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LIÉNARD LIMIT CYCLES ENCLOSING
PERIOD ANNULI, OR ENCLOSED

BY PERIOD ANNULI

M. SABATINI

ABSTRACT. We construct examples of polynomial Liénard
systems with both centers and limit cycles. The first class
of examples has limit cycles enclosed by period annuli. The
second class has limit cycles surrounding central regions. In
both cases we show that it is possible to construct polynomial
systems having an arbitrary number of limit cycles with such
properties. As a limit case, we construct an analytic Liénard
system with infinitely many limit cycles surrounding a central
region. We also show that for every n there exists a Liénard
system of degree n with n − 2 limit cycles.

1. Introduction. Let

(1) ẋ = P (x, y), ẏ = Q(x, y)

be an autonomous plane differential system. We assume P (x, y),
Q(x, y) to be analytic real functions defined on all of the real plane.
We say that a critical point O of (1) is a center if it has a punctured
neighborhood covered with nontrivial cycles. If O is a center, the largest
connected region covered with cycles surrounding O is called central
region and will be denoted by NO. Every connected region covered with
nontrivial concentric cycles is usually called a period annulus. Period
annuli are not necessarily contained in central regions. An example is
given by the Hamiltonian system

(2) ẋ = y, ẏ = −x(4x2 − 1)(x2 − 1),

which has centers at (−1, 0), (0, 0), (1, 0), and a period annulus enclos-
ing such centers. Since when O is a center there exists a first integral
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defined on all of its central region [7], such systems are usually called
integrable. The study of integrable systems is of physical interest for
the existence of a quantity which is constant along the evolution of the
system, as in conservative systems.

An isolated nontrivial cycle γ of (1) is said to be a limit cycle,
since it is the ω-limit or the α-limit of all its neighboring orbits.
Limit cycles of analytic systems are either asymptotically stable or
negatively asymptotically stable or semistable. Hence, a limit cycle of
an analytic system cannot be a component of the boundary of a period
annulus. The existence of limit cycles in plane systems is usually proved
by applying Poincaré-Bendixson theory, or by means of bifurcation
techniques. In both cases the involved systems display some kind of
dissipativity. Several results have been obtained by producing limit
cycle bifurcation from the cycles of a central region. In this case the
bifurcation process locally destroys the integrability of the system.

Even in polynomial systems, integrability and dissipativity can coex-
ist in different regions. There are several examples of systems having
both centers and attracting critical points. The more specific question
whether centers and limit cycles can coexist in the same system has
been considered in a few papers. It is known that in quadratic systems
this cannot occur [13]. Examples of coexistence in higher degree sys-
tems were given in [1, 4], respectively for cubic and quartic systems. In
[12] a cubic system with three centers and two limit cycles is given. In
[2] appears a cubic system with a limit cycle surrounding three centers.
In [8] a degree 7 system with a period annulus enclosing five centers
and 44 limit cycles is constructed.

In this paper we are concerned with the coexistence of centers and
limit cycles of analytic Liénard systems, a class of systems widely
studied for their relevance in applications. The only paper dealing
with such a problem seems to be [3], which contains an example of
polynomial Liénard system of degree 9 with a center and a limit cycle
not enclosing the central region. Here we shall deal with a special kind
of configuration that occurs when a limit cycle is enclosed by a period
annulus, or when a limit cycles encloses a period annulus.

The first case can be treated following the approach of [8], perturbing
a reversible system by means of reversible perturbations. This allows to
generate simultaneous bifurcations of couples of limit cycles enclosed
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by a period annulus. In this way, for every k > 0 we can show the
existence of a Liénard system of degree 4k + 2 with 2k limit cycles and
a central region, all enclosed by a period annulus. A slight modification
of the proof allows to show that for every n > 3 there exist a Liénard
system of degree n having n−2 limit cycles. The question of estimating
the maximum number of limit cycles of polynomial Liénard systems is
related to Hilbert’s 16th problem.

The case of limit cycles enclosing a period annulus (in our case, a
central region) is more involved. If the central region is bounded,
then its boundary ∂NO contains at least a critical point. The first
return map associated to ∂NO has a flat derivative so that bifurcation
techniques based on its derivatives cannot be applied. This difficulty
can be overcome by considering bifurcations at infinity. Starting with a
Liénard system with a center, we apply a sequence of bifurcations from
infinity that produce several limit cycles enclosing the central region.
We show that for every k > 0 there exists a Liénard system of degree
6k + 3 with k limit cycles surrounding a central region. Such a result
can be adapted to construct an analytic Liénard system with infinitely
many limit cycles surrounding a central region.

2. Limit cycles enclosed by period annuli. We are concerned
with the plane differential system,

(3) ẋ = y, ẏ = −g(x) − yf(x).

equivalent to the generalized Liénard differential equation

(4) ẍ + f(x)ẋ + g(x) = 0,

where f and g are analytic functions defined on R. We call F (x)
and G(x) the unique functions such that F ′(x) = f(x), F (0) = 0,
G′(x) = g(x), G(0) = 0. The critical points of (3) are the points
(x0, 0), where g(x0) = 0.

For the sake of brevity, we say that the Liénard system (3) is reversible
if f(−x) = −f(x), g(−x) = −g(x). We are actually dealing with a
special kind of reversibility, equivalent to the symmetry of the vector
field (y,−g(x) − yf(x)) with respect to the y-axis. This kind of
reversibility is equivalent to the property that a curve t �→ (x(t), y(t))
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is a solution to (3) if and only if the curve t �→ (−x(−t), y(−t)) is a
solution to (3). In particular, if a solution intersects the y-axis, then its
orbit is symmetric with respect to the y-axis. The following lemma is
a straightforward consequence of the continuous dependence on initial
data.

Lemma 1. Let f(x) and g(x) be odd. Then every cycle of (3)
intersecting the y-axis has a neighborhood covered with cycles, all
intersecting the y-axis.

As a consequence, no limit cycles of a reversible Liénard system can
meet the y-axis.

In the next proofs we shall repeatedly apply bifurcation procedures
in order to construct systems with several limit cycles. A main point
of such procedures is the possibility to perturb systems in such a way
that the estimated number of limit cycles does not decrease after the
perturbation. This is ensured, for instance, by Theorem III.1.2 in [9].

In this section, bifurcations will be obtained as a consequence of
stability inversions of critical points. The stability of a critical point of
a Liénard system is determined by the local sign of f(x) and G(x). We
omit the proof of next lemma, which is an elementary consequence of
La Salle invariance principle.

Lemma 2. Let x0 be an isolated zero of g(x), with G′′(x0) = g′(x0) >
0. If f(x) > 0 in a punctured neighborhood of x0, then (x0, 0) is
asymptotically stable. If f(x) < 0 in a punctured neighborhood of x0,
then (x0, 0) is negatively asymptotically stable.

Let

(5) ẋ = P (x, y) =
n∑

i+j=0

bi,jx
iyj , ẏ = Q(x, y) =

n∑
i+j=0

ci,jx
iyj ,

be a polynomial differential system of degree n. We consider the co-
efficient vector C = (b00, b10, . . . , b0n, c00, c10, . . . , c0n) ∈ RN , N =
n2 + 3n + 2, having as components the coefficients of (5). If (x0, y0) ∈
R2, then we write (x0, y0, C) for the (N + 2)-dimensional vector
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(x0, y0, b00, b10, . . . , b0n, c00, c10, . . . , c0n). Let us denote by Pn the set
of polynomial systems of degree ≤ n, and by Dn the set of polynomial
systems of degree ≤ n, reversible with respect to the y-axis. We denote
by SC the polynomial system corresponding to the coefficient vector
C. We set y+ = {(x, y) ∈ R2 : x = 0, y > 0}.

Lemma 3. Let C ∈ RN be the coefficient vector of a reversible
polynomial system, γ a cycle of (5) intersecting the y-axis at a point
z0 = (0, y0). Then there exists a compact neighborhood U0 ⊂ RN+2 of
(0, y0, C), such that if (0, y0, C

′) ∈ U0 and SC′ ∈ Dn, then every orbit
of SC′ passing through U0 is a cycle.

Proof. Let z(t, z0, C) be the solution to SC such that z(0, z0, C) = z0,
T the period of z(t, z0, C). There exists ν > 0 such that z(T + ν, z0, C)
is contained in the half-plane x > 0 together with a neighborhood V0.
By the theorem of continuous dependence on initial conditions and
parameters, there exists a neighborhood W0 of (0, z0, C) in the space
RN+2, such that for every point (0, z1, C

′) ∈ W0 the solution of the
system SC′ starting at z1 satisfies z(T + ν, z1, C

′) ∈ V0. W0 can be
taken so that all such solutions cross y+.

If we restrict to the subclass Dn, then by the reversibility, all the
solutions starting at a point of W0 are cycles of the corresponding
system.

Theorem 1. For every integer k > 0 there exists a reversible
polynomial Liénard system of degree 4k + 2 with a period annulus
enclosing 2k limit cycles and a center.

Proof. Let us set n = 4k + 2. Let us consider system (2), which has
five critical points at (0, 0), (±1/2, 0), (±1, 0). Let us denote by Cg

the coefficient vector of (2), considered as an (N + 2) = (n2 + 3n + 4)-
dimensional vector. At each step of this proof, both f(x) and g(x) will
be odd. In particular, g(x) will not change, and since g′(0) = 1, the
origin will be a center for all the systems considered.

Since limx→±∞ G(x) = +∞, every orbit of (2) out of a compact set
is a cycle, hence the system has an unbounded period annulus P . Let γ
be one of the cycles contained in P , γ enclosing all the critical points of
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(2), and U0 the neighborhood of Lemma 3. Let z(t, z0) be the solution
corresponding to γ.

We proceed by successive perturbations, considering the systems’
coefficients as bifurcation parameters. All the parameters will be chosen
small enough so that, by Lemma 3, the perturbed systems have a period
annulus containing the point z0.

Setting f(x) = x(x−1)2k(x+1)2k, let us consider the (4k+2)-degree
system obtained by taking

(6) ẋ = y, ẏ = −g(x) − yf(x).

By Lemma 2, (1, 0) is asymptotically stable, while (−1, 0) is negatively
asymptotically stable.

Then we consider the system

(7) ẋ = y, ẏ = −g(x) − y[f(x) − fµ1(x)],

where fµ1(x) = µ1x[(x − 1)2k−2(x + 1)2k−2]. The order of fµ1(x) at
±1 is lower than that of f(x), hence the local sign of f(x) − fµ1(x) is
that of −fµ1(x), for µ1 �= 0. As µ1 becomes positive, by Lemma 2 the
points (±1, 0) change stability, and at least two limit cycles, one for
each critical point, appear for small positive values of µ1.

If k = 1, that is if n = 6, the procedure stops here. If k > 1, we
proceed for k − 1 additional steps.

In the second step we consider the systems

(8) ẋ = y, ẏ = −g(x) − y[f(x) − fµ1(x) + fµ2(x)],

where fµ2(x) = µ2x[(x − 1)2k−4(x + 1)2k−4]. As µ2 becomes positive,
the points (±1, 0) change again stability, and two more limit cycles
appear for small positive values of µ2. Also, by Theorem III.1.2 in [9],
for small positive values of µ2 the new system has two limit cycles close
to those ones appeared in the previous bifurcation.

We proceed adding more and more perturbations until we add a linear
term

(9) ẋ = y, ẏ = −g(x) − y[f(x) − fµ1(x) + · · · ± µkx].
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After this last perturbation, we have 2k limit cycles. Each of the
systems considered has a center at the origin, by the reversibility of all
the systems constructed. Also, all such systems have a period annulus
enclosing such limit cycles and the center.

The lowest degree for which we obtain a period annulus enclosing a
center and limit cycles is 6. In this case we get a center and two limit
cycles.

In the next theorem we consider perturbations that change the
stability properties of the origin. In this way we are led to consider
nonreversible systems.

Theorem 2. For every integer n > 5 there exists a polynomial
Liénard system of degree n with n − 2 limit cycles.

Proof. Let us first assume n even. Let us set n = 4k + 2.

By the previous theorem, there exists a reversible system of degree
n,

(10) ẋ = y, ẏ = −g(x) − yf(x)

having a center and 2k limit cycles. The polynomial f(x) is odd,
hence it has the form f(x) =

∑r
j=0 a2j+1x

2j+1, r = 2k = (n/2) − 1.
We consider successive perturbations obtained by adding even-degree
monomials of the form λ2jx

2j , j = r, . . . , 0. As in the previous theorem,
we proceed by decreasing degrees. As a first perturbation, we take the
system of the form

(11) ẋ = y, ẏ = −g(x) − y[f(x) + λ2rx
2r],

with λ2r > 0. The origin is asymptotically stable. In fact, the vector
product of the unperturbed vector field (10) and the perturbed vector
field (11) is −λ2rx

2ry2 ≤ 0. Hence the orbits of (11) cross the cycles
of (10) towards the interior. By the LaSalle invariance principle, this
gives both the stability and the attractivity of O.

The second perturbation is obtained by adding a term of degree 2r−2:

(12) ẋ = y, ẏ = −g(x) − y[f(x) + λ2rx
2r − λ2r−2x

2r−2].
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Arguing as above, one can prove that the origin is negatively asymptot-
ically stable, so that a limit cycle bifurcates out of the origin as λ2r−2

becomes positive.

Then we go on adding perturbations of lower and lower degree, until
we add a constant term:

(13) ẋ = y, ẏ = −g(x)−y[f(x)+λ2rx
2r −λ2r−2x

2r−2 + · · ·±λ0].

After this last perturbation, we have produced r = 2k new limit cycles.
Such perturbations can be produced without destroying the presence
of previous limit cycles. Hence the last system has 4k = n − 2 limit
cycles.

Let us now consider the case of n > 5, n odd. Let us set n = 4k + 3.

By Theorem 1, there exists a reversible system of degree n−1 = 4k+2,
having a center and 2k limit cycles. We can repeat the procedure of the
first part of this proof, but starting with a perturbation λ4k+2x

4k+2 of
degree n−1 = 4k +2, instead of degree 4k. This allows to produce the
desired 2k+1 bifurcations, for the additional 2k+1 limit cycles.

The above result is not sharp. In fact, it is known that there exist
cubic Liénard systems with quadratic damping with two limit cycles
[5]. Anyway, high degree systems still have to be studied in detail, and
at present there are no sharper results for Liénard systems of arbitrary
degree.

3. Limit cycles enclosing central regions. We say that an
autonomous plane differential system is ultimately bounded (UB), if
the system has a globally asymptotically stable compact set. Similarly,
we say that a system is negatively ultimately bounded (NUB), if the
system has a negatively globally asymptotically stable compact set.

For the reader’s convenience, we report here a theorem by Graef [6]
concerned with Liénard systems, in the form that will be used in this
paper.

Theorem 3 (Graef). Let F (x) and g(x) be Lipschitzian. Assume
that there exists σ ∈ R such that

xF (x) > 0 for |x| ≥ σ;
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xg(x) > 0 for |x| ≥ σ;

F (x) ≥ const. > 0 for x ≥ σ (F (x) ≤ const. < 0 for x ≤ −σ) ;∫ ±∞
0

[f(x) + |g(x)|] dx = ±∞.

Then (3) has a globally asymptotically stable compact set K.

Graef’s theorem can also be used to prove the existence of a negatively
globally asymptotically stable compact set. In fact, (x(t), y(t)) is a
solution to (3) if and only if (x(−t),−y(−t)) is a solution to

(14) ẋ = y, ẏ = −g(x) + yf(x).

As a consequence, the solutions of (3) are bounded if and only if the
solutions of (14) are negatively bounded, and vice versa.

It is easy to check that if F (x) and g(x) are odd-degree polynomials,
with positive leading coefficients, then (3) is UB. Similarly, if F (x) and
g(x) are odd-degree polynomials, g(x) with positive leading coefficient,
F (x) with negative leading coefficient, then (3) is NUB.

In the following, we show that Liénard systems can have several
limit cycles surrounding a center. The procedure we apply is based
on repeated bifurcations at infinity. We report here the main result
used, proved in [10], applied in [11] to study limit cycles bifurcating
from infinity.

Theorem 4. Let

(15) ẋ = Pµ(x, y) ẏ = Qµ(x, y)

be a continuous family of plane differential systems for µ ∈ [0, µ∗).
Assume that there exists a compact set H containing all the critical
points of (15), for µ ∈ [0, µ∗). If the system (15) is NUB for µ = 0,
and UB for µ ∈ (0, µ∗), then a family of annuli Mµ, having limit cycles
as boundary, bifurcates from infinity as µ becomes positive.

The bifurcating annuli Mµ are asymptotically stable invariant annuli.
They may reduce to limit cycles, when the inner and outer components
of their boundary coincide.
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Theorem 5. For every k > 0 there exists a polynomial Liénard
system of degree 6k+3 with k limit cycles surrounding a central region.

Proof. By [3, Theorem 6], (3) has a nondegenerate center at the
origin if and only if F (x) and G(x) are polynomials of a polynomial
A(x), with A′(0) = 0, A′′(0) �= 0.

Let us choose A(x) = x2 + x3, G(x) = A(x) + A(x)2. The critical
points of all the systems that we consider in this proof are the points
(x0, 0), where g(x0) = 0. In this proof G(x) is fixed, so that the
bifurcating sets do not contain critical points, hence they are annuli,
having a couple of limit cycles as boundary.

Let us set F0(x) = A(x), f0(x) = F ′
0(x). Graef conditions hold for

the system

(16) ẋ = y, ẏ = −g(x) − yf0(x),

hence it is UB. Now let us set F1(x) = A(x)−µ1A(x)3, f1(x) = F ′
1(x),

and consider the perturbed systems

(17) ẋ = y, ẏ = −g(x) − yf1(x).

For µ1 > 0, the system (17) is NUB, so that at least a limit cycle γ1

bifurcates from infinity as µ1 becomes positive. Since the integrability
condition holds for every µ1, the origin is a center, hence γ1 surrounds
its central region NO. The system (17) has degree 9.

If k = 1, the procedure stops here. Otherwise we consider a
new perturbation. Let us consider the system we obtain by setting
F2(x) = A(x) − µ1A(x)3 + µ2A(x)5, f2(x) = F ′

2(x),

(18) ẋ = y, ẏ = −g(x) − yf2(x),

Such a system, by Graef condition, is UB. For small positive values
of µ2, a limit cycle γ2 bifurcates from infinity. Also, for small positive
values of µ2, there exists a limit cycle γ∗

1 of (18), close to γ1. Again, the
integrability condition holds, hence the origin is a center, with central
region surrounded by γ∗

1 and γ2. The system (17) has degree 15.

Such a procedure can be repeated an arbitrary number of times,
generating systems with a center at the origin, surrounded by k large
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amplitude limit cycles. Since at every step the system’s degree increases
by 6, the resulting system has degree 6k + 3.

The above proof can be modified along the lines of the last theorem
in [11], in order to show that there exists an analytic Liénard system
with a center surrounded by infinitely many limit cycles. For a couple
of vectors z1 = (x1, y1), z2 = (x2, y2) let us set z1 ∧ z2 = x1y2 − x2y1.
The next lemma was proved in [11]. We denote by δ′(t) the vector
tangent to the curve δ(t).

Lemma 4. Let M be an asymptotically stable annulus of the
differential system

ż = v(z),

z = (x, y) ∈ R2, v ∈ C1(R2,R2), having nontrivial cycles γi, γe as
inner and outer components of its boundary. Then there exist C1 curves
δi enclosed by γi, δe enclosing γe, such that δi′∧v �= 0 on δi, δe′∧v �= 0
on δe.

Theorem 6. There exists an analytic Liénard system with a center
enclosed by infinitely many limit cycles.

We start as in the proof of Theorem 5, choosing F0(x) = A(x) =
x2 + x3, G(x) = A(x) + A(x)2,

ẋ = y, ẏ = −g(x) − yf0(x).

As in Theorem 5, in this proof G(x) does not change, so that the
critical points of all the systems that we consider do not change as we
consider new perturbations. This ensures that the bifurcating sets do
not contain critical points. We apply the first perturbation, choosing
F3(x) = A(x) − λ3A(x)3, f3(x) = F ′

3(x) (we have changed indices’
numbering, with respect to Theorem 5),

(19) ẋ = y, ẏ = −g(x) − yf3(x), λ3 > 0.

we produce a family of asymptotically stable invariant annuli M3

bifurcating from infinity. Let us denote by v3 the vector field associated
to the system (19). By the above lemma, there exist C1 curves δi

3, δe
3
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such that δe′
3 ∧ v3 �= 0, δi′

3 ∧ v3 �= 0, respectively, on δe
3, δi

3. Due to
the form of Liénard system, since M3 is asymptotically stable, we have
δe′
3 ∧ v3 < 0 on δe

3, δi′
3 ∧ v3 > 0, on δi

3. By the compactness of δe
3, δi

3,
there exists ε3 > 0 such that δe′

3 ∧v3 < −ε3 < 0 on δe
3, δi′

3 ∧v3 > ε3 > 0,
on δi

3. Let us denote by N3 the annulus having δi
3 as inner boundary,

and δe
3 as outer boundary.

Now let us apply a second perturbation, choosing F5(x) = A(x) −
λ3A(x)3 + λ5A(x)5, f5(x) = F ′

5(x),

(20) ẋ = y, ẏ = −g(x) − yf5(x), λ5 > 0.

Let us denote by v5 the corresponding vector field. A family of
negatively asymptotically stable invariant annuli M5, bifurcates from
infinity as λ5 becomes positive. Let us choose λ5 small enough to have
δe′
3 ∧ v5 < −ε3, δi′

3 ∧ v5 > ε3, respectively, on δe
3, δi

3. By the previous
lemma and the negative asymptotic stability of M5, there exist also
C1 curves δe

5, δi
5 and ε5 > 0, such that δe′

5 ∧ v5 > ε5 > 0 on δe
5,

δi′
5 ∧ v5 < −ε5 < 0 on δi

5.

By adding perturbations of higher and higher degree, we construct a
sequence of (negatively) asymptotically stable invariant annuli M2k+1,
with C1 curves δe

2k+1, δi
2k+1, defining annuli N2k+1 such that

(i) N2k+1 ∩ N2h+1 = ∅, for k �= h; N2k+1 positively (negatively)
invariant with respect to v2k+1, if M2k+1 is (negatively) asymptotically
stable;

(ii) for h ≥ k: |δe′
2k+1 ∧ v2h+1| > ε2k+1, |δi′

2k+1 ∧ v2h+1| > ε2k+1,
respectively, on δe

2k+1, δi
2k+1.

Moreover, we can choose the parameters λ2k+3 small enough to satisfy

(iii) |λ2k+3|/|λ2k+1| < 1/(2k + 3).

The power series
∞∑

k=1

(−1)kλ2k+1x
2k+1

has radius of convergence ∞ because of condition (iii). Let us set
Ψ(x) = x+

∑∞
k=1(−1)kλ2k+1x

2k+1. Ψ(x) is an analytic function defined
on all of R. Let us set F (x) = Ψ(A(x)), f(x) = F ′(x). We claim that
the system

(21) ẋ = y, ẏ = −g(x) − yf(x)
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has infinitely many limit cycles. Let us denote by v∞ the corresponding
vector field.

Assume M2k+1, for some k > 0, to be asymptotically stable for v2k+1,
hence N2k+1 positively invariant with respect to v2k+1. For h ≥ k, we
have δe′

2k+1 ∧ v2h+1 < −ε2k+1 on δe
2k+1, so that

δe′
2k+1 ∧ v∞ = δe′

2k+1 ∧
(

lim
h→∞

v2h+1(z)
)

= lim
h→∞

δe′
2k+1 ∧ v2h+1(z)

≤ −ε2k+1 < 0.

We can work similarly on δi
2k+1, proving that δi′

2k+1 ∧ v∞ ≥ ε2k+1 > 0.
This proves that N2k+1 is positively invariant for v∞. Since the critical
points of (21) are in a fixed compact set, there exist infinitely many
sets N2k+1 not containing critical points of (21). Hence the ω-limit set
of a point on the boundary of such ∂N2k+1 is a limit cycle γ2k+1.

In order to complete the proof we only have to show that the origin
is a center of (21). We have A(x) = −1 +

√
(1 + 2x2 + 2x3)2/2 =

−1 +
√

1 + 4G(x)/2, hence A(x) is an analytic function of G(x) in a
neighborhood of 0. As a consequence, F (x) = Ψ(A(x)) is an analytic
function of G(x). Since g′(x) > 0, by Theorem 1 in [3] the origin is a
center of (21).
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