φi l2(G) for some

suitably chosen sequence φ of unit vectors in l2(G).

We shall now exhibit projective unitary representations arising from
CCR-representations of bilinear maps on some direct product decom-
position of G.

We assume from now on that N ≥ 2 and write G = ZN � ZP × ZQ

where 1 ≤ P , Q < N and P +Q = N .

To each P × Q matrix D with coefficients in (−π, π], we associate a
bilinear map σD : ZP × ZQ → T by

σD(a, b) = eia·(Db).

Using the construction described at the end of the previous section, we
then obtain a CCR-representation of σD on l2(ZQ), or, equivalently,
a projective unitary representation UD of G = ZN with associated 2-
cocycle uD. This cocycle is easy to describe: a simple computation
gives

uD(x, y) = eix·(D̃y) (x, y ∈ G)

where D̃ is the N ×N matrix given by

D̃ =
(

0 0
−Dt 0

)
.

Notice that uD = uD̃ and [uD] is nontrivial whenever D �= 0.

Proposition 4.3. Let (Di) be a sequence of P × Q matrices with
coefficients in (−π, π], and let (Ui) = (UDi

) be the associated sequence
of projective unitary representations of G on l2(ZQ). Let (ni) be a
sequence in N.
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Set Hi = {b ∈ ZQ | 0 ≤ bi ≤ ni, i = 1 . . . Q}. Further, let
ψi = 1/(#Hi)1/2χHi

, i ∈ N.

Then ⊗iUi exists on ⊗ψi

i l
2(ZQ) whenever

∑
i

1/ni <∞ and
∑
i

ni|Di|∞ <∞.

Proof. This follows from Theorem 3.6. As the details are quite similar
to the proof of the previous proposition, we leave these to the reader.

Example. We take P = Q = 1 so that G = Z × Z = Z2, and let
(Dj) = (θj) be a sequence in (−π, π]. This gives rise to the sequence
(Uj) of representations of Z2 on l2(Z) with associated 2-cocycles

uj(x, y) = e−iθjx1y2 (x, y ∈ Z2).

By Proposition 4.3 we can then form the infinite tensor representa-
tion ⊗jUj whenever we can choose a sequence (nj) in N such that∑
j 1/nj < ∞ and

∑
j nj |θj | < ∞, e.g., nj = j2 will do if (j4|θj |) is

bounded.

By a more careful analysis of this example involving the familiar
Dirichlet sums, one can deduce that ⊗jUj will exist whenever we can
choose (nj) such that

∑
j

1
nj

<∞ and
∑
j

∣∣∣1 − 1
2nj + 1

sin((2nj + 1)θj/2)
sin(θj/2)

∣∣∣ <∞.

Assuming that
∑
j |θj | < ∞ (so

∏
j uj exists), it would be interesting

to know whether such a choice of (nj) can always be made.

5. Infinite products of actions. For each i ∈ N let Hi be
a Hilbert space, φi ∈ Hi be a unit vector, Mi ⊂ B(Hi) be a von
Neumann algebra and αi : G → Aut (Mi) be an action of G on Mi.
We denote by Ii the identity operator on Hi. We then form the ∗-
algebra �iMi, respectively von Neumann algebra ⊗i(Mi, φi), acting
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on ⊗(φi)
i Hi generated by operators of the form ⊗iTi where Ti ∈ Mi

and Ti = Ii for all but finitely many i’s. At the ∗-algebraic level we
define an action �iαi of G on �iMi such that for every finite J ⊂ N
we have

�iαi((⊗i∈JTi) ⊗ (⊗i/∈JIi)) = (⊗i∈Jαi(Ti)) ⊗ (⊗i/∈JIi).

One natural question is whether �iαi may be extended to an action
of G on the von Neumann algebra ⊗i(Mi, φi). As we shall see, the
answer may be negative in some situations, regardless of the choice of
unit vectors φi.

We restrict ourselves to the case where each αi is unitarily imple-
mented, i.e., we assume that for every i and g there exists a unitary
Ui(g) on Hi such that αi,g = Ad (Ui(g)). This assumption is auto-
matically satisfied for many classes of von Neumann algebras, see [20].
Note that if Ui(g) ∈ Mi for all g ∈ G and Mi is a factor, especially if
Mi = B(Hi), then g → Ui(g) is a projective unitary representation of
G on Hi.

We consider the following condition:

(∗)
∑
i

(1 − |(Ui(g)φi, φi)|) <∞, for all g ∈ G.

Proposition 5.1. Condition (∗) is equivalent to the following
condition:

(∗∗) ∀ i ∈ N, ∃ ρi : G→ T, ρi(e) = 1,

such that ⊗i ρiUi exists on ⊗φi

i Hi.

When (∗) holds, then �iαi extends to a unitarily implemented action
α on ⊗i(Mi, φi), which is inner whenever Ui(g) ∈ Mi for every i and
g ∈ G.

Proof. The first assertion follows from Proposition 2.3, using [11].
When (∗) holds, then αg = Ad (U(g)) where U(g) = ⊗iρi(g)Ui(g) is
well defined on ⊗φi

i Hi. Clearly U(g) ∈ ⊗i(Mi, φi) whenever Ui(g) ∈
Mi for every i and g ∈ G, and αg is then inner for every g ∈ G.
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We now treat the case where every Mi is a type I factor. We use the
well-known fact that every automorphism of a type I factor is inner
and also that ⊗i(B(Hi), φi) = B(⊗φi

i Hi), [11, Proposition 1.6].

Theorem 5.2. Assume that Mi = B(Hi) for all i. Then �iαi
extends (uniquely) to an action α = ⊗αi on ⊗i(B(Hi), φi) if and only
if condition (∗) holds.

Proof. Assume that an extension α of �iαi exists on Mφ =
⊗i(Mi, φi). Using the facts recalled above, we have αg = Ad (U(g))
for some U(g) ∈ U(⊗φi

i Hi) for every g ∈ G.

Let J be a nonempty finite subset of N.

We identify Mφ with (⊗i∈JMi)⊗ JM where JM := ⊗i/∈J (Mi, φi),
and consider JM as a von Neumann subalgebra of Mφ in the obvious
way. It is easy to see that α restricts to an action Jα of G on JM such
that α = (⊗i∈Jαi)⊗ Jα. SinceJM is a also type I factor, we can write
Jαg = Ad (JU(g)) for some JU(g) ∈ U(⊗φi

i/∈JHi) for each g ∈ G.

Set now UJ (g) = ⊗i∈JUi(g) for each g ∈ G. Clearly, we then have
αg = Ad (UJ (g)⊗ JU(g)). Therefore, for each g ∈ G, there exists some
zJ (g) ∈ T such that U(g) = zJ (g)UJ(g) ⊗ JU(g).

Let g ∈ G. Since U(g) �= 0 we can pick two elementary decomposable
vectors ⊗iψi and ⊗iξi in ⊗φi

i Hi, which do not depend on J , satisfying

0 �= c(g) := |(U(g) ⊗i ψi,⊗iξi)|
=

∏
i∈J

|(Ui(g)ψi, ξi)| |(JU(g) ⊗i/∈J ψi,⊗i/∈Jξi)|

Since |(JU(g) ⊗i/∈J ψi,⊗i/∈Jξi)| ≤ 1 we get

0 < c(g) ≤
∏
i∈J

|(Ui(g)ψi, ξi)|.

As this holds for every J , one easily deduces that
∏
i∈N |(Ui(g)ψi, ξi)|

converges to a non-zero number. Since ψi = ξi = φi for all but finitely
many i’s, this implies that (∗) holds. Hence, we have shown the only if
part of the assertion. The converse part follows from Proposition 5.1.
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The proof of the above result is reminiscent of the proof of a lemma
in [21], see also [9]. In the same line of ideas, we have the following
result, which is related to [6, Lemma 1.3.8].

Theorem 5.3. Assume that all Mi’s are factors and that �iαi
extends to an action α on Mφ = ⊗i(Mi, φi). Then α is inner if and
only if there exists for each g ∈ G and each i a unitary vi(g) ∈ Mi

implementing αi,g such that the following condition holds:

(1)
∑
i

(1 − |(vi(g)φi, φi)|) <∞ for all g ∈ G.

On the other hand, α is outer if and only if, for each g ∈ G, g �= e,
at least one of the αi,g is outer or there exists for each i a unitary
vi(g) ∈ Mi implementing αi,g such that

(2)
∑
i

(1 − |(vi(g)φi, φi)|) = ∞.

Proof. Assume first that α is inner. So we have αg = Ad (U(g))
for some unitary U(g) ∈ Mφ for every g ∈ G. Recall from [11] that
Mφ is a factor. Using [14, Corollary 1.14], it follows easily that each
αi is inner. Hence, there exists for each g ∈ G and each i a unitary
vi(g) ∈ Mi implementing αi,g.

Let J be a nonempty finite subset of N. As in the previous proof, we
identify Mφ with (⊗i∈JMi) ⊗ JM where JM := ⊗i/∈J(Mi, φi). We
set VJ(g) = ⊗i∈Jvi(g) and WJ(g) = (VJ(g)⊗ (⊗i/∈JIi) )∗U(g) for each
g ∈ G. Then, using that we may write α = (⊗i∈Jαi) ⊗ Jα, we get

WJ (g) ∈ (⊗i(Mi, φi)) ∩ ((⊗i∈JMi) ⊗ (⊗i/∈JCIi))′.

Using that all Mi are factors, it is a simple exercise to deduce that
WJ (g) ∈ (⊗i∈JCIi) ⊗ (⊗i/∈J (Mi, φi)). We may therefore write
WJ (g) = (⊗i∈JIi) ⊗ JV (g) for some unitary JV (g) ∈ ⊗i/∈J (Mi, φi).
This gives U(g) = VJ (g)⊗ JV (g) and we can clearly proceed further in
the same way as in the previous proof to show that (1) holds, thereby
proving the only if part of the first assertion. The converse part of this
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assertion follows from Proposition 5.1. The second assertion follows
from a similar argument.

The following corollary may be seen as generalization of [10, Theorem
6.7].

Corollary 5.4. Assume for each i ∈ N that βi is an action of G
on some von Neumann algebra Ni and that there exists a normal βi-
invariant state τi on Ni. Denote the GNS-triple of τi by (πi,Hi, ξi)
and set Mi = πi(Ni). Let αi be the action of G on Mi induced by βi.
Then �iαi extends to an action α of G on ⊗i(Mi, ξi).

Assume further that all Ni’s are factors and all πi’s are faithful. Then
α is inner if and only if there exists for each g ∈ G and each i a unitary
vi(g) ∈ Ni implementing βi,g such that the following condition holds:

(1)
∑
i

(1 − |τi(vi(g))|) <∞ for all g ∈ G.

On the other hand, α is outer if and only if, for each g ∈ G, g �= e, at
least one of the βi,g is outer or there exists each i a unitary vi(g) ∈ Ni

implementing βi,g such that

(2)
∑
i

(1 − |τi(vi(g))|) = ∞.

Proof. We first recall that there exists for each i a unitary represen-
tation Vi : G→ B(Hi) such that

πi(βi,g(x)) = Vi(g)πi(x)Vi(g)∗ and Vi(g)πi(x)ξi = πi(βi,g(x))ξi

for all g ∈ G, x ∈ Ni, see [8]. The induced action αi on Mi is then
defined by αi,g(πi(x)) = πi(βi,g(x)). As Vi(g)ξi = ξi for all g ∈ G,
the first assertion follows obviously from Proposition 3.1. The second
assertion is then easily deduced from Theorem 5.3.

Example. Let ui be a sequence in Z2(G,T). Set Ni = λui
(G)′′ ⊂

B(l2(G)) and let βi,g be the inner automorphism of Ni implemented
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by λui
(g) for all g ∈ G, i ∈ N. Let τi denote the canonical normal

faithful tracial state of Ni (determined by τi(λui
(g)) = 1 if g = e and 0

otherwise), which is trivially βi-invariant. If ξ denotes the normalized
delta-function at e, then τi = ωξ|Ni

. So we may identify the GNS-triple
of τi with (idi, l2(G), ξi), where idi denotes the identity representation
of Ni and ξi = ξ, i.e., we may take Mi = Ni and αi = βi in the
notation of Corollary 5.4. Hence, �αi = �βi extends to an action α
on ⊗i(λui

(G)
′′
, ξi).

Further, if all λui
(G)

′′
are factors, then α is outer, as

∑
i

(1 − |τi(λui
(g))|) =

∑
i

1 = ∞ for all g �= e.

A necessary and sufficient condition for a twisted group von Neumann
algebra λu(G)′′ to be a factor may be found in [15].

If we replace each Ni with B(l2(G)) in this example, the extended
product action may be formed in many cases under the assumption that
G is countable and amenable, as follows from Theorem 3.3 and Proposi-
tion 5.1. This requires a suitable choice of unit vectors φi in l2(G). This
product action restricts then to an action on ⊗i(λui

(G)′′, φi) which is
inner, in contrast to the factor case above. When G is either uncount-
able or nonamenable, we have the following:

Theorem 5.5. Let ui be a sequence in Z2(G,T) and αi = Adλui

be the associated sequence of actions of G on B(l2(G)). If G is either
uncountable or non-amenable, then �iαi does not extend to an action
of G on ⊗i(B(l2(G)), φi), regardless of the choice of vectors φi.

Proof. According to Proposition 5.1 and Theorem 5.2, the existence of
such an extension ⊗i(B(l2(G)), φi) would imply the existence of ⊗iρiλui

on ⊗φi

i l
2(G) for some choice of functions ρi : G→ T with ρi(e) = 1. It

is straightforward to see that this amounts to the existence of ⊗iλvi
on

⊗ψi

i l
2(G) for some vi ∈ Z2(G,T) with vi ∼ ui and some sequence ψi

of unit vectors in l2(G). This is impossible if G is either uncountable
or nonamenable, as follows from Theorem 3.2.

Another type of possible obstruction for extending a product action
from the ∗-algebraic level to the von Neumann algebra level is of
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cohomological nature, as we now illustrate:

Theorem 5.5. Let αi be a sequence of actions of G on B(Hi) and
write each αi as AdUi(g) where Ui is a projective representation of G
with associated 2-cocycle ui. Assume that [ui] = [u] for every i and
[u] �= [1] in H2(G,T). Then �iαi does not extend to an action of G
on ⊗i(B(Hi), φi), regardless of the choice of vectors φi.

Proof. Assume that such an extension exists ⊗i(B(Hi), φi). Using
Proposition 5.1 and Theorem 5.2, we deduce that ⊗ρiUi exists on
⊗φi

i Hi for some choice of functions ρi : G → T with ρi(e) = 1. It
follows then from Theorem 3.1 that

∏
i(dρi)ui exists. Hence dρiui → 1

(in the pointwise topology). As each ui = (dρ′i)u for some ρ′i, we get
that u is a limit of 2-coboundaries. Since B2(G,T) is closed, this means
that u is itself a coboundary, i.e., [u] = 1, which gives a contradiction.

Example. The simplest case where the above situation occurs is
when G = Z2 × Z2. Indeed, let

V =
(

0 1
1 0

)
, W =

(
1 0
0 −1

)
.

A projective unitary representation of G = Z2 × Z2 on C2 is then
obtained by setting U((a, b)) = V aW b (a, b ∈ Z2). Since V aW b =
σ(a, b)W b Ua where σ(a, b) = −1 if a = b = 1 and 1 otherwise, the
associated cocycle u is easily computed to be u((a1, b1), (a2, b2)) =
(−1)a2b1 . It is not difficult to check that [u] �= 1. Remark that U
is nothing but the projective representation associated to the CCR
representation of σ on C2 = l2(Z2) determined by V and W .

For each i ∈ N consider the action αi of G on M2(C) given by
αi,(a,b) = Ad (U((a, b))). Then, according to Theorem 5.6, the infinite
tensor product of the αi’s does never make sense as an action on
⊗i(M2(C), φi).

On the other hand, the canonical tracial state of M2(C) is trivially
αi-invariant. Therefore we may use Corollary 5.4 to form the infinite
tensor product action after passing to the GNS-representation with
respect to this tracial state for each i. As another application of
Corollary 5.4, the resulting product action is easily seen to be outer.
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