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APPROXIMATION OF SOBOLEV-TYPE
CLASSES WITH QUASI-SEMINORMS

Z. DITZIAN, V.N. KONOVALOV AND D. LEVIATAN

ABSTRACT. Since the Sobolev set W, 0 < p < 1, in
general is not contained in Ly, 0 < ¢ < oo, we limit ourselves
to the set Wy NLoo, 0 < p < 1. We prove that the Kolmogorov
n-width of the latter set in Lq, 0 < ¢ < 1 is asymptotically
1, that is, the set cannot be approximated by n-dimensional

linear manifolds in the Lg-norm. We then describe a related
K

set, the width of which is asymptotically n=".

1. Introduction and function classes. Very little is known about
the exact order of any width of nontrivial classes of functions in the
Lg-metric for 0 < ¢ < 1. Recall that, for 1 < p, ¢ < oo, the orders of
most widths of the classical Sobolev classes W in L, are well known.
In contrast, for 0 < p < 1, the behavior of any of the widths of these
classes in Ly, 0 < ¢ < o0, are not known. In general, the class W,
0 < p < 1, is not contained in L, but even if we overcome this difficulty
by taking, say, the smaller set W N Lo, 0 < p < 1, we will show
that it cannot be approximated well in L, for any 0 < ¢ < co. We
remind the reader that, for the approximation of f € L,, 0 < p < 1,
by polynomials and by splines with either equidistant knots or knots
on the Chebyshev partition, there are known Jackson-type estimates
involving the moduli of smoothness of f in the L,-quasi-norm, see,
e.g., [1]. However, there are no simple relations between the moduli
of smoothness and the derivatives of f, if they exist. Moreover, the
moduli of smoothness are not equivalent to K-functionals which are
identically zero, see, e.g., [3, Theorem 2.1]. Thus, we introduce new
classes V7, 0 < p < 1, which we feel are the proper replacement of the
Sobolev classes for 0 < p < 1, and we obtain the exact orders of their
Kolmogorov, linear, and pseudo-dimensional widths in L;, 0 < ¢ < 1.
We also obtain for these classes exact orders of best approximation in
L4, 0 < g <1, by rational functions and free-knot splines.
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Let I = (a,b) be a finite open finite interval, » € N, and 0 <
p < oo. By Wj := WJ(I) we denote the usual Sobolev space of all

functions z : I — R such that ("1 € AC),.(I) equipped with the
(quasi-)seminorm

lzllwy = N2z,

In Section 2 we state our result on estimates of various widths of the
subset

W = {:v ewr | Z 23z, <1, Jafz. < 1}, 0<p<l,
s=0

in Ly, 0 < ¢ < 1. We show that they stay away from 0, as n — oo.

For r € N, 0 < p < oo, we denote by V) := V/(I), the space of
all functions = : I — R such that 2"~V ¢ AC4c(I) for which the
(quasi-)seminorm

P 1/p
ol o | Wil 2@l @) T 0<p <,
yr o=
P t ,
fto |x( )(7)| dr

Supte[ ) b = 00,

where tg is the midpoint of I, is finite. In Section 2 we give estimates
of various widths of the unit ball V" of V, in L, 0 < ¢ < 1. We show
that they tend to 0 when n — oo.

After a section of auxiliary lemmas, we prove the two main results
in Sections 4 and 5. Finally in Section 6 we discuss the inclusion and
noninclusion relations between V; and W,.

2. Various widths and the main results. Let X be a real linear
space of vectors & with norm ||z||x and W any nonempty subset in X.
Recall that the Kolmogorov n-width of W is defined by

V= gl B Ve vl
T

where the lefthand infimum is taken over all affine subsets M™ of
(algebraic) dimension < n. The linear n-width of W is defined by

dp(W)kin .= Jl\?i iI}‘f Sélei/ |z — Az|| x,
T
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where the lefthand infimum is taken over all affine subsets M™ of
dimension < n, and the middle infimum is taken over all linear
continuous maps A from affine subsets M = M (W) containing W into
M™.

Finally, we will also have estimates for yet another width, the pseudo-
dimensional width which was introduced by Maiorov and Ratsaby
[7-9], using the concept of pseudo-dimension due to Pollard [12].
Namely, let M = M(T) be a set of real-valued functions z(t) defined
on the set T, and denote

S 1 a>0
e ) a<0.

The pseudo-dimension dim,s M of the set M is the largest integer n
such that there exist points ¢1,...,t, € T and a vector (y1,...,Yn) €
R™, for which

card {(Sgn ((t1) + y1),...,5gn (z(tn) + yn)) | zx € M} = 2™

If n can be arbitrarily large, then dim,s M := oo.

The pseudo-dimensional n-width of W is defined by

d . .
d, (W5 := inf sup inf
n( )X J\/I’IL mEW yeM’!L

z _y”Xv

where the lefthand infimum is taken over all subsets M™ in a normed
space X of real-valued functions such that dim,s M" < n.

The following properties of the pseudo-dimension are known, see [4].

If M is an arbitrary affine subset in a space of real-valued functions
and dim M < oo, then

(2.1) dim,, M = dim M.

Let P, := P, (I) be the space of algebraic polynomials p,, of degree < n.
Denote by R, := R, (I) the manifold of rational functions r, = p,/qn
where p,,q, € P,. Also denote by %, , = X, ,(I), the manifold of
all piecewise polynomials o;.,,, of order r and with n — 1 knots in I,
ie., orn € Xy, if for some points a =ty < t; <--- <t, =bitisa
polynomial of degree < r — 1 on each interval (¢;—1,%;), i = 1,...,n.
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The rational functions r,, are defined arbitrarily at the poles, and the
piecewise polynomials o,., are assigned arbitrary values at the knots.

It is known that
(2.2) dimy,s Ry, < dimps Xy, X 1.

It follows by (2.1) that if W is a nonempty subset of X, a normed space
of real-valued functions, then

(2.3) Ay (W)R? < dn(W)R < dn (W)Y
Given W C X, let
E(W,R,)x :=sup inf |z —r,]x,
zEW Tn€RR
EW, 5, ,)x :=sup inf |z — o, x.

2EW Or,n€Zrn

It follows from (2.2) that there exist an absolute integer o > 0 and an
integer 8 = B(r) > 0, such that

(24) dan(W)g(Sd S E(VV, Rn)X,
(2.5) dn(W)R* < B(W. Zp0)x-

We are ready to state our first result.

Theorem 1. Letr € N and 0 <p < 1. For any 0 < ¢ < o0,

(26)  da(Wy )0t = da(Wh o)1 = da(Wy )i < 1,
and
(2.7) E(Wy o Xrn) < EWy oo, Ba)r, < 1.

On the other hand we show

Theorem 2. Letr € N and 0 < p,q < 1, be such thatr—1—1/p+
1/q > 0. Then

(2.8) A (V)P < dp (V)5 < d (V) =7,

p p p
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and

(2.9) E(V!,Snn)r, = B(V],Ra)p, =n~"

3. Auxiliary lemmas. The following lemma follows immediately
from [6, Lemma 2.2, p. 489], also see [9, Claim 1].

Lemma A. Let m € N and Vi, := {v | v := (v1,...,0m),v; = %1,
i = 1,...,m}. Then there exists a subset F,, C Vi, of cardinality
> 2m/16 such that for any 0,0 € F,,, where 0 # ¥, the distance
16— tllipe > m/2.

Given € > 0, points z;, i = 1,...,n, in a linear normed space X are
called e-distinguishable if ||z; — x;||x > ¢ for all ¢ # j. Let H be any
nonempty subset of X, the maximal integer n € N, such that there
exist n e-distinguishable points h; € H, is called the e-packing number
M.(H)x of H in X. If n can be arbitrarily large, then M. (H)x := cc.

The next lemma follows directly from [5, Corollary 3], also see [9,
Lemma 1].

Lemma B. Let H, , := {h} be a set of Lebesgue-measurable func-
tions h on (0,1) such that ||h||L,, < a < oo and dimpys Hy, , < n < 00.
Then for any € > 0,

M.(Hyo)r, <e(n+1)(dea/e)™.

We prove the following

Lemma 1. Let I := (0,1), and let a > 0, € > 0, and m € N, such
that m > 16(8 + logy(a/c)), be given. Suppose that a set ®,, = {¢} C
Lo exists, of cardinality > 2"/16 such that

lellre <a, @€ P,

and for some 0 < g < 1,

||¢_¢||Lq ZE? @#@a @,@E(I)m
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Then for any n € N such that n < (16(8 + log2(a/6)))7lm we have

dn(Br)p? > 272719 (27 — 1)1/,

q

Proof. Let H,, C Ly be such that dim,, I,, <n. Denote
(3.1) 6= E(®y,, Hy)L,-
With any ¢ € ®,,, we associate an element hs(yp;-) € H,, such that
(3.2) le(-) = hs(es )L, <20,
and denote by
Hsp i= Hsn(I) := {hs(p;-), 0 € P},

the collection of these functions. Now we let

—a for t : hs(p;t) < —a,
hs.a(pit) = q hslpit) for t:|hs(p;t)] < a,
a for t : hs(p;t) > a,

and denote by

Hs o = Hé,n,a(j) = {hé,a(SDJ ), 0 € P},

the collection of the truncated functions. Clearly

(3.3) [h6,a(@5)Le <a, @ € Py,
and
(3.4) dimys Hs o < dimys Hs,, < dimys Hy, < n.

We will prove that
(3.5) § > 272 a1 _1)Va,
Assume to the contrary that

(3.6) § <272 Ya(2a —1)Vag,
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where § is defined by (3.1). Then, recalling that 0 < ¢ < 1, we have

gy Woal9) = Houl DI, 2 19 =PI, = 190) ~ hoal@i I,
| ~1BC) = haa(@ G,

Since |¢(t)] < a and |p(t)| < a, t € I, (3.2) implies

16() = hsa(@: IS, < [6() = ha(@i )14, < 2767,

and
6() = ho.a(@3 )7, < II9C) = hs(@;)ll7, < 2967,
which, substituting in (3.7), yields

(3.8)  lhsa(@:) — haa(@ NIL, = ¢ — @l — 207167 > 2797,

Setting n := ¢/2, we see from (3.8) that the function class Hs o
consists of n-distinguishable functions in L,. Thus, in view of |||z, >
llz|lz,, 0 < ¢ <1, we conclude that the function class Hs, , contains
at least 2™/16 y-distinguishable functions in L;. On the other hand,
by virtue of (3.3), |[hs,a(¢;)||L., < a. Hence by Lemma B we have an
upper estimate on the n-packing number M, (Hs o)1, of the function
class Hs p,q, namely,

M,(Hsna)r, <e(n+1)(4dea/n)" =e(n+ 1)(462@/5)"
< 2% (2%afe)" = 2B Hlosa(a/ N,

Since m > 16(8 + logy(a/e))n, it follows that
9(8+logy(a/e))n < M,y (Hs o)L, < 2(8+logz(a/e))n

a contradiction. Thus (3.6) is contradicted and (3.5) is valid. Hence
for any subset H,, € L, with dim,s; H,, < n, we have

E(®p, Hy)p, >272719(20 — 1)V e,

and in turn
dy (®,,)2°F > 2727 Va0 _ 1)V ag,

This completes the proof of Lemma 1. o
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Lemma 2. Let 0 <p <1, and forb; >0,i=1,...,n, let
n 1/p n 1/p

i = (zbg) - ( ) bg) S U<i<n—1, by i=ba
j=i j=it1

Denote

i=1
and
n
Spn _{t_(tlv ) [0St < "St"’z5p2tz<1}
=1
If
lpn(t) ==Y Spiti, tER”,
i=1
then
(3.9) X Lon(t) =1,

and consequently Ty, , C Spp.

Proof. We consider the extremal problem

n

n P
lpon(t) = (Z 5,,,,»ti> —sup; 0<ty <o <ty Y (Bity)? < 1L
i=1

i=1

Denote 7; :=t¥,i =1,...,n, and let 7 := (71,...,7,). Then we get an
equivalent extremal problem,

n P n
fpn(T) == (Zé ,ml/p) —sup; 0<7 <--<m, > R <L
i=1

i=1

By Minkowski’s inequality it is easy to verify that f,, is convex.
Therefore it achieves its maximum on the vertices of

Qpn = {Tlogn <<, Y W < 1}.

i=1
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Ife® :=(0,...,0), e® := (1,1,...,1),e® := (0,1,...,1),...,e™ :=
(0,...,0,1), then these vertices are

n —1
70 — @ k). (Z bg?) e® k=1,... n
j=k

Since
fp’n(T(O)) = 07 fp,n(T(k)) = 17 k = 17 e, n,

we conclude that

2, Fpn(7) = s Lpnf) = 1

This completes the proof. ]

Lemma 3. Let 0 <p,g<1andb; >0,7=1,...,n. Denote

n [ D
6177" = {9— (91,7071) 02 20,1 SZSH, <bz 9]) S 1}
3 =1
Fora; >0,1<1¢<n, let

fan(0) := (Z(aiei)q)l/q, € R

Then

Proof. The inequality

n 1/q n
(Z(azez)q) < nl/q_l Zazaz = gq,n(9)> 0¢c ®p,nu

i=1 i=1

follows by the concavity of u?. Set

i
ti:zzgia z:l,,n
j=1
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Then
91:t1> ai:ti_tifh i:27"'7n7

and

gqm(@) = nl/q_l (Cllf,l + Zai(ti — ti—l)) =: hqm(t).

=2

Hence, by Lemma 2,

p2X Gon(0) = max fign(t) < max hon(t),

where T}, ,, and S, , were defined in Lemma 2. The function hy,, is
linear, thus it achieves its maximum at one of the vertices of the simplex
Sy, that is, at t*) 1 < k < n, where t(©) := (0,...,0), and

n —1/p
k) = (be) e(k)7 k=1...,n.
j=k

Now hyn(7(9) =0, and for k > 1,

0 1#k
(k) _ (k) _ -1/p
T; Ti—1 (Z?:k b?) 1=k,
where we take Ték) =0,1 <k <n. Hence

n -1/p
han(t) =nt/17" b .o
trensi}i q’n() " 1?1?%(71 @k Zk J
=

We need a well-known relation between various quasi-norms of poly-
nomials, see, e.g., [2, Chapter 4, Theorem 2.7].

Lemma C. Let m._1 be a polynomial of degree < r —1, r € N, and
D,q > po. Then there exists a constant ¢ = c(r,pg) such that for any
finite interval J,

Imr—1llL, ) < el VTP me a0y
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Finally, in the proof of (2.9), we use the following relation between the
degrees of rational approximation and those of free-knots splines, due
to Pekarskii [10] and Petrushev [11], see also [6, Chapter 10, Theorem
6.2].

Lemma D. Letr € N, 0 < p < 00, A > 0, v = min{l,p}, and
x € Ly. Then

n

1/~
B R)s, < en (L B E),)")
k=1

where ¢ = ¢(r, p, A).

4. Proof of Theorem 1. The upper bound in (2.6) is trivial. Thus,
we prove the lower bounds. To this end, we are going to construct
extremal functions.

Let I be the generic interval (0, 1), and fix r,m € N, and 0 < p < 1.
Let

(4.1) £s = es(p,rym) i=m~ P s =01,

and set

s—1
75 = Ts(p,m,m) == Z 272 ke +eg/2, s=1,...,m
k=0
Define
(4.2)
(A-1-p)")/p(A=pP)" ¢ € (—g/2 2
m € (—e0/2,¢e ,
¢0(t) = ¢0(t7p, r, m) = { ( 0/ 0/ )

0 t¢(—€0/2,€0/2),

and

t
Qbs(t) = (bs(t;pu r, m) = /_ (925871(7— + 7'5) - ¢S,1(T - Ts)) dr
t+7s -
:/ ps—1(7)dr, teR, s=1,...,r
t

—Ts
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It is easy to see that

S S
(4.3) suppos = |—> 21, Y 2 R | s =01,
k=0 k=0

hence
supp ¢o C supp ¢1 C - -+ C supp ¢r-.

Since by (4.1) we have g9 < &1 < -+ < &, it follows from (4.3) that
(4.4) £, < |supp o] < 25Me,, s=0,1,...,7

Also, we have

(4.5) os(t) =ps(—t) >0, teR, s=0,1,...,r

and

(4.6) ¢s(t) = |0sllLor), t€(—€s/2,65/2), s5=0,1,...,7

By virtue of (4.4) and (4.6), we obtain

s—1 s—1
(@7 9ol L. (r) H er < Nésllzomy < 252 o]l (w) H €k,
: k=0 k=0
s=0,1,...,r.

Hence, combining (4.4) through (4.7) we conclude that
ol = [ lou(olde
supp és

g5 +lg,
<[ e
(48) s—1

p
< 25+1582ps(s+1)/2H(bOH:ZOC(R) ( H gk)
k=0

s—1 p
< 2(s+1)(s+2)/2‘|¢0(.)||i (R)Es ( H ak) .

k=0
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Now by (4.1) and (4.2)

||¢0 L (R ( H 5k>
s—1

— mP=0=p)")/p(1=p)" ) —(1—p)*~" H m—Pa-p*"
k=0
— m(=0=p)")/(1=p)" = (1=p)*/(1=p)" ), =(1=(1=p)®)/(1=p)"
-1

which substituting in (4.8), yields
19) 602 gy < 2D 20 01

By virtue of (4.7) and (4.2), we obtain

r—1
PrllLe®) > 10l () H £k

(4.10) - : -
= m=0=p)")/p(1=p)" , —(1-(1-p)")/p(1-p)
= 17

and

(4.11)

6r ()l () < 272100 () H €k

— or(r+1)/2,,(1—(1-p)" >/p<1 p) (1= (1=p)") /p(1-p)"

— or(r1)/2.
In turn (4.10) combined with (4.1), (4.5) and (4.6), implies
(4.12) or(t)>1, te[-(2m)~', (2m)7 .
Finally, (4.1), (4.4) and (4.5) yield

|supp ¢,.| < 2" ttm ™!

)
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and
(4.13) supp ¢, C [—27"m_1,2rm_1].
Next, set
or(t) = (r+ 1)~ 127 Brrt)/@rlg (or+1y) ¢ e R.
Then it follows from (4.13) that
(4.14) supp ¢, C [—(2m)~!, (2m)~1],
and by (4.11) we have

||§0r||L R) < (7“+ 1)—12—3r(r+1)/(2p) 2r(r+1)/2
(4_15) < (T + 1)7127(371)r(r+1)/2
= (r+1)~t27rlrt),
Finally, (4.12) implies
(4.16)
@r(t) > (7, + 1)71273r(r+1)/(2p)’ te (—277‘7277171,277‘7277171).
Direct calculations using (4.9) yield, for s =0,1,...,r,

(4.17)
o1 = [
LR = [

— (’I"—|— 1)7p27(3r(r+1))/22(T+1)sp2s/ |¢T_S (2r+1t)’1’ dt
R

p
(’I“ + 1)—1 2—(3r(r+1))/2p2(r+1)s¢£s) (2r+1t) ‘ dt

e e R el N

< (7"‘1' 1)—p2—(3r(r+1))/22(7"+2)s
% 2—(r+1)2(7"—s+1)(7"—s+2)/2m—1

< (7"‘1' 1)—p2—r(r+1)/2m—1
<(r+1)Pm™!
Let tm,; = i/m, i = 0,1,...,m, and set I ; = [Emi—1,tm,i;

i = 1,...,m. Denote ty,; := (tmi—1 + tms)/2, i = 1,...,m, and
set
Oprm,i(t) =@t —tm), teR, i=1,...,m.
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It follows by (4.14) and (4.16) that

(418) supp Sop,’r,m,i - I’m,i7 1= 17 e, M,
and
parmii(t) 2 (4 1) 27 Erime/ G,
(419) b (s — 2P s £ 2 2m),
t=1,...,m.

While (4.15) and (4.17) yield
(4.20)

||50p7r7m,i(')||lzoo < (’I“ + 1)—12—r(r+1)’ i=1,...,m,
and
(4.21)

IS s OIE, < e+ 1)Pm~t, i=1,...,m.
Write

Dy = Pprm (L) :—{ap | ¢ ::Zvigop,nm,i,v = (v, .. ,vm)EFm},
i=1

where F;, is the class of sign-vectors defined in Lemma A. Then by
Lemma A

(4.22) card ®,, . ,,, > 2m/16,
Let ¢ € @, ;... Then, by virtue of (4.18) and (4.21) we obtain for any

0<s<r,
1/p
16 o) = ( / |w<5>(t>|pdt>

m ) 1/p
— (P [l o)

=1 I

m

1/p
~ (I, )
=1
m 1/p
< (Z(H 1)"’m‘1>

i=1
=(r+1)7,

m,i
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so that ,
S, <1, @ € Py
s=0

It also follows from (4.18) and (4.20) that

m
§ ViPp,r,m
=1

max {Joillleprm ()l }

< (r41)7t27r0HD <

lellr. =

Lo

Hence, we conclude that

(4.23) Qprm CW) oy 0<p<1l, mmeN.
For any two different vectors ¢ := (01,...,0y,) and 0 := (01,...,0m),
in F,y,, let

m m
¢ = E Vioprm,i and ¢ = E 0;Pp,r,m,is
=1 =1

be the associated functions, respectively. If [0 — [|;;» > m/2, then,
evidently, there exist indices i1,...,4i[, 41 such that 0;, = —v;,
k=1,...,[m/4]. Therefore, by (4.18) and (4.19) we get for 0 < ¢ < 1,

m q
196) = 2Ol = [ |00 = 80t
1=1
-y / 65— 5[ s (D)0
i=17Im,i

m T i 42777 2m ™t
> 0; — ;]9 ()1 dt
>l [ Herrma®)

=1
[m/4]
> 2—r—1m—1(,’,+1)—Q2—(37"(7'+1)(1)/(2P) Z 24
=1

> I e + 1)qu*(BT(TH)q)/(%)2q2*2m

= (r+1)792¢(r+3)=6rr+1)a)/(2p)
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Thus, for
£:=(r+ 1)—121—(T+3)/q—(3T(T+1))/(2p).
we have
”@() - @(')HLq(I) > g, 95 7é va @7 Sb € (I)p,r,m-
If we set

a:=(r4+1)"t27rr+),
then by (4.20) we have
leprmillLam Sa © € Pprm.
Therefore for
m = [16(8 + logy(a/e))n, n €N,
it follows by virtue of (4.22) and Lemma 1, that

(B V51 > 2727 11(20 — 1)V 16 =,

where ¢ = ¢(r, p, q). This, by (4.23), in turn implies

dn (Wi,oo)fﬁn > e,

where ¢ = ¢(r,p, q). The lower bounds
dn(W;)n,oo)lgg Z d’ﬂ(W;,oo)lZZl Z ()
and

E(W;,mv Srn) L, 2 G

q
E(W;,ooa Rn)Lq > ¢

where ¢ = ¢(r,p, q), now follow readily from (2.3) through (2.5). This
completes the proof of Theorem 1. O

5. Proof of Theorem 2 (Upper bounds). Here it is more
convenient to take I := (—1,1). Fix n € N and set

r—1+1/q

(5:1) EE e Y Y
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which is well defined since by assumption r — 1 —1/p+1/g > 0. We
partition I by

PR .._{1—<(n—z‘)/n)ﬁ i=0,1,...,n
T A () i= 1, o,

and set

[, imnt) i=1m,
7 Bfﬂ,l T (t“tl-‘r]] Z: _17 . .7_n.

Given an x € V', we denote by

t—t
Tr—1,i(x;t) = me_1 (2t t;) st) ) ,
z’zo,il,...,i(n—l),

its Taylor polynomial of the degree » — 1 about t¢;, and define the
associated piecewise polynomial

7-‘-7"—1,1'—1(‘r;t) te[’ia izlv"'vna

Orn(T31) 1= 0p,rn () 1= {77 Liti(x;t) tel,i=-1 -n
r—1,1 ) iy b — PR .

We first assume that x € Vpr satisfies in addition

®0)=0, s=0,...,r—1.

Then .
1
- - (r) -1 I
(1) (r—1)!/0m (F)(t=7)"Vdr, tel.
Set
i(t) Ot —71) " Ldr, tel,
and

Clearly, = & — &, and

Orm(T5t) = Op n (E58) — 0pn(T3t), tel



SOBOLEV-TYPE CLASSES 463

It readily follows that
[Zllv; <1 and [|2]y; <2.
Also, it is easy to see that

) >0, and 29()>0, s=0,...,r—1, tel0,1),

and
(1) 2 (@#) >0, and (-1)"*2 (1) >0,
s=0,...,7r—1, te(-1,0]
Moreover, for every s = 0,...,r — 1 the functions #®) and &) are

nondecreasing in [0,1) because #()(t) > 0 and #(")(t) > 0 almost
everywhere for t € I. Respectively, the functions (—1)"~*z(*) and
(—1)"~*#(%) are nonincreasing in (—1,0] for every s =0,...,r — 1.

Let 0 < ¢ < p < 1. Then it follows immediately from Holder’s
inequality that € L,, and we will prove that

(5:2) 12(-) — orn(; ')HLQ([OJ)) <en™ ",

where ¢ = ¢(r,p,q). A similar proof yields the same inequality for the
norm of Z in [0,1), and for the norms of Z and % in (-1, 0].

To this end, we observe that (5.2) is trivial for n = 1, so that we may
assume n > 1.

From the definition of m,._; ;1 and by Taylor’s expansion, we have

E(t) = w11 (d5t) =

! /t (7t — 1) dr,

(r=1"J,_,
i=1,....,n—1.
If we denote
0; = 0,:(2) =" V() — " V(t), i=1,...,n—1,

then; > 0,i=1,...,n—1, since 71 is nondecreasing in [0, 1) and,
by the above,

|(E(t)—’ﬂ'r,1’i,1(.’i;t)| §C|Ii|r_107;, tel t=1,...,n—1.
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Hence
(5.3)  N2() — orn (@ ),y < L0, i=1,...,n—1
For i = n we get by Holder’s inequality

12() = mr—1,0—1(F; ) L, (1)

il
<e|L,["! (/tl

q 1/q
dt>

/t j:(r)(r)(t — 1) tdr

tn—1
¢ q 1/q
/ 150 (7| dr dt>

n—1 tn—1
1 t P 1/p
<y [ [ ] @)
tn—1 tn—1
1 t D 1/p
<elprrrn( [ a0 a)
0 0

< I[P P
< c|[n‘r—1—1/p+1/q_
Hence
(5.4) 12() = 08,0n (& M Ly(1,) < elTn] " HPHA,

Since ¢ < 1, we apply the inequality a? + b? < 2'=9(a + b)9, a,b > 0,
to obtain from (5.3) and (5.4),

(5.5)
[2(:) = ap,r.(Z; ) Ly(10,1))
= 1/q
<c (Z (21/q1|]1.|r1+1/q91_)Q> + 621/q71|]—n|r71,1/p+1/q.

i=1
Thus we need an estimate on the sum on the righthand side. Observe
that, fort € I;, 2 <i <mn,
i—1
@) = 2T — D (o) + ) [T () — 2D (850)]
j=1
i—1
> 0; > 0.
1

J
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Hence

1
12D o = / D) P dt
= / 2D ()P dt
/ =D ()P dt

<1|1/P29) .

&M: HM:HM

On the other hand,
1
||jj(7"—1)H12p([0’1)) :/0 |:E(7"_1)(t)|p dt

1 rt P
= / / & ()dr
o IJo

< |z, < 1.
P

dt

Together these two inequalities imply

n—1 7 p
(5.6) Z(Ii+1|1/p29j) <1
i=1 =1

Now, simple calculations show that
ca(n—i+ 1)1’ <L <cn—i+ 1) 0l i=1,...n,

for some constants ¢; = ¢1(8) > 0 and ¢y = ¢3(5), which substituting
in (5.5) and (5.6) yield, respectively,
(5.7)
12(-) = o7 (25 )HL ([0,1))
— r—1+1/ a\ /4
S

i=1
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and ) .
n— % P
S (@t 30,) <1
i=1 =1

for some constants ¢; = ¢;(r,p,q) and ¢ = é(r, p, q).
Thus with

a; == (61 (n— i)ﬁfl/n'@)rflﬂ/q
and
b= (ea(n— )P mP)P =1, -1,

we have to estimate

n—1 1/q n—1 1/q
(5 (om0 ) (B
i=1 i=1
- fq,n—l(e)a
under the constraint
n—1 7 p
0; >0, i=1,...,n-1, Y (bi29j> <1.
i=1 j=1

This is exactly what Lemma 3 is about, and we conclude by it that

(5.8) fam_1(0) < (n—1)"147 max {ai(gbg.’)l/p},

1<i<n—1

where ¢ = ¢(r, p, q). So all we need is to estimate the righthand side of
(5.8).

Straightforward calculations yield

n—1 n—1
=y (n—j) "t =P — i),
Jj=i

j=i
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whence,
n—1 \ —1/p
e (o (50) )
< ¢, f7YPp A= YPHYa) gy (p — )P D IR 9=6/p

1<i<n—1
< ¢ n Blr—1-1/p+1/q) (n— 1)(ﬁ*1)(rfl+l/q)*ﬁ/p < eprHola

since the choice of 8 in (5.1) guarantees that

max (n — i)(ﬁfl)(rflﬂ/q)*ﬁ/p =(n— 1)(5*1)(T*1+1/q)*5/p.
1<i<n—1

Substituting in (5.8) yields

(5.9) fan—1(0) <en™",

where ¢ = ¢(r, p, q). The choice of 8 in (5.1) also gives
n—Blr=1-1/p+1/q) <n7",

which, substituted together with (5.9) into (5.7), yields

(5.10) 12(:) = orn (@ )lL,o1)) Sen™ n=1,2,...,

where ¢ = ¢(r,p, ¢). Similarly we obtain

(5.11) 12(-) = 0@ ML, qoay Sen™, n=1,2,...,

where ¢ = ¢(r, p, q).

Combining (5.10) and (5.11) we conclude that for 0 < ¢ < p < 1 we
have

(512) ||‘T() _Ur,n(x;')”Lq([O,l)) < Cnira n= 1527"'7

where ¢ = ¢(r,p, q).

If, on the other hand, 0 < p < ¢ < 1, then in general we can no longer

guarantee that = € V) necessarily belongs to L,. We have this because

we have assumed that r — 1 —1/p+1/¢ > 0. In order to see this we
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first observe that in this case r > 1. We will show that if z € V, then
for all ¢t € I we have the pointwise convergence,

o0
o(t) = opoo(@it) + D (0r20 (w3t) — 0y 0o (w31))
v=1
o0
_O'TQO {E t +Z O'TQV {E t —O'T2171(.’L' t))
v=1

oo
— 0, 00(25t) — Z Orv (85t) — 0y 001 (851)).
v=1
In fact we will show more, namely, that

o0
O (E5t) = o700 (5 0)|7 + ) |orae (£51) = 0y 501 ()|

v=1

and

o0

Tqur(@3t) 1= |0720 (1)1 + D |opv (E51) — 0y o1 (£31)|7

v=1
converge pointwise for all ¢ € I and any 0 < ¢ < 1.
Indeed, for a fixed t € I,
t
| et @ar
0

t
/ |2 (1) dr|.
0

Since r > 1, the above series are dominated by a convergent geometric
series.

Now for v € Nandall 1 < i <271, we have Ipv-i1 ;= Ipv 9i1Ulpw 9.
Also,

r—1

|z(t) — o ov (2;1)] < ,max |Iov i

S 02—(7"—1)1/

Opov—1 (ii’, t) = ’R'T,l(if; t, t2”_1,i—1)
= Wr_l(.f;t, t2V721‘_2)7 te 121/7112'
while 5
Tr—1(Z;t tov 2i—2) t € Iov 951,
Tr—1 (&5, tov 2i-1) t € Iov 95,

orov (1) = {
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Hence

Orov (T;t) — 0y ov—1 (T3 1)

0 t eI,
S\ @bt ai1) = T (Bt 1), EE v,
so that

|20 (%) = 02015 ) Ly (1,0
(5.13) i ollae1,0)
= 1 (855 tar 2im1) = T (855 tov -1 i1 Ly (1w 2)-
By virtue of Lemma C we have
(5.14)
e —1(F; 5 tav 2i—1) — Tr1 (55 tov—1 5 1) |1y (1av 00)

<c |I2V,2i‘1/q71/p||7rr—l(j; ) t2",2i—1)—77r—1(53§ ) t2"*1,i71)||Lp(12V,2i),
where ¢ = ¢(r, p, q), and

||7T7"_1(j; K t2"72i_1) - 71-7"—1(5:; %y t2”71,i71)||€p(12u,21‘,)
S Hj() - ﬂ-r_l(j; .’tQVfl,ifl) |z[j/p(121/y2i)

(5.15) + [|2() = mr1 (3 "tzll,zi—1)||ip(l2yy2i)

<||z(-) = mr_1(F; 'at2"*1,i71)||12p(1

2'/—1‘7‘,)
+ Hj() — ﬂ-r—l(j; ° t21172i_1)||€p(12”,2i).
Substituting (5.14) and (5.15) in (5.13) implies
o720 (&5 ) = 0,20 -1 (&5 ‘)”qu(Iz,,fl’i)
(5.16) < Ty g TP () — o (8 ste )L 0,

+ ¢ |Tpv 2| 7YP| () — o1 (-, t2u72i_1)\|‘1Lp(12V72i),

where ¢ = ¢(r,p,q), and where we used the convexity of the function
wd/P.

Denoting

O2v i := Op v i(T)
=2 Dty ) — T (g 1), i=1,...,2" =1
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similar to (5.3) and (5.4) we obtain

12(-) = mr1(F5 5 t2v i)l Ly (a0 ) < [Ty 4|71 Y/P0,,

5.17

(5:17) i=1,...,2" — 1,

and

(5.18) E(-) = 71 (&5 - tov 2w~ 1)1y (1o g0y < Hav2v |71

Substituting (5.17) and (5.18) in (5.16) yields,

o2 (Z;°) — oy 2v—1 (%3 )| 2, (j0,1)

ov=1_1 1/q
=¢ ( > (Izvl,z‘|r_1+1/q92vl,z‘)q)

=1
(5.19) _|_E|I2U71’2V71‘r7171/p+1/q
2Y—1 1/q
e ( > (|I2“,i|r_1+l/q92v,i)q>
=1

+é |]2U72V |r7171/p+1/q,

with some constant ¢ = é(r,p,q), and our goal is to estimate the
righthand side of (5.19). But we have done just that for 8 satisfying
(5.1). Observe that we have obtained the estimate of the righthand side
of (5.7) by Lemma 3, for all 0 < p,q < 1, provided r—1—1/p+1/q > 0.
Thus we conclude that for the prescribed g,

lor2v (Z;°) = 0p2v-1(F;)||lL,0,0) < 2777,
where ¢ = ¢(r, p, q). Similarly we have
lor2v (%) — 021 (5 )L, (—1,00 < 2777,
where ¢ = ¢(r,p, ¢). And combined we end up with
(6.20)  loror (%) = opov—a (&), (y <2777, v=12,...,
where ¢ = ¢(r,p, ¢), so that the series

e o0
D Mowor (&) = oo (@ )5, ) < D277 < o0
v=1

v=1
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It thus follows by Fatou lemma that the function
oo
Ogr(Z;t) = |0y 0v—1(Z; )7 + Z|UT’2” (&5t) — opov—1(Z;1)|?
v=1
is integrable in I, and since
|2(t)|? < ogr(E5t), tel,

we conclude that & € L,(I). Moreover, by virtue of (5.20), we readily
get

180C) = oran @ 1y < 0 llomar (&) — onae s @)1

v=n-+1

oo
< > @<, n=0,1,2,...,
v=n-+1

where ¢ = ¢(r,p, ¢). Similarly we obtain the upper bounds
[2(:) = or2n (23 )|,y £ 27", n=0,1,2,...,

where ¢ = ¢(r, p, q), and together we have

(5.21) lz() = oran(z; )L,y <27, n=0,1,2,...,

where ¢ = ¢(r, p, q).

Recall that the upper bounds (5.12) and (5.21) have been proved
under the additional assumption that

z0)=0, 5=0,...,r—1.

If this is not the case, then we let

r—1 s
F(t) == a(t) — Zx<s)(o)’;—!, tel.
s=0

Evidently € Vy, ||Z|

vy = ] Vi and

i0)=0, s=0,...,r—1.
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Finally,
x(t) — orn(x;t) = Z(t) — 0r 0 (T5t), te€L.

Thus we conclude that for x € Vs
(5.22) [|z(-) —orn(z; )L,y <en™, 0<g<p<l, n=12,...,
and

(5.23)
[2(-) = oron (@3 )|,y €27, 0<p<g<l, n=0,1,2,...,

where ¢ = ¢(r,p, q).

Let S, := Sg,r, be a space of piecewise polynomials of degree < r —1
on each subinterval I,.;, ¢ = £1,...,+n, and continuous at the point
t = 0. Then dimS, = 2rn — 1, and the mapping defined above
Orn t Vy — Sy is linear. Hence it follows immediately by (5.22), and it
follows by standard technique from (5.23) that

dn(VZ)%Z <en ™", 0<pqg<l, n=12,...,
where ¢ = ¢(r,p, q). In view of (2.3) we immediately obtain

dn(VZDT)Z[)Zd S dn(VIDT)IZZl S cn_""7 0< p,q < 17 n= 17 27 RN

where ¢ = ¢(r,p, q).

Obviously we also have

EV,, Srn)r, <en”™", 0<p,qg<1l, n=12,...,

q

where ¢ = ¢(r,p, q), and finally applying Lemma D with A = r + 1/¢
and v = q, the last inequality yields,

E(V), Ry, <cn™", 0<pqg<l, n=12...,

where ¢ = ¢(r, p,q). This completes the proof of the upper bounds in
Theorem 2. O

6. Proof of Theorem 2 (Lower bounds). The proof follows the
same lines as that of the lower bounds in Theorem 1, but it is simpler.
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Let ¢ € C§°(R) be nonnegative with supp ¢ = [0,1] =: I, |¢||z.. =1,
and p(t) =11if t € [1/4,3/4]. For r € N, let

or(t) =)/l L., tER,

and for m € N to be prescribed, take t; := t,; :=i/m, i =0,1,...,m,
and Iz = Im,i = [ti—lvti]) 1= 1, e, Denote

Grm,i(t) ==m™ g (m(t —ti1)), teR, i=1,...,m,
Then, supp ¢rm,; =1, i =1,...,m,
(61) o\ loe =1 0= Grmal®) Sm oML, tel,
and
(62) Grmi(t) =m "l OILL, ¢ € [tima +1/(dm), t; — 1/(4m)].

Write

By o= By (1) = {¢ | ¢:=Y vidrmi, v:=(01,...,0m) € Fm} :

i=1

where F, is the class of sign-vectors defined in Lemma A. Then, by
virtue of (6.1), we have

||¢||Loo(1) S m#”SO(T)HZ;(])a ”QS(T)”LOQ(I) S ]-a ¢ S (I)r,ma

so that ®,.,, C V. Hence

(6.3) Ay (VP! > d(®rm)2?, 0<q<1, n>1
For any two different vectors ¢ := (91,...,0m,) and 0 := (91, ..., 0m),
in F,,, let

m m
¢:= bibrmi and = Tidrmi,
=1 =1



474 Z. DITZIAN, V.N. KONOVALOV AND D. LEVIATAN

be the associated functions in ®;. ,,. If [0—0||;m > m /2, then there exist
[m/4] indices i1, ...,%[m 41 such that 0;, = —v;, k = 1,...,[m/4].
Hence, by (6.2),

m q
Ié—al%, = /1 > (00— 5)brma(t)| dt
i=1
m
= Z/ |0; — 0i|*(Pr,m,i (1)) dt
i=1 7 Im,i
[m/41 tm,ikfl/‘lm
> |03, — 03, | m—rqu(p(v")uzidt
k=1 tomiy, —1+(1/4m)
[m/4]

=m ™ML @m)~t Y 2
k=1
>m "L (2m) " 20 m /4]

> 2732 m e =i .

If we set a := m_7"||<,0(”")||zc}o7 and given n € N, we take m =
[80(2%/971 + 1)]n, then applying Lemma 1, as we did in the proof
of Theorem 1, we conclude that

dn(®rm)L, >cn™", neN, 0<g<l,
where ¢ = ¢(r, q). By virtue of (6.3) and (2.3) this implies
dp (V)i > dn (V)5 > da (V)P0 > en™,
0<pg<l, n=12,...,
where ¢ = ¢(r, q). The lower bounds

E(VPT,Zr,n)Lq >en” ", 0<pg<l, n=12...,

and
E(Vpr,Rn)L

>en”", 0<pg<l, n=12,...,

q
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where ¢ = ¢(r, ¢), readily follow from (2.4) and(2.5). This completes
the proof of the lower bounds in Theorem 2. mi

7. Relations between the spaces W, and V. Let X and Y
be linear spaces equipped with the (quasi-)seminorms ||z||x and |ly||y,
respectively. If X C Y, we say that X is embedded in Y, notation
X <Y, if ||z]ly <clz|x for all z € X. Otherwise we write X + Y.

The following relations hold between W and V.

Proposition 1. For every r € N, Vj > Wy, 0 < p < co. However,
while for 1 <p < oo, W, — V7, if 0 <p <1, then W) 4 V.

P’

Proof. We begin with the easiest part which is to observe that if
1 < p < o0, then by Holder inequality,

[zllvy < cllzllwr, YaeWw,

where ¢ := 21/P=1p=1/P|I|. Thus, W} < V.

On the other hand, let 0 < p < oo, and take 0 < ¢ < |I]. Recall that
to is the midpoint of I, and set

eVt e (=[11/2+ to, ~(IT| = €)/2 + to),
Tepo(t) =40 te[=(I| —&)/2+ to, to + (| =€) /2],
eVt e (to+ ([T = 2)/2,t0 +111/2),

and .
Teps(t) = / Teps—1(T)dr, s=1,...,r, tel.

to

Then clearly, z. ,, € W, NV}, and straightforward calculations yield

|2eprllwy =€ and e prllvy =27 +1) 77

Obviously, there exists no constant ¢ > 0 such that

H‘T&Pﬂ“”W"' < CHxEJLT Vi
P P

for all ¢ — 0. Thus Vj & W,.
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Finally, let 0 < p < 1 and take 0 < € < |I]. Set

0 te[_|l|/2+t0at0_€/2]a
Yepol(t) :=3 e Pt e (—g/2+tg,to+¢/2),
0 t e (to+¢e/2,t0+ |1|/2),

and .
Yep,s(t) = / Yeps—1(T)dr, s=1,...,r, tel.

to

Again it is clear that y.,,» € W, NV,

»» and again by straightforward
calculations,

Weprlwyny =1 and  [lgeporllvyn =27 e+ @+ 1) " te 4 [T V7.

This time it is clear that there exists no constant ¢ > 0 such that
||y€,p,r||V;(I) < CHys,p,rHW;(I%

for all e — 0. Thus Wy #> V. This completes the proof of Proposition
1. |

On the other hand we do have

Proposition 2. The inclusion V; C Ly, is valid for every r € N
and all 0 < p < o0.

Proof. For x € Vj, let

r—1
t—1tg)?
mr—1(z;t;tg) = E x(s)(to) —( 8'0)
s=0 ’

denote the Taylor polynomial of . Then

J?(t) :Wr—l(x;t;to)—kﬁ/ -’L‘(T)(T)(t—T)r_l dr.

to

Now m,_1(z;t;t9) € Ly, 0 < p < o0, so it suffices to prove that the
remainder does too.
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If 0 < p < o0, then

(

P 1/p
dt)

t
| ()| dr

/ O )t =) dr

to
S 2r+1|1|r1</
I to

= 27T vy < oo,

P 1/p
dt>

and for p = oo,

t < 2—T+1 I r—1 su
/ .’I,'(T)(T)(t — T)T_ldT’ - d teI?
to

= 27”1\]\“1\@”% < 0.

t
() (7)|dr
to

sup
tel

Thus the proof is complete. ]
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