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APPROXIMATION OF SOBOLEV-TYPE
CLASSES WITH QUASI-SEMINORMS

Z. DITZIAN, V.N. KONOVALOV AND D. LEVIATAN

ABSTRACT. Since the Sobolev set W r
p , 0 < p < 1, in

general is not contained in Lq , 0 < q ≤ ∞, we limit ourselves
to the set W r

p ∩L∞, 0 < p < 1. We prove that the Kolmogorov
n-width of the latter set in Lq , 0 < q < 1 is asymptotically
1, that is, the set cannot be approximated by n-dimensional
linear manifolds in the Lq-norm. We then describe a related
set, the width of which is asymptotically n−r.

1. Introduction and function classes. Very little is known about
the exact order of any width of nontrivial classes of functions in the
Lq-metric for 0 < q < 1. Recall that, for 1 ≤ p, q ≤ ∞, the orders of
most widths of the classical Sobolev classes W r

p in Lq are well known.
In contrast, for 0 < p < 1, the behavior of any of the widths of these
classes in Lq, 0 < q ≤ ∞, are not known. In general, the class W r

p ,
0 < p < 1, is not contained in Lq, but even if we overcome this difficulty
by taking, say, the smaller set W r

p ∩ L∞, 0 < p < 1, we will show
that it cannot be approximated well in Lq for any 0 < q ≤ ∞. We
remind the reader that, for the approximation of f ∈ Lp, 0 < p < 1,
by polynomials and by splines with either equidistant knots or knots
on the Chebyshev partition, there are known Jackson-type estimates
involving the moduli of smoothness of f in the Lp-quasi-norm, see,
e.g., [1]. However, there are no simple relations between the moduli
of smoothness and the derivatives of f , if they exist. Moreover, the
moduli of smoothness are not equivalent to K-functionals which are
identically zero, see, e.g., [3, Theorem 2.1]. Thus, we introduce new
classes V r

p , 0 < p < 1, which we feel are the proper replacement of the
Sobolev classes for 0 < p < 1, and we obtain the exact orders of their
Kolmogorov, linear, and pseudo-dimensional widths in Lq, 0 < q < 1.
We also obtain for these classes exact orders of best approximation in
Lq, 0 < q < 1, by rational functions and free-knot splines.
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Let I = (a, b) be a finite open finite interval, r ∈ N, and 0 <
p ≤ ∞. By Wr

p := Wr
p (I) we denote the usual Sobolev space of all

functions x : I → R such that x(r−1) ∈ ACloc(I) equipped with the
(quasi-)seminorm

‖x‖Wr
p

:= ‖x(r)‖Lp
.

In Section 2 we state our result on estimates of various widths of the
subset

W r
p,∞ :=

{
x ∈ Wr

p |
r∑

s=0

‖x(s)‖Lp
≤ 1, ‖x‖L∞ ≤ 1

}
, 0 < p < 1,

in Lq, 0 < q < 1. We show that they stay away from 0, as n → ∞.

For r ∈ N, 0 < p ≤ ∞, we denote by Vr
p := Vr

p(I), the space of
all functions x : I → R such that x(r−1) ∈ ACloc(I) for which the
(quasi-)seminorm

‖x‖Vr
p

:=

⎧⎪⎨
⎪⎩

(∫
I

∣∣∣∫ t

t0
|x(r)(τ )| dτ

∣∣∣p dt
)1/p

, 0 < p < ∞,

supt∈I

∣∣∣∫ t

t0
|x(r)(τ )| dτ

∣∣∣ , p = ∞,

where t0 is the midpoint of I, is finite. In Section 2 we give estimates
of various widths of the unit ball V r

p of Vr
p , in Lq, 0 < q < 1. We show

that they tend to 0 when n → ∞.

After a section of auxiliary lemmas, we prove the two main results
in Sections 4 and 5. Finally in Section 6 we discuss the inclusion and
noninclusion relations between Vr

p and Wr
p .

2. Various widths and the main results. Let X be a real linear
space of vectors x with norm ‖x‖X and W any nonempty subset in X.
Recall that the Kolmogorov n-width of W is defined by

dn(W )kol
X := inf

Mn
sup
x∈W

inf
y∈Mn

‖x − y‖X ,

where the lefthand infimum is taken over all affine subsets Mn of
(algebraic) dimension ≤ n. The linear n-width of W is defined by

dn(W )lin
X := inf

Mn
inf
A

sup
x∈W

‖x − Ax‖X ,
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where the lefthand infimum is taken over all affine subsets Mn of
dimension ≤ n, and the middle infimum is taken over all linear
continuous maps A from affine subsets M = M(W ) containing W into
Mn.

Finally, we will also have estimates for yet another width, the pseudo-
dimensional width which was introduced by Maiorov and Ratsaby
[7 9], using the concept of pseudo-dimension due to Pollard [12].
Namely, let M = M(T ) be a set of real-valued functions x(t) defined
on the set T , and denote

Sgn a :=
{

1 a > 0
0 a ≤ 0.

The pseudo-dimension dimps M of the set M is the largest integer n
such that there exist points t1, . . . , tn ∈ T and a vector (y1, . . . , yn) ∈
Rn, for which

card {(Sgn (x(t1) + y1), . . . , Sgn (x(tn) + yn)) | x ∈ M} = 2n.

If n can be arbitrarily large, then dimps M := ∞.

The pseudo-dimensional n-width of W is defined by

dn(W )psd
X := inf

Mn
sup
x∈W

inf
y∈Mn

‖x − y‖X ,

where the lefthand infimum is taken over all subsets Mn in a normed
space X of real-valued functions such that dimps Mn ≤ n.

The following properties of the pseudo-dimension are known, see [4].

If M is an arbitrary affine subset in a space of real-valued functions
and dimM < ∞, then

(2.1) dimps M = dimM.

Let Pn := Pn(I) be the space of algebraic polynomials pn of degree ≤ n.
Denote by Rn := Rn(I) the manifold of rational functions rn = pn/qn

where pn, qn ∈ Pn. Also denote by Σr,n = Σr,n(I), the manifold of
all piecewise polynomials σr,n, of order r and with n − 1 knots in I,
i.e., σr,n ∈ Σr,n, if for some points a = t0 < t1 < · · · < tn = b it is a
polynomial of degree ≤ r − 1 on each interval (ti−1, ti), i = 1, . . . , n.
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The rational functions rn are defined arbitrarily at the poles, and the
piecewise polynomials σr,n are assigned arbitrary values at the knots.

It is known that

(2.2) dimps Rn � dimps Σr,n � n.

It follows by (2.1) that if W is a nonempty subset of X, a normed space
of real-valued functions, then

(2.3) dn(W )psd
X ≤ dn(W )kol

X ≤ dn(W )lin
X .

Given W ⊂ X, let

E(W, Rn)X := sup
x∈W

inf
rn∈Rn

‖x − rn‖X ,

E(W, Σr,n)X := sup
x∈W

inf
σr,n∈Σr,n

‖x − σr,n‖X .

It follows from (2.2) that there exist an absolute integer α > 0 and an
integer β = β(r) > 0, such that

dαn(W )psd
X ≤ E(W, Rn)X ,(2.4)

dβn(W )psd
X ≤ E(W, Σr,n)X .(2.5)

We are ready to state our first result.

Theorem 1. Let r ∈ N and 0 < p < 1. For any 0 < q ≤ ∞,

(2.6) dn(W r
p,∞)psd

Lq
� dn(W r

p,∞)kol
Lq

� dn(W r
p,∞)lin

Lq
� 1,

and

(2.7) E
(
W r

p,∞, Σr,n

)
Lq

� E(W r
p,∞, Rn)Lq

� 1.

On the other hand we show

Theorem 2. Let r ∈ N and 0 < p, q < 1, be such that r − 1− 1/p +
1/q > 0. Then

(2.8) dn(V r
p )psd

Lq
� dn(V r

p )kol
Lq

� dn(V r
p )lin

Lq
� n−r,
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and

(2.9) E(V r
p , Σr,n)Lq

� E(V r
p , Rn)Lq

� n−r.

3. Auxiliary lemmas. The following lemma follows immediately
from [6, Lemma 2.2, p. 489], also see [9, Claim 1].

Lemma A. Let m ∈ N and Vm := {v | v := (v1, . . . , vm), vi = ±1,
i = 1, . . . , m}. Then there exists a subset Fm ⊂ Vm of cardinality
≥ 2m/16 such that for any v̂, v̌ ∈ Fm, where v̂ 
= v̌, the distance
‖v̂ − v̌‖lm1

≥ m/2.

Given ε > 0, points xi, i = 1, . . . , n, in a linear normed space X are
called ε-distinguishable if ‖xi − xj‖X ≥ ε for all i 
= j. Let H be any
nonempty subset of X, the maximal integer n ∈ N, such that there
exist n ε-distinguishable points hi ∈ H, is called the ε-packing number
Mε(H)X of H in X. If n can be arbitrarily large, then Mε(H)X := ∞.

The next lemma follows directly from [5, Corollary 3], also see [9,
Lemma 1].

Lemma B. Let Hn,a := {h} be a set of Lebesgue-measurable func-
tions h on (0, 1) such that ‖h‖L∞ ≤ a < ∞ and dimps Hn,a ≤ n < ∞.
Then for any ε > 0,

Mε(Hn,a)L1 ≤ e(n + 1)(4ea/ε)n.

We prove the following

Lemma 1. Let I := (0, 1), and let a > 0, ε > 0, and m ∈ N, such
that m ≥ 16(8 + log2(a/ε)), be given. Suppose that a set Φm = {ϕ} ⊂
L∞ exists, of cardinality ≥ 2m/16 such that

‖ϕ‖L∞ ≤ a, ϕ ∈ Φm,

and for some 0 < q < 1,

‖ϕ̂ − ϕ̌‖Lq
≥ ε, ϕ̂ 
= ϕ̌, ϕ̂, ϕ̌ ∈ Φm.
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Then for any n ∈ N such that n ≤ (
16(8 + log2(a/ε))

)−1
m we have

dn(Φm)psd
Lq

≥ 2−2−1/q(2q − 1)1/qε.

Proof. Let Hn ⊂ Lq be such that dimps Hn ≤ n. Denote

(3.1) δ := E(Φm, Hn)Lq
.

With any ϕ ∈ Φm we associate an element hδ(ϕ; ·) ∈ Hn, such that

(3.2) ‖ϕ(·) − hδ(ϕ; ·)‖Lq
≤ 2δ,

and denote by

Hδ,n := Hδ,n(I) := {hδ(ϕ; ·), ϕ ∈ Φm} ,

the collection of these functions. Now we let

hδ,a(ϕ; t) :=

⎧⎨
⎩

−a for t : hδ(ϕ; t) < −a,
hδ(ϕ; t) for t : |hδ(ϕ; t)| ≤ a,
a for t : hδ(ϕ; t) > a,

and denote by

Hδ,n,a := Hδ,n,a(I) := {hδ,a(ϕ; ·), ϕ ∈ Φm} ,

the collection of the truncated functions. Clearly

(3.3) ‖hδ,a(ϕ; ·)‖L∞ ≤ a, ϕ ∈ Φm,

and

(3.4) dimps Hδ,n,a ≤ dimps Hδ,n ≤ dimps Hn ≤ n.

We will prove that

(3.5) δ > 2−2−1/q(2q − 1)1/qε.

Assume to the contrary that

(3.6) δ ≤ 2−2−1/q(2q − 1)1/qε,
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where δ is defined by (3.1). Then, recalling that 0 < q ≤ 1, we have

(3.7)
‖hδ,a(ϕ̂; ·) − hδ,a(ϕ̌; ·))‖q

Lq
≥ ‖ϕ̂ − ϕ̌‖q

Lq
− ‖ϕ̂(·) − hδ,a(ϕ̂; ·)‖q

Lq

− ‖ϕ̌(·) − hδ,a(ϕ̌; ·)‖q
Lq

.

Since |ϕ̂(t)| ≤ a and |ϕ̌(t)| ≤ a, t ∈ I, (3.2) implies

‖ϕ̂(·) − hδ,a(ϕ̂; ·)‖q
Lq

≤ ‖ϕ̂(·) − hδ(ϕ̂; ·)‖q
Lq

≤ 2qδq,

and
‖ϕ̌(·) − hδ,a(ϕ̌; ·)‖q

Lq
≤ ‖ϕ̌(·) − hδ(ϕ̌; ·)‖q

Lq
≤ 2qδq,

which, substituting in (3.7), yields

(3.8) ‖hδ,a(ϕ̂; ·) − hδ,a(ϕ̌; ·))‖q
Lq

≥ ‖ϕ̂ − ϕ̌‖q
Lq

− 2q+1δq ≥ 2−qεq.

Setting η := ε/2, we see from (3.8) that the function class Hδ,n,a

consists of η-distinguishable functions in Lq. Thus, in view of ‖x‖L1 ≥
‖x‖Lq

, 0 < q ≤ 1, we conclude that the function class Hδ,n,a contains
at least 2m/16 η-distinguishable functions in L1. On the other hand,
by virtue of (3.3), ‖hδ,a(φ; ·)‖L∞ ≤ a. Hence by Lemma B we have an
upper estimate on the η-packing number Mη(Hδ,n,a)L1 of the function
class Hδ,n,a, namely,

Mη(Hδ,n,a)L1 ≤ e(n + 1)(4ea/η)n = e(n + 1)
(
4e2a/ε

)n

< 23n
(
25a/ε

)n = 2(8+log2(a/ε))n.

Since m ≥ 16(8 + log2(a/ε))n, it follows that

2(8+log2(a/ε))n ≤ Mη(Hδ,n,a)L1 < 2(8+log2(a/ε))n,

a contradiction. Thus (3.6) is contradicted and (3.5) is valid. Hence
for any subset Hn ∈ Lq with dimps Hn ≤ n, we have

E(Φm, Hn)Lq
> 2−2−1/q(2q − 1)1/qε,

and in turn
dn(Φm)psd

Lq
≥ 2−2−1/q(2q − 1)1/qε.

This completes the proof of Lemma 1.
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Lemma 2. Let 0 < p < 1, and for bi > 0, i = 1, . . . , n, let

δp,i :=
( n∑

j=i

bp
j

)1/p

−
( n∑

j=i+1

bp
j

)1/p

, 1 ≤ i ≤ n − 1, δp,n := bn.

Denote

Tp,n :=
{

t := (t1, . . . , tn) | 0 ≤ t1 ≤ · · · ≤ tn,

n∑
i=1

(biti)p ≤ 1
}

,

and

Sp,n :=
{

t := (t1, . . . , tn) | 0 ≤ t1 ≤ · · · ≤ tn,
n∑

i=1

δp,iti ≤ 1
}

.

If

lp,n(t) :=
n∑

i=1

δp,iti, t ∈ Rn,

then

(3.9) max
t∈Tp,n

lp,n(t) = 1,

and consequently Tp,n ⊆ Sp,n.

Proof. We consider the extremal problem

lpp,n(t) =
( n∑

i=1

δp,iti

)p

−→ sup; 0 ≤ t1 ≤ · · · ≤ tn,

n∑
i=1

(biti)p ≤ 1.

Denote τi := tpi ,i = 1, . . . , n, and let τ := (τ1, . . . , τn). Then we get an
equivalent extremal problem,

fp,n(τ ) :=
( n∑

i=1

δp,iτ
1/p
i

)p

−→ sup; 0 ≤ τ1 ≤ · · · ≤ τn,

n∑
i=1

bp
i τi ≤ 1.

By Minkowski’s inequality it is easy to verify that fp,n is convex.
Therefore it achieves its maximum on the vertices of

Qp,n :=
{

τ
∣∣∣ 0 ≤ τ1 ≤ · · · ≤ τn,

n∑
i=1

bp
i τi ≤ 1

}
.
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If e(0) := (0, . . . , 0), e(1) := (1, 1, . . . , 1), e(2) := (0, 1, . . . , 1), . . . , e(n) :=
(0, . . . , 0, 1), then these vertices are

τ (0) = e(0), τ (k) :=
( n∑

j=k

bp
j

)−1

e(k), k = 1, . . . , n.

Since
fp,n(τ (0)) = 0, fp,n(τ (k)) = 1, k = 1, . . . , n,

we conclude that

max
τ∈Qp,n

fp,n(τ ) = max
t∈Tp,n

lp,n(t) = 1.

This completes the proof.

Lemma 3. Let 0 < p, q < 1 and bi > 0, i = 1, . . . , n. Denote

Θp,n :=
{

θ := (θ1, . . . , θn)
∣∣∣ θi ≥ 0, 1 ≤ i ≤ n,

n∑
i=1

(
bi

i∑
j=1

θj

)p

≤ 1
}

.

For ai ≥ 0, 1 ≤ i ≤ n, let

fq,n(θ) :=
( n∑

i=1

(aiθi)q

)1/q

, θ ∈ Rn
+.

Then

max
θ∈Θp,n

fq,n(θ) ≤ n1/q−1 max
1≤i≤n

ai

( n∑
j=i

bp
j

)−1/p

.

Proof. The inequality
( n∑

i=1

(aiθi)q

)1/q

≤ n1/q−1
n∑

i=1

aiθi =: gq,n(θ), θ ∈ Θp,n,

follows by the concavity of uq. Set

ti :=
i∑

j=1

θi, i = 1, . . . , n.
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Then
θ1 = t1, θi = ti − ti−1, i = 2, . . . , n,

and

gq,n(θ) = n1/q−1

(
a1t1 +

n∑
i=2

ai(ti − ti−1)
)

=: hq,n(t).

Hence, by Lemma 2,

max
θ∈Θp,n

gq,n(θ) = max
t∈Tp,n

hq,n(t) ≤ max
t∈Sp,n

hq,n(t),

where Tp,n and Sp,n were defined in Lemma 2. The function hq,n is
linear, thus it achieves its maximum at one of the vertices of the simplex
Sp,n, that is, at t(k), 1 ≤ k ≤ n, where t(0) := (0, . . . , 0), and

t(k) :=
( n∑

j=k

bp
j

)−1/p

e(k), k = 1 . . . , n.

Now hq,n(τ (0)) = 0, and for k ≥ 1,

τ
(k)
i − τ

(k)
i−1 =

⎧⎨
⎩

0 i 
= k(∑n
j=k bp

j

)−1/p

i = k,

where we take τ
(k)
0 = 0, 1 ≤ k ≤ n. Hence

max
t∈Sp,n

hq,n(t) = n1/q−1 max
1≤k≤n

{
ak

( n∑
j=k

bp
j

)−1/p}
.

We need a well-known relation between various quasi-norms of poly-
nomials, see, e.g., [2, Chapter 4, Theorem 2.7].

Lemma C. Let πr−1 be a polynomial of degree ≤ r − 1, r ∈ N, and
p, q ≥ p0. Then there exists a constant c = c(r, p0) such that for any
finite interval J ,

‖πr−1‖Lq(J) ≤ c |J |1/q−1/p‖πr−1‖Lp(J).
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Finally, in the proof of (2.9), we use the following relation between the
degrees of rational approximation and those of free-knots splines, due
to Pekarskii [10] and Petrushev [11], see also [6, Chapter 10, Theorem
6.2].

Lemma D. Let r ∈ N, 0 < p < ∞, λ > 0, γ = min{1, p}, and
x ∈ Lp. Then

E(x, Rn)Lp
≤ cn−λ

( n∑
k=1

k−1
(
kλE

(
x, Σr,k

)
Lp

)γ
)1/γ

,

where c = c(r, p, λ).

4. Proof of Theorem 1. The upper bound in (2.6) is trivial. Thus,
we prove the lower bounds. To this end, we are going to construct
extremal functions.

Let I be the generic interval (0, 1), and fix r, m ∈ N, and 0 < p < 1.
Let

(4.1) εs := εs(p, r, m) := m−(1−p)s−r

, s = 0, 1, . . . , r,

and set

τs := τs(p, r, m) :=
s−1∑
k=0

2s−2−kεk + εs/2, s = 1, . . . , r.

Define
(4.2)

φ0(t) := φ0(t; p, r, m) :=
{

m(1−(1−p)r)/p(1−p)r

t ∈ (−ε0/2, ε0/2),
0 t /∈ (−ε0/2, ε0/2),

and

φs(t) := φs(t; p, r, m) :=
∫ t

−∞
(φs−1(τ + τs) − φs−1(τ − τs)) dτ

=
∫ t+τs

t−τs

φs−1(τ ) dτ, t ∈ R, s = 1, . . . , r.
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It is easy to see that

(4.3) supp φs =

[
−

s∑
k=0

2s−1−kεk,
s∑

k=0

2s−1−kεk

]
, s = 0, 1, . . . , r,

hence
supp φ0 ⊂ supp φ1 ⊂ · · · ⊂ supp φr.

Since by (4.1) we have ε0 < ε1 < · · · < εr, it follows from (4.3) that

(4.4) εs ≤ |supp φs| ≤ 2s+1εs, s = 0, 1, . . . , r.

Also, we have

(4.5) φs(t) = φs(−t) ≥ 0, t ∈ R, s = 0, 1, . . . , r,

and

(4.6) φs(t) ≡ ‖φs‖L∞(R), t ∈ (−εs/2, εs/2), s = 0, 1, . . . , r.

By virtue of (4.4) and (4.6), we obtain

(4.7)
‖φ0‖L∞(R)

s−1∏
k=0

εk ≤ ‖φs‖L∞(R) ≤ 2s(s+1)/2‖φ0‖L∞(R)

s−1∏
k=0

εk,

s = 0, 1, . . . , r.

Hence, combining (4.4) through (4.7) we conclude that

(4.8)

‖φs‖p
Lp(R) =

∫
supp φs

|φs(t)|p dt

≤
∫ 2s+1εs

0

‖φs‖p
L∞(R)dt

≤ 2s+1εs2ps(s+1)/2‖φ0‖p
L∞(R)

( s−1∏
k=0

εk

)p

≤ 2(s+1)(s+2)/2‖φ0(·)‖p
L∞(R)εs

( s−1∏
k=0

εk

)p

.
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Now by (4.1) and (4.2)

‖φ0(·)‖p
L∞(R)εs

( s−1∏
k=0

εk

)p

= mp(1−(1−p)r)/p(1−p)r

m−(1−p)s−r
s−1∏
k=0

m−p(1−p)k−r

= m(1−(1−p)r)/(1−p)r

m−(1−p)s/(1−p)r

m−(1−(1−p)s)/(1−p)r

= m−1,

which substituting in (4.8), yields

(4.9) ‖φs(·)‖p
Lp(R) ≤ 2(s+1)(s+2)/2m−1, s = 0, 1, . . . , r.

By virtue of (4.7) and (4.2), we obtain

(4.10)

‖φr‖L∞(R) ≥ ‖φ0‖L∞(R)

r−1∏
k=0

εk

= m(1−(1−p)r)/p(1−p)r

m−(1−(1−p)r)/p(1−p)r

= 1,

and
(4.11)

‖φr(·)‖L∞(R) ≤ 2r(r+1)/2‖φ0(·)‖L∞(R)

r−1∏
k=0

εk

= 2r(r+1)/2m(1−(1−p)r)/p(1−p)r

m−(1−(1−p)r)/p(1−p)r

= 2r(r+1)/2.

In turn (4.10) combined with (4.1), (4.5) and (4.6), implies

(4.12) φr(t) ≥ 1, t ∈ [−(2m)−1, (2m)−1
]
.

Finally, (4.1), (4.4) and (4.5) yield

|supp φr| ≤ 2r+1m−1,
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and

(4.13) supp φr ⊂ [−2rm−1, 2rm−1
]
.

Next, set

ϕr(t) := (r + 1)−12−(3r(r+1))/(2p)φr

(
2r+1t

)
, t ∈ R.

Then it follows from (4.13) that

(4.14) supp ϕr ⊂ [−(2m)−1, (2m)−1
]
,

and by (4.11) we have

(4.15)

‖ϕr‖L∞(R) ≤ (r + 1)−12−3r(r+1)/(2p) 2r(r+1)/2

< (r + 1)−12−(3−1)r(r+1)/2

= (r + 1)−12−r(r+1).

Finally, (4.12) implies

(4.16)
ϕr(t) ≥ (r + 1)−12−3r(r+1)/(2p), t ∈ (−2−r−2m−1, 2−r−2m−1).

Direct calculations using (4.9) yield, for s = 0, 1, . . . , r,

(4.17)

‖ϕ(s)
r ‖p

Lp(R) =
∫
R

∣∣∣∣(r + 1)−12−(3r(r+1))/2p2(r+1)sφ(s)
r

(
2r+1t

)∣∣∣∣
p

dt

= (r + 1)−p2−(3r(r+1))/22(r+1)sp2s

∫
R

∣∣φr−s

(
2r+1t

)∣∣p dt

≤ (r + 1)−p2−(3r(r+1))/22(r+2)s2−(r+1)‖φr−s‖p
Lp(R)

≤ (r + 1)−p2−(3r(r+1))/22(r+2)s

× 2−(r+1)2(r−s+1)(r−s+2)/2m−1

≤ (r + 1)−p2−r(r+1)/2m−1

≤ (r + 1)−pm−1.

Let tm,i := i/m, i = 0, 1, . . . , m, and set Im,i := [tm,i−1, tm,i],
i = 1, . . . , m. Denote t̄m,i := (tm,i−1 + tm,i)/2, i = 1, . . . , m, and
set

ϕp,r,m,i(t) := ϕr(t − t̄m,i), t ∈ R, i = 1, . . . , m.
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It follows by (4.14) and (4.16) that

(4.18) supp ϕp,r,m,i ⊂ Im,i, i = 1, . . . , m,

and

(4.19)

ϕp,r,m,i(t) ≥ (r + 1)−12−(3r(r+1))/(2p),

t ∈ (t̄m,i − 2−r−2m−1, t̄m,i + 2−r−2m−1),
i = 1, . . . , m.

While (4.15) and (4.17) yield

‖ϕp,r,m,i(·)‖L∞ ≤ (r + 1)−12−r(r+1), i = 1, . . . , m,

(4.20)

and

‖ϕ(s)
p,r,m,i(·)‖p

Lp
≤ (r + 1)−pm−1, i = 1, . . . , m.

(4.21)

Write

Φp,r,m := Φp,r,m(I) :=
{

ϕ | ϕ :=
m∑

i=1

viϕp,r,m,i, v := (v1, . . . , vm)∈Fm

}
,

where Fm is the class of sign-vectors defined in Lemma A. Then by
Lemma A

(4.22) card Φp,r,m ≥ 2m/16.

Let ϕ ∈ Φp,r,m. Then, by virtue of (4.18) and (4.21) we obtain for any
0 ≤ s ≤ r,

‖ϕ(s)‖Lp(I) =
( ∫

I

|ϕ(s)(t)|p dt

)1/p

=
( m∑

i=1

|vi|p
∫

Im,i

|ϕ(s)
p,r,m,i(t)|pdt

)1/p

=
( m∑

i=1

‖ϕ(s)
p,r,m,i(·)‖p

Lp

)1/p

≤
( m∑

i=1

(r + 1)−pm−1

)1/p

= (r + 1)−1,
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so that
r∑

s=0

‖ϕ(s)‖Lp
≤ 1, ϕ ∈ Φp,r,m.

It also follows from (4.18) and (4.20) that

‖ϕ‖L∞ =
∥∥∥∥

m∑
i=1

viϕp,r,m

∥∥∥∥
L∞

= max
1≤i≤m

{|vi|‖ϕp,r,m(·)‖L∞
}

≤ (r + 1)−12−r(r+1) ≤ 1.

Hence, we conclude that

(4.23) Φp,r,m ⊂ W r
p,∞, 0 < p < 1, r, m ∈ N.

For any two different vectors v̂ := (v̂1, . . . , v̂m) and v̌ := (v̌1, . . . , v̌m),
in Fm, let

φ̂ :=
m∑

i=1

v̂iϕp,r,m,i and φ̌ :=
m∑

i=1

v̌iϕp,r,m,i,

be the associated functions, respectively. If ‖v̂ − v̌‖lm1
≥ m/2, then,

evidently, there exist indices i1, . . . , i�m/4� such that v̂ik
= −v̌ik

,
k = 1, . . . , 
m/4�. Therefore, by (4.18) and (4.19) we get for 0 < q < 1,

‖ϕ̂(·) − ϕ̌(·)‖q
Lq(I) =

∫
I

∣∣∣∣
m∑

i=1

(v̂i − v̌i)ϕp,r,m,i(t)
∣∣∣∣
q

dt

=
m∑

i=1

∫
Im,i

|v̂i − v̌i|q|ϕp,r,m,i(t)|q dt

≥
m∑

i=1

|v̂i − v̌i|q
∫ t̄m,i+2−r−2m−1

t̄m,i−2−r−2m−1
|ϕp,r,m,i(t)|q dt

≥
m∑

i=1

|v̂i − v̌i|q2−r−1m−1(r + 1)−q2−(3r(r+1)q)/(2p)

≥ 2−r−1m−1(r + 1)−q2−(3r(r+1)q)/(2p)

�m/4�∑
i=1

2q

≥ 2−r−1m−1(r + 1)−q2−(3r(r+1)q)/(2p)2q2−2m

= (r + 1)−q2q−(r+3)−(3r(r+1)q)/(2p).
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Thus, for
ε := (r + 1)−121−(r+3)/q−(3r(r+1))/(2p).

we have

‖ϕ̂(·) − ϕ̌(·)‖Lq(I) ≥ ε, ϕ̂ 
= ϕ̌, ϕ̂, ϕ̌ ∈ Φp,r,m.

If we set
a := (r + 1)−12−r(r+1),

then by (4.20) we have

‖ϕp,r,m,i‖L∞(R) ≤ a, ϕ ∈ Φp,r,m.

Therefore for

m := 
16(8 + log2(a/ε))�n, n ∈ N,

it follows by virtue of (4.22) and Lemma 1, that

dn(Φp,r,m)psd
Lq(I) ≥ 2−2−1/q(2q − 1)1/qε =: c,

where c = c(r, p, q). This, by (4.23), in turn implies

dn

(
W r

p,∞
)psd

Lq(I)
≥ c,

where c = c(r, p, q). The lower bounds

dn(W r
p,∞)lin

Lq
≥ dn(W r

p,∞)kol
Lq

≥ c,

and

E
(
W r

p,∞, Σr,n

)
Lq

≥ c,

E(W r
p,∞, Rn)Lq

≥ c,

where c = c(r, p, q), now follow readily from (2.3) through (2.5). This
completes the proof of Theorem 1.

5. Proof of Theorem 2 (Upper bounds). Here it is more
convenient to take I := (−1, 1). Fix n ∈ N and set

(5.1) β :=
r − 1 + 1/q

r − 1 − 1/p + 1/q
≥ 1,
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which is well defined since by assumption r − 1 − 1/p + 1/q > 0. We
partition I by

ti := tβ,n,i :=
{

1 − ((n − i)/n)β i = 0, 1, . . . , n,
−1 + ((n + i)/n)β i = −1, . . . ,−n,

and set

Ii := Iβ,n,i :=
{

[ti−1, ti) i = 1, . . . , n,
(ti, ti+1] i = −1, . . . ,−n.

Given an x ∈ V r
p , we denote by

πr−1,i(x; t) := πr−1(x; t; ti) :=
r−1∑
s=0

x(s)(ti)
(t − ti)s

s!
,

i = 0,±1, . . . ,±(n − 1),

its Taylor polynomial of the degree r − 1 about ti, and define the
associated piecewise polynomial

σr,n(x; t) := σβ,r,n(x; t) :=
{

πr−1,i−1(x; t) t ∈ Ii, i = 1, . . . , n,
πr−1,i+1(x; t) t ∈ Ii, i = −1, . . . ,−n.

We first assume that x ∈ V r
p satisfies in addition

x(s)(0) = 0, s = 0, . . . , r − 1.

Then

x(t) =
1

(r − 1)!

∫ t

0

x(r)(τ )(t − τ )r−1 dτ, t ∈ I.

Set

x̌(t) :=
1

(r − 1)!

∫ t

0

|x(r)(τ )|(t − τ )r−1 dτ, t ∈ I,

and

x̂(t) :=
1

(r − 1)!

∫ t

0

(|x(r)(τ )| − x(r)(τ )
)
(t − τ )r−1 dτ, t ∈ I.

Clearly, x = x̌ − x̂, and

σr,n(x; t) = σr,n(x̌; t) − σr,n(x̂; t), t ∈ I.
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It readily follows that

‖x̌‖Vr
p
≤ 1 and ‖x̂‖Vr

p
≤ 2.

Also, it is easy to see that

x̌(s)(t) ≥ 0, and x̂(s)(t) ≥ 0, s = 0, . . . , r − 1, t ∈ [0, 1),

and

(−1)r−sx̌(s)(t) ≥ 0, and (−1)r−sx̂(s)(t) ≥ 0,

s = 0, . . . , r − 1, t ∈ (−1, 0].

Moreover, for every s = 0, . . . , r − 1 the functions x̌(s) and x̂(s) are
nondecreasing in [0, 1) because x̌(r)(t) ≥ 0 and x̂(r)(t) ≥ 0 almost
everywhere for t ∈ I. Respectively, the functions (−1)r−sx̌(s) and
(−1)r−sx̂(s) are nonincreasing in (−1, 0] for every s = 0, . . . , r − 1.

Let 0 < q ≤ p < 1. Then it follows immediately from Hölder’s
inequality that x̌ ∈ Lq, and we will prove that

(5.2) ‖x̌(·) − σr,n(x̌; ·)‖Lq([0,1)) ≤ cn−r,

where c = c(r, p, q). A similar proof yields the same inequality for the
norm of x̂ in [0, 1), and for the norms of x̌ and x̂ in (−1, 0].

To this end, we observe that (5.2) is trivial for n = 1, so that we may
assume n > 1.

From the definition of πr−1,i−1 and by Taylor’s expansion, we have

x̌(t) − πr−1,i−1(x̌; t) =
1

(r − 1)!

∫ t

ti−1

x̌(r)(τ )(t − τ )r−1 dτ,

i = 1, . . . , n − 1.

If we denote

θi := θr,i(x̌) := x̌(r−1)(ti) − x̌(r−1)(ti−1), i = 1, . . . , n − 1,

then θi ≥ 0, i = 1, . . . , n−1, since x̌(r−1) is nondecreasing in [0, 1) and,
by the above,

|x̌(t) − πr−1,i−1(x̌; t)| ≤ c|Ii|r−1θi, t ∈ Ii, i = 1, . . . , n − 1.
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Hence

(5.3) ‖x̌(·) − σr,n(x̌; ·)‖Lq(Ii) ≤ c|Ii|r−1+1/qθi, i = 1, . . . , n − 1.

For i = n we get by Hölder’s inequality

‖x̌(·) − πr−1,n−1(x̌; ·)‖Lq(In)

=
1

(r − 1)!

(∫ 1

tn−1

∣∣∣∣
∫ t

tn−1

x̌(r)(τ )(t − τ )r−1dτ

∣∣∣∣
q

dt

)1/q

≤ c |In|r−1

(∫ 1

tn−1

∣∣∣∣
∫ t

tn−1

|x̌(r)(τ )|dτ

∣∣∣∣
q

dt

)1/q

≤ c |In|r−1−1/p+1/q

( ∫ 1

tn−1

∣∣∣∣
∫ t

tn−1

|x̌(r)(τ )|dτ

∣∣∣∣
p

dt

)1/p

≤ c |In|r−1−1/p+1/q

( ∫ 1

0

∣∣∣∣
∫ t

0

|x̌(r)(τ )|dτ

∣∣∣∣
p

dt

)1/p

≤ c |In|r−1−1/p+1/q‖x̌‖Vr
p

≤ c |In|r−1−1/p+1/q.

Hence

(5.4) ‖x̌(·) − σβ,r,n(x̌; ·)‖Lq(In) ≤ c|In|r−1−1/p+1/q.

Since q < 1, we apply the inequality aq + bq ≤ 21−q(a + b)q, a, b ≥ 0,
to obtain from (5.3) and (5.4),

(5.5)
‖x̌(·) − σβ,r,n(x̌; ·)‖Lq([0,1))

≤c

( n−1∑
i=1

(
21/q−1|Ii|r−1+1/qθi

)q
)1/q

+ c21/q−1|In|r−1−1/p+1/q.

Thus we need an estimate on the sum on the righthand side. Observe
that, for t ∈ Ii, 2 ≤ i ≤ n,

x̌(r−1)(t) = x̌(r−1)(t) − x̌(r−1)(ti−1) +
i−1∑
j=1

[
x̌(r−1)(tj) − x̌(r−1)(tj−1)

]

≥
i−1∑
j=1

θj ≥ 0.
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Hence

‖x̌(r−1)‖p
Lp([0,1)) =

∫ 1

0

|x̌(r−1)(t)|p dt

=
n∑

i=1

∫
Ii

|x̌(r−1)(t)|p dt

≥
n∑

i=2

∫
Ii

|x̌(r−1)(t)|p dt

≥
n∑

i=2

(
|Ii|1/p

i−1∑
j=1

θj

)p

.

On the other hand,

‖x̌(r−1)‖p
Lp([0,1)) =

∫ 1

0

|x̌(r−1)(t)|p dt

=
∫ 1

0

∣∣∣∣
∫ t

0

x̌(r)(τ )dτ

∣∣∣∣
p

dt

≤ ‖x̌‖p
Vr

p
≤ 1.

Together these two inequalities imply

(5.6)
n−1∑
i=1

(
|Ii+1|1/p

i∑
j=1

θj

)p

≤ 1.

Now, simple calculations show that

c1(n − i + 1)β−1/nβ ≤ |In,i| ≤ c2(n − i + 1)β−1/nβ, i = 1, . . . , n,

for some constants c1 = c1(β) > 0 and c2 = c2(β), which substituting
in (5.5) and (5.6) yield, respectively,

(5.7)

‖x̌(·) − σr,n(x̌; ·)‖Lq([0,1))

≤
( n−1∑

i=1

((
č1(n − i)β−1/nβ

)r−1+1/q
θi

)q
)1/q

+ č1n
−β(r−1−1/p+1/q),
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and
n−1∑
i=1

((
č2(n − i)β−1/nβ

)1/p
i∑

j=1

θj

)p

≤ 1,

for some constants č1 = č1(r, p, q) and č2 = č2(r, p, q).

Thus with

ai :=
(
č1(n − i)β−1/nβ

)r−1+1/q

and

bi :=
(
č2(n − i)β−1/nβ

)1/p
, i = 1, . . . , n − 1,

we have to estimate

( n−1∑
i=1

((
č1(n − i)β−1/nβ

)r−1+1/q
θi

)q
)1/q

=
( n−1∑

i=1

(
aiθi

)q
)1/q

=: fq,n−1(θ),

under the constraint

θi ≥ 0, i = 1, . . . , n − 1,

n−1∑
i=1

(
bi

i∑
j=1

θj

)p

≤ 1.

This is exactly what Lemma 3 is about, and we conclude by it that

(5.8) fq,n−1(θ) ≤ (n − 1)−1+1/q max
1≤i≤n−1

{
ai

( n−1∑
j=i

bp
j

)−1/p}
,

where c = c(r, p, q). So all we need is to estimate the righthand side of
(5.8).

Straightforward calculations yield

n−1∑
j=i

bp
j = čn−β

n−1∑
j=i

(n − j)β−1 ≥ c̃n−β(n − i)β ,
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whence,

max
1≤i≤n−1

{
ai

( n−1∑
j=i

bp
j

)−1/p}

≤ c∗β−1/pn−β(r−1−1/p+1/q) max
1≤i≤n−1

(n − i)(β−1)(r−1+1/q)−β/p

≤ c∗n−β(r−1−1/p+1/q)(n − 1)(β−1)(r−1+1/q)−β/p ≤ cn−r+1−1/q,

since the choice of β in (5.1) guarantees that

max
1≤i≤n−1

(n − i)(β−1)(r−1+1/q)−β/p = (n − 1)(β−1)(r−1+1/q)−β/p.

Substituting in (5.8) yields

(5.9) fq,n−1(θ) ≤ cn−r,

where c = c(r, p, q). The choice of β in (5.1) also gives

n−β(r−1−1/p+1/q) ≤ n−r,

which, substituted together with (5.9) into (5.7), yields

(5.10) ‖x̌(·) − σr,n(x̌; ·)‖Lq([0,1)) ≤ cn−r, n = 1, 2, . . . ,

where c = c(r, p, q). Similarly we obtain

(5.11) ‖x̂(·) − σr,n(x̂; ·)‖Lq([0,1)) ≤ cn−r, n = 1, 2, . . . ,

where c = c(r, p, q).

Combining (5.10) and (5.11) we conclude that for 0 < q ≤ p < 1 we
have

(5.12) ‖x(·) − σr,n(x; ·)‖Lq([0,1)) ≤ cn−r, n = 1, 2, . . . ,

where c = c(r, p, q).

If, on the other hand, 0 < p < q < 1, then in general we can no longer
guarantee that x ∈ Vr

p necessarily belongs to Lq. We have this because
we have assumed that r − 1 − 1/p + 1/q > 0. In order to see this we
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first observe that in this case r > 1. We will show that if x ∈ Vr
p , then

for all t ∈ I we have the pointwise convergence,

x(t) = σr,20(x; t) +
∞∑

ν=1

(
σr,2ν (x; t) − σr,2ν−1(x; t)

)

= σr,20(x̌; t) +
∞∑

ν=1

(
σr,2ν (x̌; t) − σr,2ν−1(x̌; t)

)

− σr,20(x̂; t) −
∞∑

ν=1

(
σr,2ν (x̂; t) − σr,2ν−1(x̂; t)

)
.

In fact we will show more, namely, that

σq,r(x̌; t) := |σr,20(x̌; t)|q +
∞∑

ν=1

∣∣σr,2ν (x̌; t) − σr,2ν−1(x̌; t)|q

and

σq,r(x̂; t) := |σr,20(x̂; t)|q +
∞∑

ν=1

∣∣σr,2ν (x̂; t) − σr,2ν−1(x̂; t)|q

converge pointwise for all t ∈ I and any 0 < q < 1.

Indeed, for a fixed t ∈ I,

|x(t) − σr,2ν (x; t)| ≤ max
i=1,...,2v

∣∣I2ν ,i

∣∣r−1
∣∣∣∣
∫ t

0

|x(r)(τ )| dτ

∣∣∣∣
≤ c2−(r−1)ν

∣∣∣∣
∫ t

0

|x(r)(τ )| dτ

∣∣∣∣.
Since r > 1, the above series are dominated by a convergent geometric
series.

Now for ν ∈ N and all 1 ≤ i ≤ 2ν−1, we have I2ν−1,i = I2ν ,2i−1∪I2ν ,2i.
Also,

σr,2ν−1(x̌; t) = πr−1(x̌; t, t2ν−1,i−1)
= πr−1(x̌; t, t2ν ,2i−2), t ∈ I2ν−1,i

while

σr,2ν (x̌; t) =
{

πr−1(x̌; t, t2ν ,2i−2) t ∈ I2ν ,2i−1,
πr−1(x̌; t, t2ν ,2i−1) t ∈ I2ν ,2i.
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Hence

σr,2ν (x̌; t) − σr,2ν−1(x̌; t)

=

{
0 t ∈ I2ν ,2i−1,

πr−1(x̌; t, t2ν ,2i−1) − πr−1(x̌; t, t2ν−1,i−1), t ∈ I2ν ,2i,

so that

(5.13)
‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖Lq(I2ν−1,i)

= ‖πr−1(x̌; ·, t2ν ,2i−1) − πr−1(x̌; ·, t2ν−1,i−1)‖Lq(I2ν ,2i).

By virtue of Lemma C we have

(5.14)

‖πr−1(x̌; ·, t2ν ,2i−1) − πr−1(x̌; ·, t2ν−1,i−1)‖Lq(I2ν ,2i)

≤ c |I2ν ,2i|1/q−1/p‖πr−1(x̌; ·, t2ν ,2i−1)−πr−1(x̌; ·, t2ν−1,i−1)‖Lp(I2ν,2i),

where c = c(r, p, q), and

(5.15)

‖πr−1(x̌; ·, t2ν ,2i−1) − πr−1(x̌; ·, t2ν−1,i−1)‖p
Lp(I2ν ,2i)

≤ ‖x̌(·) − πr−1(x̌; ·, t2ν−1,i−1)‖p
Lp(I2ν,2i)

+ ‖x̌(·) − πr−1(x̌; ·, t2ν ,2i−1)‖p
Lp(I2ν ,2i)

≤ ‖x̌(·) − πr−1(x̌; ·, t2ν−1,i−1)‖p
Lp(I2ν−1,i)

+ ‖x̌(·) − πr−1(x̌; ·, t2ν ,2i−1)‖p
Lp(I2ν ,2i)

.

Substituting (5.14) and (5.15) in (5.13) implies

(5.16)

‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖q
Lq(I2ν−1,i)

≤ c |I2ν−1,i|1−q/p‖x̌(·) − πr−1(x̌; ·, t2ν−1,i−1)‖q
Lp(I2ν−1,i)

+ c |I2ν ,2i|1−q/p‖x̌(·) − πr−1(x̌; ·, t2ν ,2i−1)‖q
Lp(I2ν,2i)

,

where c = c(r, p, q), and where we used the convexity of the function
uq/p.

Denoting

θ2ν ,i := θr,2ν ,i(x̌)

:= x̌(r−1)(t2ν ,i) − x̌(r−1)(t2ν ,i−1), i = 1, . . . , 2ν − 1,
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similar to (5.3) and (5.4) we obtain

(5.17)
‖x̌(·) − πr−1(x̌; ·, t2ν ,i−1)‖Lp(I2ν,i) ≤ |I2ν ,i|r−1+1/pθ2ν ,i,

i = 1, . . . , 2ν − 1,

and

(5.18) ‖x̌(·) − πr−1(x̌; ·, t2ν ,2ν−1)‖Lp(I2ν,2ν ) ≤ |I2ν ,2ν |r−1.

Substituting (5.17) and (5.18) in (5.16) yields,

(5.19)

‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖Lq([0,1)

≤ č

( 2ν−1−1∑
i=1

(|I2ν−1,i|r−1+1/qθ2ν−1,i

)q
)1/q

+ č |I2ν−1,2ν−1 |r−1−1/p+1/q

+ č

( 2ν−1∑
i=1

(|I2ν ,i|r−1+1/qθ2ν ,i

)q
)1/q

+ č |I2ν ,2ν |r−1−1/p+1/q,

with some constant č = č(r, p, q), and our goal is to estimate the
righthand side of (5.19). But we have done just that for β satisfying
(5.1). Observe that we have obtained the estimate of the righthand side
of (5.7) by Lemma 3, for all 0 < p, q < 1, provided r−1−1/p+1/q > 0.
Thus we conclude that for the prescribed β,

‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖Lq [0,1) ≤ c2−νr,

where c = c(r, p, q). Similarly we have

‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖Lq(−1,0] ≤ c2−νr,

where c = c(r, p, q). And combined we end up with

(5.20) ‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖q
Lq(I) ≤ c2−νrq, ν = 1, 2, . . . ,

where c = c(r, p, q), so that the series

∞∑
ν=1

‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖q
Lq(I) ≤

∞∑
ν=1

c2−νrq < ∞.
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It thus follows by Fatou lemma that the function

σq,r(x̌; t) := |σr,2ν−1(x̌; t)|q +
∞∑

ν=1

∣∣σr,2ν (x̌; t) − σr,2ν−1(x̌; t)|q

is integrable in I, and since

|x̌(t)|q ≤ σq,r(x̌; t), t ∈ I,

we conclude that x̌ ∈ Lq(I). Moreover, by virtue of (5.20), we readily
get

‖x̌(·) − σr,2n(x̌; ·)‖q
Lq(I) ≤

∞∑
ν=n+1

‖σr,2ν (x̌; ·) − σr,2ν−1(x̌; ·)‖q
Lq(I)

≤
∞∑

ν=n+1

c2−νrq ≤ c2−nrq, n = 0, 1, 2, . . . ,

where c = c(r, p, q). Similarly we obtain the upper bounds

‖x̂(·) − σr,2n(x̂; ·)‖Lq(I) ≤ c2−nr, n = 0, 1, 2, . . . ,

where c = c(r, p, q), and together we have

(5.21) ‖x(·) − σr,2n(x; ·)‖Lq(I) ≤ c2−nr, n = 0, 1, 2, . . . ,

where c = c(r, p, q).

Recall that the upper bounds (5.12) and (5.21) have been proved
under the additional assumption that

x(s)(0) = 0, s = 0, . . . , r − 1.

If this is not the case, then we let

x̃(t) := x(t) −
r−1∑
s=0

x(s)(0)
ts

s!
, t ∈ I.

Evidently x̃ ∈ Vr
p , ‖x̃‖Vr

p
= ‖x‖Vr

p
, and

x̃(s)(0) = 0, s = 0, . . . , r − 1.
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Finally,
x(t) − σr,n(x; t) = x̃(t) − σr,n(x̃; t), t ∈ I.

Thus we conclude that for x ∈ V r
p ,

(5.22) ‖x(·)−σr,n(x; ·)‖Lq(I) ≤ cn−r, 0 < q ≤ p < 1, n = 1, 2, . . . ,

and
(5.23)

‖x(·) − σr,2n(x; ·)‖Lq(I) ≤ c2−nr, 0 < p < q < 1, n = 0, 1, 2, . . . ,

where c = c(r, p, q).

Let Sr := Sβ,r, be a space of piecewise polynomials of degree ≤ r− 1
on each subinterval Ir,i, i = ±1, . . . ,±n, and continuous at the point
t = 0. Then dimSr = 2rn − 1, and the mapping defined above
σr,n : Vr

p → Sr is linear. Hence it follows immediately by (5.22), and it
follows by standard technique from (5.23) that

dn(V r
p )lin

Lq
≤ cn−r, 0 < p, q < 1, n = 1, 2, . . . ,

where c = c(r, p, q). In view of (2.3) we immediately obtain

dn(V r
p )psd

Lq
≤ dn(V r

p )kol
Lq

≤ cn−r, 0 < p, q < 1, n = 1, 2, . . . ,

where c = c(r, p, q).

Obviously we also have

E(V r
p , Σr,n)Lq

≤ cn−r, 0 < p, q < 1, n = 1, 2, . . . ,

where c = c(r, p, q), and finally applying Lemma D with λ = r + 1/q
and γ = q, the last inequality yields,

E(V r
p , Rn)Lq

≤ cn−r, 0 < p, q < 1, n = 1, 2, . . . ,

where c = c(r, p, q). This completes the proof of the upper bounds in
Theorem 2.

6. Proof of Theorem 2 (Lower bounds). The proof follows the
same lines as that of the lower bounds in Theorem 1, but it is simpler.
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Let ϕ ∈ C∞
0 (R) be nonnegative with supp ϕ = [0, 1] =: I, ‖ϕ‖L∞ = 1,

and ϕ(t) = 1 if t ∈ [1/4, 3/4]. For r ∈ N, let

φr(t) := ϕ(t)/‖ϕ(r)‖L∞ , t ∈ R,

and for m ∈ N to be prescribed, take ti := tm,i := i/m, i = 0, 1, . . . , m,
and Ii := Im,i := [ti−1, ti], i = 1, . . . , m. Denote

φr,m,i(t) := m−rφr(m(t − ti−1)), t ∈ R, i = 1, . . . , m,

Then, supp φr,m,i = Ii, i = 1, . . . , m,

(6.1) ‖φ(r)
r,m,i‖L∞ = 1, 0 ≤ φr,m,i(t) ≤ m−r‖ϕ(r)‖−1

L∞ , t ∈ I,

and

(6.2) φr,m,i(t) = m−r‖ϕ(r)(·)‖−1
L∞ , t ∈ [ti−1 + 1/(4m), ti − 1/(4m)].

Write

Φr,m := Φr,m(I) :=

{
φ | φ :=

m∑
i=1

viφr,m,i, v := (v1, . . . , vm) ∈ Fm

}
,

where Fm is the class of sign-vectors defined in Lemma A. Then, by
virtue of (6.1), we have

‖φ‖L∞(I) ≤ m−r‖ϕ(r)‖−1
L∞(I), ‖φ(r)‖L∞(I) ≤ 1, φ ∈ Φr,m,

so that Φr,m ⊂ V r
p . Hence

(6.3) dn(V r
p )psd

Lq
≥ dn(Φr,m)psd

Lq
, 0 < q < 1, n ≥ 1.

For any two different vectors v̂ := (v̂1, . . . , v̂m) and v̌ := (v̌1, . . . , v̌m),
in Fm, let

φ̂ :=
m∑

i=1

v̂iφr,m,i and φ̌ :=
m∑

i=1

v̌iφr,m,i,
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be the associated functions in Φr,m. If ‖v̂−v̌‖lm1
≥ m/2, then there exist


m/4� indices i1, . . . , i�m/4� such that v̂ik
= −v̌ik

, k = 1, . . . , 
m/4�.
Hence, by (6.2),

‖φ̂ − φ̌‖q
Lq

=
∫

I

∣∣∣∣∣
m∑

i=1

(v̂i − v̌i)φr,m,i(t)

∣∣∣∣∣
q

dt

=
m∑

i=1

∫
Im,i

|v̂i − v̌i|q(φr,m,i(t))q dt

≥
�m/4�∑
k=1

|v̂ik
− v̌ik

|q
∫ tm,ik

−1/4m

tm,ik−1+(1/4m)

m−rq‖ϕ(r)‖−q
L∞dt

= m−rq‖ϕ(r)‖−q
L∞(2m)−1

�m/4�∑
k=1

2q

≥ m−rq‖ϕ(r)‖−q
L∞(2m)−12q
m/4�

≥ 2q−3‖ϕ(r)‖−q
L∞m−rq =: εq.

If we set a := m−r‖ϕ(r)‖−1
L∞ , and given n ∈ N, we take m =


80(23/q−1 + 1)�n, then applying Lemma 1, as we did in the proof
of Theorem 1, we conclude that

dn(Φr,m)Lq
≥ cn−r, n ∈ N, 0 < q < 1,

where c = c(r, q). By virtue of (6.3) and (2.3) this implies

dn(V r
p )lin

Lq
≥ dn(V r

p )kol
Lq

≥ dn(V r
p )psd

Lq
≥ cn−r,

0 < p, q < 1, n = 1, 2, . . . ,

where c = c(r, q). The lower bounds

E
(
V r

p , Σr,n

)
Lq

≥ cn−r, 0 < p, q < 1, n = 1, 2, . . . ,

and

E(V r
p , Rn)Lq

≥ cn−r, 0 < p, q < 1, n = 1, 2, . . . ,
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where c = c(r, q), readily follow from (2.4) and(2.5). This completes
the proof of the lower bounds in Theorem 2.

7. Relations between the spaces Wr
p and Vr

p . Let X and Y
be linear spaces equipped with the (quasi-)seminorms ‖x‖X and ‖y‖Y ,
respectively. If X ⊆ Y , we say that X is embedded in Y , notation
X ↪→ Y , if ‖x‖Y ≤ c‖x‖X for all x ∈ X. Otherwise we write X 
↪→ Y .

The following relations hold between Wr
p and Vr

p .

Proposition 1. For every r ∈ N, Vr
p 
↪→ Wr

p , 0 < p ≤ ∞. However,
while for 1 ≤ p ≤ ∞, Wr

p ↪→ Vr
p , if 0 < p < 1, then Wr

p 
↪→ Vr
p .

Proof. We begin with the easiest part which is to observe that if
1 ≤ p ≤ ∞, then by Hölder inequality,

‖x‖Vr
p
≤ c‖x‖Wr

p
, ∀x ∈ Wr

p ,

where c := 21/p−1p−1/p|I|. Thus, Wr
p ↪→ Vr

p .

On the other hand, let 0 < p ≤ ∞, and take 0 < ε < |I|. Recall that
t0 is the midpoint of I, and set

xε,p,0(t) :=

⎧⎨
⎩

ε−1/p−1 t ∈ (−|I|/2 + t0,−(|I| − ε)/2 + t0),
0 t ∈ [−(|I| − ε)/2 + t0, t0 + (|I| − ε)/2],
ε−1/p−1 t ∈ (t0 + (|I| − ε)/2, t0 + |I|/2),

and

xε,p,s(t) :=
∫ t

t0

xε,p,s−1(τ )dτ, s = 1, . . . , r, t ∈ I.

Then clearly, xε,p,r ∈ Wr
p ∩ Vr

p , and straightforward calculations yield

‖xε,p,r‖Wr
p

= ε−1 and ‖xε,p,r‖Vr
p

= 2−1(p + 1)−1/p.

Obviously, there exists no constant c > 0 such that

‖xε,p,r‖Wr
p
≤ c‖xε,p,r‖Vr

p
,

for all ε → 0. Thus Vr
p 
↪→ Wr

p .
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Finally, let 0 < p < 1 and take 0 < ε < |I|. Set

yε,p,0(t) :=

⎧⎨
⎩

0 t ∈ [−|I|/2 + t0, t0 − ε/2],
ε−1/p t ∈ (−ε/2 + t0, t0 + ε/2),
0 t ∈ (t0 + ε/2, t0 + |I|/2),

and

yε,p,s(t) :=
∫ t

t0

yε,p,s−1(τ )dτ, s = 1, . . . , r, t ∈ I.

Again it is clear that yε,p,r ∈ Wr
p ∩ Vr

p , and again by straightforward
calculations,

‖yε,p,r‖Wr
p (I) = 1 and ‖yε,p,r‖Vr

p(I) = 2−1(ε+(p+1)−1ε+ |I|)ε1−1/p.

This time it is clear that there exists no constant c > 0 such that

‖yε,p,r‖Vr
p(I) ≤ c‖yε,p,r‖Wr

p (I),

for all ε → 0. Thus Wr
p 
↪→ Vr

p . This completes the proof of Proposition
1.

On the other hand we do have

Proposition 2. The inclusion Vr
p ⊆ Lp, is valid for every r ∈ N

and all 0 < p ≤ ∞.

Proof. For x ∈ Vr
p , let

πr−1(x; t; t0) :=
r−1∑
s=0

x(s)(t0)
(t − t0)s

s!

denote the Taylor polynomial of x. Then

x(t) = πr−1(x; t; t0) +
1

(r − 1)!

∫ t

t0

x(r)(τ )(t − τ )r−1 dτ.

Now πr−1(x; t; t0) ∈ Lp, 0 < p ≤ ∞, so it suffices to prove that the
remainder does too.
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If 0 < p < ∞, then

( ∫
I

∣∣∣∣
∫ t

t0

x(r)(τ )(t − τ )r−1 dτ

∣∣∣∣
p

dt

)1/p

≤ 2−r+1|I|r−1

( ∫
I

∣∣∣∣
∫ t

t0

|x(r)(τ )| dτ

∣∣∣∣
p

dt

)1/p

= 2−r+1|I|r−1‖x‖Vr
p

< ∞,

and for p = ∞,

sup
t∈I

∣∣∣∣
∫ t

t0

x(r)(τ )(t − τ )r−1dτ

∣∣∣∣ ≤ 2−r+1|I|r−1 sup
t∈I

∣∣∣∣
∫ t

t0

|x(r)(τ )|dτ

∣∣∣∣
= 2−r+1|I|r−1‖x‖Vr∞ < ∞.

Thus the proof is complete.
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