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IDEAL KAEHLERIAN SLANT SUBMANIFOLDS
IN COMPLEX SPACE FORMS

ION MIHAI

ABSTRACT. Roughly speaking, an ideal immersion of a
Riemannian manifold into a space form is an isometric im-
mersion which produces the least possible amount of tension
from the ambient space at each point of the submanifold.
Recently, Chen studied Lagrangian submanifolds in complex
space forms which are ideal. He proved that such submanifolds
are minimal. He also classified ideal Lagrangian submanifolds
in complex space forms.

In the present paper, we investigate ideal Kaehlerian slant
submanifolds in a complex space form. We prove that such
submanifolds are minimal. We also obtain obstructions to
ideal slant immersions in complex hyperbolic space.

1. Chen invariants and Chen inequalities. It is well known that
Riemannian invariants play the most fundamental role in Riemannian
geometry. Riemannian invariants provide the intrinsic characteristics
of Riemannian manifolds which affect the behavior in general of the
Riemannian manifold.

Let M be an n-dimensional Riemannian manifold. We denote by
K(π) the sectional curvature of M associated with a plane section
π ⊂ TpM , p ∈ M . For any orthonormal basis {e1, . . . , en} of the
tangent space TpM , the scalar curvature τ at p is defined by

(1.1) τ (p) =
∑
i<j

K(ei ∧ ej).

Let L be a subspace of TpM of dimension r ≥ 2 and {e1, . . . , er}
an orthonormal basis of L. The scalar curvature τ (L) of the r-plane
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section L is defined by

(1.2) τ (L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r.

For an integer k ≥ 0, we denote by S(n, k) the finite set consisting of
unordered k-tuples (n1, . . . , nk) of integers ≥ 2 satisfying n1 < n and
n1 + · · · + nk ≤ n. Then S(n) is the union ∪k≥0 S(n, k).

Chen introduced in [3, 4] a new type of curvature invariant δ(n1, . . . ,
nk) known as Chen invariants, defined as follows.

(1.3) δ(n1, . . . , nk) = τ − inf{τ (L1) + · · · + τ (Lk)},
where, at each point p ∈ M , L1, . . . , Lk run over all k mutually
orthogonal subspaces of TpM such that dimLj = nj , j = 1, . . . , k.

He proved in [4] an optimal relationship between the Chen invariants
δ(n1, . . . , nk) and the squared mean curvature ‖H‖2, which we call the
Chen inequality, for an arbitrary submanifold in a real space form.

Chen also pointed out in [4] that the same result holds for totally
real submanifolds in complex space forms.

Let M̃(4c) be an m-dimensional complex space form with constant
holomorphic sectional curvature 4c. We denote by J the complex
structure of M̃(4c). The curvature tensor R̃ of M̃(4c) is given by [13]:

(1.4)
R̃(X, Y )Z = c(g(Y, Z)X − g(X, Z)Y

+ g(JY, Z)JX − g(JX, Z)JY − 2g(JX, Y )JZ),

for any tangent vector fields X, Y, Z to M̃(4c).

An n-dimensional submanifold M of M̃(4c) is said to be a slant
submanifold [1] if, for any p ∈ M and any nonzero vector X ∈ TpM ,
the angle between JX and the tangent space TpM is constant which
is denoted by θ. Moreover, if M is neither complex, θ = 0, nor totally
real, θ = π/2, then M is called a proper slant submanifold.

We denote by h and A the second fundamental form and the shape
operator, respectively, of M in M̃(4c).

The equations of Gauss and Codazzi are given respectively by

(1.5)
R̃(X, Y, Z, W ) = R(X, Y, Z, W ) − g(h(X, Z), h(Y, W ))

+ g(h(X, W ), h(Y, Z)),
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(1.6) (∇Xh)(Y, Z) = (∇Y h)(X, Z),

where X, Y, Z, W are tangent vector fields to M , and ∇h is defined by

(∇Xh)(Y, Z) = ∇⊥
Xh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ).

For any vector field X tangent to M , we put JX = PX +FX, where
PX and FX are the tangential and normal components of JX. Thus,
P is an endomorphism of the tangent bundle TM .

We obtained inequalities satisfied by some Chen invariants
δ′(n1, . . . , nk) for slant submanifolds in a complex space form in [11].

We consider the Riemannian invariant

δ′(n1, . . . , nk) = τ − inf{τ (L1) + · · · + τ (Lk)},

where, at each point p ∈ M , L1, . . . , Lk run over all k mutually
orthogonal subspaces of TpM invariant by the endomorphism P , such
that dimLj = nj , j = 1, . . . , k. We set

b(n1, . . . , nk) =
n2(n + k − 1 − ∑k

j=1 nj)

2(n + k − ∑k
j=1 nj)

,

d(n1, . . . , nk) =
1
2

[
n(n − 1) −

k∑
j=1

nj(nj − 1)
]
.

Theorem 1.1. Let M be an n-dimensional θ-slant submanifold
of an m-dimensional complex space form M̃(4c). Then, for any
(n1, . . . , nk) ∈ S(n), we have

(1.7)

δ′(n1, . . . , nk) ≤ b(n1, . . . , nk)‖H‖2 + d(n1, . . . , nk) c

+
3
2

(
n −

k∑
j=1

nj

)
c cos2 θ.

Moreover, the equality holds at a point p ∈ M if and only if
there exists a tangent basis {e1, . . . , en} ⊂ TpM and a normal basis
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{en+1, . . . , e2m} ⊂ T⊥
p M such that, for any vector ξ normal to M at

p, the shape operator Aξ takes the following form

(1.8) Aξ =

⎛
⎜⎜⎜⎝

Aξ
1 · · · 0
...

. . .
... 0

0 · · · Aξ
k

0 µξI

⎞
⎟⎟⎟⎠ ,

where I is an identity matrix and Aξ
j is a symmetric nj ×nj submatrix

satisfying

(1.9) tr (Aξ
1) = · · · = tr (Aξ

k) = µξ.

A slant submanifold M of a complex space form M̃(4c) is called ideal
if it satisfies the equality case of the inequality (1.7) identically for some
(n1, . . . , nk) ∈ S(n).

2. Minimality of ideal submanifolds. In the following sections,
we will investigate n-dimensional Kaehlerian slant ideal submanifolds
in an n-dimensional complex space form M̃(4c).

We recall a proper slant submanifold is Kaehlerian slant if the
endomorphism P is parallel with respect to the Riemannian connection
∇. It is known in [1] that this condition is equivalent to

(2.1) AFXY = AFY X, ∀X, Y ∈ Γ(TM).

First, we will prove that such submanifolds are minimal.

Theorem 2.1. Let M be an n-dimensional Kaehlerian slant sub-
manifold of an n-dimensional complex space form M̃(4c). If M is an
ideal submanifold, then it is minimal.

Proof. Let M be a Kaehlerian slant submanifold of a complex space
form M̃(4c) with dim M = n and dim M̃(c) = n, and let p ∈ M .

We distinguish two cases:
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(a) g(h(u, v), Fw) = 0, for all u, v, w ∈ TpM .

Obviously, it follows that H(p) = 0.

(b) g(h(u, u), Fu) 
= 0, for some u ∈ TpM .

We will construct an orthonormal basis {ε1, . . . , εn} of TpM such
that

(2.2) AFε1εi = λiεi, i = 1, . . . , n,

where λ1, . . . , λn satisfy λ1 ≥ 2λj , j = 2, . . . , n.

We define a function fp by

fp : T 1
p M −→ R; u �−→ fp(u) = g(h(u, u), Fu),

where T 1
p M is the unit hypersphere of TpM consisting of all unit vectors

in TpM . Since T 1
p M is a compact set, there exists a vector v in

T 1
p M such that fp attains an absolute maximum at v. We denote

λ1 = fp(v) > 0. It is easily seen that AFvv = λ1v. We put ε1 = v and
choose ε2, . . . , εn so that {ε1, . . . , εn} is an orthonormal basis of TpM
and each εi is an eigenvector of AFε1 with eigenvalue λi.

Since fp attains an absolute maximum at ε1, the function fi, i ∈
{2, . . . , n}, defined by fi(t) = fp((cos t)ε1 + (sin t)εi) has a relative
maximum at t = 0. So, by a straightforward computation, we get

0 ≥ f ′′
i (0) = −3λ1 + 6λi,

i.e., λ1 ≥ 2λi, for all i ≥ 2.

Since λ1 > 0, we find λ1 > λi, for i ≥ 2. In particular, this implies
that the eigenspace of AFε1 corresponding to the eigenvalue λ1 is 1-
dimensional.

We assume that M is ideal. Then it satisfies

(2.3)

δ′(n1, . . . , nk) = b(n1, . . . , nk)‖H‖2 + d(n1, . . . , nk) c

+
3
2

(
n −

k∑
j=1

nj

)
c cos2 θ

identically for some k-tuple (n1, . . . , nk) ∈ S(n).
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Thus, according to Theorem 1.1, there is an orthonormal basis
{e1, . . . , en} of TpM at each p ∈ M such that, for any normal vector ξ
at p, the shape operator Aξ with respect to {e1, . . . , en} takes the form
(1.8).

With respect to the orthonormal basis {e1, . . . , en} chosen above, we
put

(2.4) Li = Span {eα |α ∈ Ii},

(2.5) tr Li
h =

∑
α∈Ii

h(eα, eα),

where Ii = {n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni}, i = 1, . . . , k, and

Lk+1 = Span {en1+···+nk+1, . . . , en}.
Obviously, we have TpM = L1 ⊕ · · · ⊕ Lk+1. We will show that ε1 lies
in one of L1, . . . , Lk. Let

(2.6) ε1 = v1 + · · · + vk + vk+1,

with v1 ∈ L1, . . . , vk+1 ∈ Lk+1. Then, we have

(2.7) λ1ε1 = Aφε1ε1 = AFε1v1 + · · · + AFε1vk + AFε1vk+1.

From (1.8) we have AFε1vi ∈ Li. Thus, (2.6) and (2.7) imply

AFε1v1 = λ1v1, . . . , AFε1vk+1 = λ1vk+1.

Since the eigenspace of AFε1 corresponding to the eigenvalue λ1

is 1-dimensional, the above equation implies that exactly one of
v1, . . . , vk+1 does not vanish. If we suppose that ε1 = vk+1, then
n1 + · · · + nk = n − 1, because the multiplicity of λ1 is 1. In this case,
ε1 = ±en. Therefore, we get

±AFεi
en = AFεi

ε1 = AFε1εi = λiεi ⊥ en = ±ε1,

for i = 2, . . . , n. Thus, we obtain λ2 = · · · = λn = 0 by applying (1.8).
Hence, by (1.9), one has λ1 = 0, which is a contradiction. Consequently,
ε1 must belong to one of L1, . . . , Lk.



IDEAL KAEHLERIAN SLANT SUBMANIFOLDS 947

Without loss of generality, we may now assume ε1 = e1. Moreover,
since AFe1 takes the form (1.8), we may also assume ε2 = e2, . . . , εn =
en.

In other words, we may choose the eigenvectors ε2, . . . , εn of AFe1 to
be compatible with the decomposition arisen from (1.8). Therefore, by
applying (1.8) and (2.1), we have

(2.8) g(h(Xi, Yi), FXj) = g(h(Xi, Xj), FYi) = 0,

for vectors Xi, Yi ∈ Li, Xj ∈ Lj , 1 ≤ i 
= j ≤ k.

If n1 + · · · + nk = n, then k ≥ 2 by the definition of S(n). In this
case, (1.8), (1.9) and (2.8) imply that the second fundamental form of
M satisfies

h(Li, Li) ⊂ F (Li), h(Li, Lj) = 0,(2.9)
tr Li

h = 0, i, j = 1, . . . , k.(2.10)

If n1 + · · · + nk < n, then (1.8) implies that, for any t ∈ {n1 + · · · +
nk + 1, . . . , n} and any j 
= t, we have

(2.11) g(AFet
ei, ej) = g(AFei

et, ej) = 0.

By using (2.11) and (1.9) with ξ = Fet, we also obtain g(AFet
et, et) =

0. Hence, AFet
= 0 for each t ∈ {n1 + · · · + nk + 1, . . . , n}. Thus, we

obtain (2.9), (2.10) and

(2.12) h(X, en1+···+nk+1) = · · · = h(X, en) = 0, ∀X ∈ TpM,

Therefore, in both cases, H(p) = 0.

3. Obstructions to ideal slant immersions. In this section we
will prove the nonexistenceness of n-dimensional ideal Kaehlerian slant
submanifolds in an n-dimensional complex hyperbolic space with full
first normal bundle.

First, we state the following.

Proposition 3.1. Every minimal slant submanifold of a hyperbolic
complex space form is irreducible.
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Proof. Assume that M is an n-dimensional reducible slant submani-
fold of an m-dimensional complex space form M̃(4c), with c < 0. Then,
locally, M is the Riemannian product of some Riemannian manifolds,
say M = N1 × · · · × Ns, s ≥ 2. If dimN1 = a, then we can choose an
orthonormal basis {e1, . . . , en} such that e1, . . . , ea are tangent to N1

and ea+1, . . . , en are tangent to N2 × · · · × Ns. Since M is minimal,
the Gauss equation yields

0 =
a∑

i=1

n∑
j=a+1

R(ei, ej , ei, ej)

= a(n−a)(1+3 cos2 θ) c −
∥∥∥∥

a∑
i=1

h(ei, ei)
∥∥∥∥2

−
a∑

i=1

n∑
j=a+1

||h(ei, ej)||2,

which is impossible.

Recall that the first normal space Imhp and the relative null space
Ker hp of a submanifold M at a point p ∈ M are the vector spaces
defined respectively by

Im hp = sp {h(X, Y ) |X, Y ∈ TpM},
Ker hp = {Z ∈ TpM | h(X, Z) = 0, ∀X ∈ TpM}.

It is easily seen that the first normal space Imhp and the relative null
space Kerhp of a Kaehlerian slant submanifold M in a complex space
form M̃(4c) are related by (Imhp)⊥ = F (Kerhp).

For an ideal n-dimensional Kaehlerian slant submanifold M in an n-
dimensional complex space form M̃(4c) satisfying (2.3), we denote by
Di the distribution generated by Li, where Li is defined by (2.4).

The following lemma implies the integrability and the minimality of
the distributions D1, . . . ,Dk.

Lemma 3.2. Let M be an n-dimensional ideal Kaehlerian slant
submanifold of an n-dimensional complex space form M̃(4c) satisfying
the equality (2.3) identically. If the first normal bundle of M is full,
then

(3.1) n1 + · · · + nk = n,
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(3.2) h(Di,Di) = F (Di), h(Di,Dj) = {0}, 1 ≤ i 
= j ≤ k,

(3.3) ∇Yj
Xi ∈ Di ⊕Dj , 1 ≤ i 
= j ≤ k,

for vector fields Xi in Di and Yj in Dj, respectively. Moreover,
D1, . . . ,Dk are completely integrable distributions and the leaves of
D1, . . . ,Dk are totally geodesic submanifolds in M and minimal sub-
manifolds in M̃(4c), respectively.

This lemma follows from the equation of Codazzi like Lemmas 4 and
11 in [5] for ideal Lagrangian submanifolds in complex space forms.
For an elegant simple proof of Lemma 11, see also [6]. So, we omit the
proof of Lemma 3.2.

Using the above results, we will obtain a nonexistence theorem for
certain ideal slant submanifolds.

Theorem 3.3. There do not exist n-dimensional ideal Kaehlerian
slant submanifolds in an n-dimensional complex hyperbolic space whose
first normal bundle is full.

Proof. We assume M is an n-dimensional ideal Kaehlerian slant
submanifold in an n-dimensional complex hyperbolic space Hn. Then
it satisfies the equality (2.3) for some k-tuple (n1, . . . , nk) ∈ S(n). If
the first normal bundle is full, then n1 + · · · + nk = n and k ≥ 2.
Hence, the tangent bundle TM of M is the direct sum D1 ⊕ · · · ⊕
Dk. According to Lemma 3.2, each Di is an integrable distribution
with totally geodesic leaves. Moreover, by the form (1.8) of the
shape operators of an ideal submanifold, any sum Dj1 ⊕ · · · ⊕ Djs

,
s ∈ {2, . . . , k} is also an integrable distribution with totally geodesic
leaves. Therefore, de Rham’s decomposition theorem implies that
M is locally the Riemannian product of k Riemannian manifolds
M1, . . . , Mk of dimensions n1, . . . , nk, respectively, where Mi is an
integral submanifold of Di. Thus, M is a reducible Riemannian
manifold. By applying Theorem 2.1, we know that the submanifold
M is minimal. Hence, by using Proposition 3.1, we obtain the desired
result.
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On the other hand, there do exist n-dimensional ideal Kaehlerian
slant submanifolds in the complex Euclidean space Cn with full first
normal bundle. In fact, we have the following.

Theorem 3.4. Let M be an n-dimensional Kaehlerian slant subman-
ifold in Cn with full first normal bundle. Then M is ideal if and only
if, locally, M is the Riemannian product of some minimal Kaehlerian
slant submanifolds Mj, j = 1, . . . , k, with full first normal bundle.

Proof. Let x : M → Cn ∼= R2n be an ideal Kaehlerian slant
immersion with full first normal bundle. Moore’s lemma [10] implies
that x is a product immersion, say

x = x1 × · · · × xk : M1 × · · · × Mk → RN1 × · · · × RNk = R2n,

where each xj : Mj → RNj is an isometric immersion and dim Mj = nj .

By the first equation (3.2), we have h(Dj ,Dj) = F (Dj), for each
j ∈ {1, . . . , k}. Then each RNj must contain a 2nj-dimensional
subspace R2nj of R2n. Therefore, we have Nj = 2nj , for j = 1, . . . , k.
It follows by Lemma 3.2 that the first normal bundle of each Mj is full.
Moreover, each Mj is a minimal submanifold. Consequently, the ideal
submanifold M is, locally, the Riemannian product of some minimal
Kaehlerian slant submanifolds.

The converse statement is clear.

We state a theorem of characterization of ideal Kaehlerian slant
submanifolds in the complex Euclidean space.

Theorem 3.5. Let M be an n-dimensional Kaehlerian slant sub-
manifold of the complex Euclidean space Cn such that Im hp 
= T⊥

p M ,
at each point p ∈ M . Then M is ideal if and only if M is a ruled
minimal submanifold.

Proof. Let M be an n-dimensional ideal Kaehlerian slant submanifold
in Cn. Then, by Theorem 2.1, M is a minimal submanifold.

Let Ul denote the interior of the subset consisting of points in M such
that the relative null space at p has dimension l. Since Im hp 
= T⊥

p M ,
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at each point p ∈ M , it follows that Ul 
= ∅, for some integer 1 ≤ l ≤ n.
By applying Codazzi equation, it is easily seen that Kerh is integrable
on Ul and each leaf of (Kerh)|Ul

is an l-dimensional totally geodesic
submanifold of Cn. Thus, M contains a geodesic of Cn through each
point p ∈ Ul. Since M is the union of the closure of all Ul, we conclude
by continuity that M contains a geodesic of the ambient space through
each point in M . Therefore, M is a ruled minimal submanifold.

The converse statement is obvious.

Note added in proof . After the acceptance for publication of this
article, we discovered a very recent paper of I. Salavessa [12]. By
combining Proposition 1.2 of [12] and Theorem 2.1 of this article, we
have the following nonexistence result.

Theorem 3.6. There do not exist n-dimensional ideal Kaehlerian
slant submanifolds in the complex projective space Pn(C).
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11. A. Oiagă and I. Mihai, B.Y. Chen inequalities for slant submanifolds in
complex space forms, Demonstratio Math. 32 (1999), 835 846.

12. I. Salavessa, On the Kähler angles of submanifolds, Portugal. Math. 60
(2003), 215 235.

13. K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore,
1984.

University of Bucharest, Str. Academiei 14, 70109 Bucharest, Romania
E-mail address: imihai@fmi.unibuc.ro


