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REMARKS ON
TOPOLOGICAL PROPERTIES OF BOEHMIANS

JÓZEF BURZYK, PIOTR MIKUSIŃSKI AND DENNIS NEMZER

ABSTRACT. Spaces of Boehmians are equipped with a
topology defined in a canonical way, but properties of that
topology can differ significantly for different spaces of Boehmi-
ans. First we discuss an example of a space of Boehmians with
trivial dual space. Then we show that the space of periodic
Boehmians has a nontrivial dual space, but the topology is
not locally convex. Finally, we give an example of a space of
Boehmians that is a locally convex space.

1. Introduction. In [3], the second author investigates spaces of
generalized functions called Boehmians. Unlike the space of Schwartz
distributions, the construction of these spaces is algebraic. There are
two types of convergence structures given to spaces of Boehmians. One
type is called δ-convergence while the other is called ∆-convergence.
Under some relatively mild conditions, a sequence of Boehmians (Fn)
is ∆-convergent to F if and only if every subsequence of (Fn) contains a
subsequence that is δ-convergent to F . If certain additional conditions
are satisfied, the space of Boehmians with ∆-convergence is a complete
topological vector space where the topology is given by an invariant
metric, see [3].

Thus two questions arise. Can we give a concrete description of
elements in the dual space? And, is the topology locally convex?

In this note we will discuss three different spaces of Boehmians. For
the standard space of Boehmians defined on RN , we show that the
dual space contains only the trivial functional, and therefore, the space
of Boehmians is not locally convex. On the other hand, the space
of periodic Boehmians has enough continuous linear functionals to
separate points. However, we will show that it also is not locally convex.
Elements in the third space are called rapidly decreasing Boehmians.
We will show that this space has a locally convex topology.
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2. Preliminaries. In this section we give a brief introduction to
Boehmians on RN .

The convolution of two functions f, g on RN , denoted by f ∗ g, is
defined by

(f ∗ g)(x) =
∫
RN

f(x− y)g(y) dy,

whenever the integral is well defined.

Let F denote a space of real or complex-valued functions defined on
RN , and let

F∗ = {g ∈ F : f ∗ g ∈ F for every f ∈ F}.

Let ∆ be a collection of sequences of functions ϕ1, ϕ2, . . . ∈ F∗ such
that the following conditions are satisfied:

(a) If f ∈ F , (ϕn) ∈ ∆, and f ∗ ϕn = 0 for every n ∈ N, then f = 0.

(b) If (ϕn), (ψn) ∈ ∆, then (ϕn ∗ ψn) ∈ ∆.

Sequences in ∆ will be called delta sequences.

Let FN denote the collection of all sequences of elements of F , and
let A ⊆ FN × ∆ be defined as follows:

A = {((fn), (ϕn)) : fk ∗ ϕn = fn ∗ ϕk for all n, k ∈ N} .

Two elements ((fn), (ϕn)), ((gn), (ψn)) ∈ A are said to be equivalent
if fk ∗ ψn = gn ∗ ϕk for all n, k ∈ N. A straightforward calculation
shows this is an equivalence relation on A. The equivalence classes are
called Boehmians. Define

B(F ,∆) = {[((fn), (ϕn))] : ((fn), (ϕn)) ∈ A} .

For convenience, a typical element of B(F ,∆) will be written as
F = fn/ϕn.

By defining a natural addition and scalar multiplication on B(F ,∆),
i.e.,

fn

ϕn
+
gn

ψn
=
fn ∗ ψn + gn ∗ ϕn

ϕn ∗ ψn

and
α
fn

ϕn
=
αfn

ϕn
,
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where α is a scalar, B(F ,∆) becomes a vector space. Moreover, if
fn/ϕn, gn/ψn ∈ B(F ,∆) and gn ∈ F∗, then we can define

fn

ϕn
∗ gn

ψn
=

fn ∗ gn

ϕn ∗ ψn
.

Note that if (ϕn) ∈ ∆, then δ = ϕn/ϕn ∈ B(F ,∆) and F ∗ δ = F for
all F ∈ B(F ,∆).

Let (ϕn) be a fixed delta sequence. The space F can be identified
with a subspace of B(F ,∆) by identifying f with (f ∗ ϕn)/ϕn. It is
easy to show that this identification is independent of (ϕn). If for some
F ∈ B(F ,∆) there is an f ∈ F such that F = (f ∗ ϕn)/ϕn, we will
simply write F = f and F ∈ F . For example, if F = fn/ϕn we can
write F ∗ ϕn ∈ F and F ∗ ϕn = fn. This is a slight abuse of notation,
but it will not lead to any misunderstanding.

Now suppose that F is equipped with a convergence. In this case
it is usually assumed that f ∗ ϕn → f for any delta sequence (ϕn).
A sequence (Fn) of Boehmians is said to be ∆-convergent to F if
there exists a delta sequence (ϕn) such that (Fn − F ) ∗ ϕn ∈ F for
all n ∈ N and (Fn−F )∗ϕn → 0 in F . If the convergence in F satisfies
some additional conditions, then B(F ,∆) with ∆-convergence is an F -
space, see [3], that is, a complete topological vector space in which the
topology is given by an invariant metric.

It is often more convenient to use another type of convergence in
B(F ,∆), called δ-convergence. A sequence (Fn) of Boehmians is said
to be δ-convergent to a Boehmian F if there exists a delta sequence (ϕn)
such that (Fn −F ) ∗ϕk ∈ F for all k, n ∈ N and (Fn −F ) ∗ϕk → 0 as
n→ ∞ in F . This convergence is usually a nontopological convergence.
Under natural conditions, one can prove that a sequence of Boehmians
(Fn) is ∆-convergent to F if and only if every subsequence of (Fn) has
a subsequence δ-convergent to F , see [3].

3. B(L,∆L). The standard space of Boehmians is B(L,∆L), where
L is the space of complex-valued locally integrable functions on RN and
∆L is defined as the family of all sequences ϕ1, ϕ2, . . . ∈ L satisfying
the following conditions:

(i)
∫
RN ϕn = 1 for all n ∈ N,

(ii)
∫
RN |ϕn| ≤M for some M and all n ∈ N,
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(iii) For every ε > 0 there exists n0 ∈ N such that ϕn(x) = 0
whenever n > n0 and ‖x‖ > ε.

The space D′ of Schwartz distributions can be identified with a
subspace of B(L,∆L): a distribution f ∈ D′ is identified with the
Boehmian (f ∗ ϕn)/ϕn, where (ϕn) ∈ ∆L is an arbitrary delta sequence
such that ϕn ∈ D (D denotes the space of all C∞-functions with
compact support).

The convergence in L is defined by the semi-norms

‖f‖r =
∫

Br

|f(x)| dx,

where Br = {x ∈ RN : ‖x‖ ≤ r}. The corresponding ∆-convergence
in B(L,∆L) is metrizable and complete. Moreover, if fn → f in D′,
then fn → f in B(L,∆L), see [3]. The Fourier transform of a function
f ∈ L1(RN ) is defined as follows

f̂(z) =
∫
RN

g(x)e−iz·x dx.

The following theorem was proved by T.K. Boehme in the early
eighties. The proof was never published.

Theorem 3.1. There are no nontrivial bounded linear functionals
on B(L,∆L).

Proof. Suppose Λ is a continuous linear functional on B(L,∆L). Then
Λ is a bounded functional on L. Consequently,

Λ(f) =
∫
RN

f(x)g(x) dx,

for some L∞-function g with bounded support. The Fourier transform
ĝ is an entire function on CN . From Lemma 7.21 in [10], it follows
that there exist a z = (z1, . . . , zN ) ∈ RN and a sequence of positive
numbers (αn) such that z1, . . . , zN are positive, αn → ∞, and

ĝ(αnz) �= 0 for all n ∈ N.
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Without loss of generality, we can assume that

∞∑
n=1

1
αn

<∞.

Then the series

(3.1)
∞∑

n=1

eiαnz·x

ĝ(αnz)

converges in B(L,∆L). Indeed, let ω be the characteristic function
of [−π/z1, π/z1] × · · · × [−π/zN , π/zN ] and let ωn(x) = αN

n ω(αnx),
n ∈ N. Then the infinite convolution ϕn = ωn ∗ ωn+1 ∗ · · · exists
for every n ∈ N and (ϕn) ∈ ∆L, see [2, Theorem 1.3.5] and [3, 4].
Moreover eiαnz·x ∗ ϕk = 0 for all n ≥ k.

Since (3.1) is convergent in B(L,∆L),

eiαnz·x

ĝ(αnz)
−→ 0

in B(L,∆L). On the other hand,

Λ
(
eiαnz·x

ĝ(αnz)

)
=

∫
RN

eiαnz·x

ĝ(αnz)
g(x) dx = 1.

The next theorem and its proof are similar to a result published
by Józef Burzyk in [1] concerning type I convergence of Mikusiński’s
operators. The result for Boehmians was presented by Burzyk in 1981
at the seminar of Jan Mikusiński in Katowice, Poland, but was never
published.

Theorem 3.2. A set A ⊂ B(L,∆L) is precompact if and only if A
is bounded.

The proof of this theorem will be preceded by some definitions and
lemmas.
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By K we denote the space of integrable functions on RN with bounded
support. For a ϕ ∈ K let ||ϕ|| denote the norm of ϕ in L1(RN ), i.e.,
||ϕ|| =

∫
RN |ϕ|. The subspace of K of all functions ϕ ∈ K such that

supp (ϕ) ⊂ Bε will be denoted by Kε. Note that

||f ∗ ϕ||r ≤ ||f ||r+ε||ϕ||

for all f ∈ L, ϕ ∈ Kε and r, ε > 0.

For ε > 0 and η ≥ 1, let ∆ε,η denote the subset of Kε which consists
of all functions such that

∫
RN f = 1 and

∫
RN |f | ≤ η. Finally, for

F ∈ B(L,∆L) let

K(F ) = {ϕ ∈ K : F ∗ ϕ ∈ L}

and
pr,ε,η(F ) = inf{||F ∗ ϕ||r : ϕ ∈ K(F ) ∩ ∆ε,η},

for each r, ε > 0 and η > 1.

It can be shown that a sequence (Fn) of Boehmians is ∆-convergent
to F if and only if pr,ε,η(Fn − F ) → 0 as n→ ∞ for every r, ε > 0 and
η > 1.

Lemma 3.3. Let the sequence f1, f2, . . . ∈ L be such that for
some r, ε > 0 the sequence ||fn||r+ε is bounded. Then there exists a
subsequence (fkn

) of (fn) such that for each function ϕ ∈ Kε there
exists a function f ∈ L such that

||fkn
∗ ϕ− f ||r → 0.

Proof. The operator Ln defined by

Ln(ϕ) = (fn ∗ ϕ)|Br

is a linear and continuous operator from Kε to L1(Br) such that
‖Ln‖ ≤ ‖fn‖r+ε. If ϕ ∈ Kε is a continuous function, then Ln(ϕ) is
a continuous function on Br, and it is easy to see that the set {Ln(ϕ)}
satisfies the assumptions of Arzelà’s theorem, so this set is precompact
in the space C(Br). Using the diagonal method for any countable
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subset A ⊂ Kε we can find a subsequence (Lkn
) of (Ln) such that for

each ϕ ∈ A the sequence (Lkn
(ϕ)) is uniformly convergent on Br. Since

the space Kε has a countable dense set whose elements are continuous
functions, by the Banach-Steinhaus theorem, the sequence (Lkn

(ϕ)) is
convergent for each function ϕ ∈ Kε.

Lemma 3.4. If (Fn) is a sequence in B(L,∆L) such that for every
r > 0, ε > 0 and η > 1 there exist f, ϕ, ϕ1, ϕ2, . . . ∈ K such that

ϕn ∈ ∆ε,η ∩ K(Fn) for all n ∈ N,

||Fn ∗ ϕn − f ||r → 0 as n→ ∞

and
||ϕn − ϕ|| → 0 as n→ ∞,

then (Fn) is a convergent sequence in B(L,∆L).

Proof. We assert that, under conditions of the lemma, (Fn) is a
Cauchy sequence in B(L,∆L). In fact, assume that r > 0, ε > 0 and
η > 1. Let (ϕn) and f ∈ L, ϕ ∈ K be such that

ϕn ∈ ∆ε/2,
√

η ∩ K(Fn) for all n ∈ N,

||Fn ∗ ϕn − f ||r+ε → 0 as n→ ∞,

and
||ϕn − ϕ|| → 0 as n→ ∞.

Then for each for n,m ∈ N we have

ϕn ∗ ϕm ∈ ∆ε,η ∩ K(Fn − Fm)

and

pr,ε,η(Fn − Fm) ≤ ||(Fn − Fm) ∗ ϕn ∗ ϕm||r
≤ ||(Fn ∗ ϕn − f) ∗ ϕm||r + ||(Fm ∗ ϕm − f) ∗ ϕn||r

+ ||f ∗ (ϕn − ϕm)||r
≤ √

η ||Fn ∗ ϕn − f ||r+ε +
√
η ||Fm ∗ ϕm − f ||r+ε

+ ||f ||r+ε||ϕn − ϕm||.
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Hence pr,ε,η(Fn − Fm) is small if n and m are sufficiently large.
Consequently, (Fn) is a Cauchy sequence. Thus, by completeness of
B(L,∆L), see [3], the sequence (Fn) is convergent in B(L,∆L).

Proof of Theorem 3.2. Suppose that A is a bounded subset of
B(L,∆L). Let (Fn) be a sequence in A and let (αn) be a sequence
of scalars convergent to 0. Then for any r > 0, ε > 0 and η > 1, we
have pr,ε,η(αnFn) → 0. Since for each r, ε, η, the functional pr,ε,η is
homogeneous, the sequence (pr,ε,η(Fn)) is bounded. This implies that,
for every k ∈ N, there are functions

ϕk,n ∈ ∆1/(2k),1+1/k ∩ K(Fn)

such that
||Fn ∗ ϕk,n||k+(1/k) ≤Mk

for all n, k ∈ N. Let γk be an arbitrary function such that γk ∈
∆1/(2k),1. Using Lemma 3.3 and applying the diagonal method we can
find a subsequence (Fqn

) of (Fn), functions fk ∈ L and ϕk ∈ K such
that

||Fqn
∗ (ϕk,qn

∗ γk) − fk||k −→ 0

and
||ϕk,qn

∗ γk − ϕk|| −→ 0,

as n → ∞. Since the sequence (Fqn
) satisfies the assumptions of

Lemma 3.4, it is convergent in B(L,∆L).

4. Periodic Boehmians. In this section we will consider a space
of Boehmians which is a subspace of B(L,∆L).

Let C2π denote the space of all complex-valued continuous 2π-periodic
functions on R. Let ∆+

C denote the family of all sequences in ∆L whose
members consist of nonnegative continuous functions.

Elements of the space B(C2π,∆+
C ) are called periodic Boehmians, see

[7, 8]. The convergence in C2π is uniform convergence on R. The
corresponding ∆-convergence in B(C2π,∆+

C ) is metrizable. We will
show that B(C2π,∆+

C ) has a nontrivial dual, but its topology is not
locally convex.

For the sake of our argument, it will be convenient to use an equivalent
definition of periodic Boehmians. Let C(Γ) denote the collection of
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continuous complex-valued functions on the unit circle Γ. Whenever
desirable, we will identify functions on Γ with 2π-periodic functions on
the real line R. The convolution of two functions f, g ∈ C(Γ), denoted
by f ∗ g, is given by

(f ∗ g)(x) =
1
2π

∫ π

−π

f(x− t)g(t) dt.

A sequence of continuous nonnegative functions (ϕn) is called a delta
sequence if

(i) 1/(2π)
∫ π

−π
ϕn(x) dx = 1 for all n ∈ N, and

(ii) suppϕn ⊆ (−εn, εn), where 0 < εn and εn → 0 as n→ ∞.

The collection of delta sequences will be denoted by ∆+
2π.

It is easy to see that the spaces B(C2π,∆+
C ) and B(C(Γ),∆+

2π) can be
identified. Note that the space D′

2π of 2π-periodic Schwartz distribu-
tions can be viewed as a subspace of B(C(Γ),∆+

2π).

The nth Fourier coefficient for a function f ∈ C(Γ) is defined in the
usual way,

f̂(n) =
1
2π

∫ π

−π

f(x)e−inx dx, n ∈ Z.

The nth Fourier coefficient of F = fn/ϕn ∈ B(C(Γ),∆+
2π), denoted

F̂ (n), is given by

F̂ (n) = lim
k→∞

f̂k(n).

It can be shown that this limit is independent of the representative.

A Boehmian F ∈ B(C(Γ),∆+
2π) is said to be zero on an open set Ω

if there exists a delta sequence (ϕn) such that F ∗ ϕn ∈ C(Γ) for all
n ∈ N and F ∗ ϕn → 0 uniformly on compact subsets of Ω as n → ∞.
The support of F ∈ B(C(Γ),∆+

2π), written suppF , is the complement
of the largest open set on which F is zero.

We see from the next theorem that B(C(Γ),∆+
2π), unlike B(L,∆L),

has a rich dual. The dual of B(C(Γ),∆+
2π), with respect to ∆-

convergence, will be denoted by B′(C(Γ),∆+
2π).
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Theorem 4.1 [9]. Let Λ ∈ B′(C(Γ),∆+
2π). There exists a unique

trigonometric polynomial p(x) =
m∑

n=−m
αne

inx such that

(4.1) Λ(F ) =
m∑

n=−m

αnF̂ (n), for all F ∈ B(C(Γ),∆+
2π).

Conversely, any trigonometric polynomial p(x) =
∑m

n=−m αne
inx de-

fines a bounded linear functional on B(C(Γ),∆+
2π) via (4.1).

The next corollary provides a connection between ∆-convergence and
weak convergence in B(C(Γ),∆+

2π). Let ω be a real-valued even function
defined on the integers Z such that 0 = ω(0) ≤ ω(n+m) ≤ ω(n)+ω(m)
for all n,m ∈ Z and

∑∞
n=1 ω(n)/n2 <∞.

Corollary 4.2 [9]. Suppose that the set of positive integers is

partitioned into two disjoint sets {tn} and {sn} such that
∞∑

n=1
1/tn <

∞. Let (Fn) be a sequence of Boehmians such that the sequence(
e−ω(sk)F̂n(±sk)

)
is uniformly bounded for k, n ∈ N. Then (Fn) is

∆-convergent to zero if and only if (Fn) converges weakly to zero.

By the preceding corollary, it follows that the convergence structure
in D′

2π is stronger than the convergence D′
2π inherits from B(C(Γ),∆+

2π).

Now we prove the main result of this section.

Theorem 4.3. The topology of ∆-convergence in B(C(Γ),∆+
2π) is

not locally convex.

Proof. It suffices to construct a proper closed subspace M of
B(C(Γ),∆+

2π) such that if Λ ∈ B′(C(Γ),∆+
2π) and Λ(M) = {0}, then

Λ is identically zero, see [10, Theorem 3.5].

Let M denote the proper subspace of B(C(Γ),∆+
2π) consisting of all

Boehmians F such that either suppF = {0} or F = 0. Clearly M is a
proper subspace. It is not difficult, and hence it is left to the reader,
to show that M is closed.
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Now, suppose that Λ ∈ B′(C(Γ),∆+
2π) and Λ(M) = {0}. Then there

exist an m ∈ N and constants an ∈ C, n = 0,±1,±2, . . . ,±m, such
that Λ(F ) =

∑m
n=−m anF̂ (n), for all F ∈ B(C(Γ),∆+

2π).

For ν = 0, 1, 2, . . . , 2m, let Gν = (−i)νδ(ν), where δ(ν) = ϕ
(ν)
n /ϕn

and (ϕn) is an infinitely differentiable delta sequence. Then Gν ∈ M
for ν = 0, 1, 2, . . . , 2m. Thus

0 = Λ(Gν) =
m∑

n=−m

anĜν(n) =
m∑

n=−m

ann
ν ,

for ν = 0, 1, 2, . . . , 2m. It follows that an = 0 for n = 0,±1,±2, . . . ,±m.
Hence Λ is identically zero.

The condition that a delta sequence be nonnegative plays no role
in the above proof. In the definition of a delta sequence, we may
replace this condition by the condition that 1/2π

∫ π

−π
|ϕn(x)| dx ≤ γ

for some γ > 0 and all n ∈ N. With this weaker condition, the previous
theorem is still valid, although it is not known whether or not any new
Boehmians are created.

For simplicity, the material in this section has been presented in the
one-dimensional case. However, the ideas can easily be extended to
RN .

5. Rapidly decreasing Boehmians. In this section we consider
the space of Boehmians obtained when F is the space S of rapidly
decreasing functions on RN . An infinitely differentiable complex-
valued function f is called rapidly decreasing if for all nonnegative
integers m and n we have

pm,n(f) = sup
|α|≤n

sup
x∈RN

(
1 + x2

1 + · · · + x2
N

)m |Dαf(x)| <∞,

where x = (x1, . . . , xN ), α = (α1, . . . , αN ) is a multi-index, |α| =
α1 + · · · + αN , and Dα is the differential operator Dα = (∂/∂x1)

α1 · · ·
(∂/∂xN )αN . The topology of S is defined by the family of semi-norms
{pm,n}∞m,n=0. It is known that the Fourier transform is a continuous
map of S onto S.
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A sequence ϕ1, ϕ2, . . . ∈ S will be called a delta sequence if ϕ̂n → 1
in C∞. The collection of these delta sequences will be denoted by ∆S .

For n = 1, 2, . . . , let ωn ∈ S be such that ω̂n(x) = 1 for ‖x‖ ≤ n and
ω̂n(x) = 0 for ‖x‖ ≥ n+1. Note that (ωn) ∈ ∆S and that ωm∗ωn = ωm

if m < n.

Lemma 5.1. For every F ∈ B(S,∆S), there exist f1, f2, . . . ∈ S
such that F = fn/ωn.

Proof. Let F = gn/ϕn ∈ B(S,∆S). For every n ∈ N there exists an
mn ∈ N such that

n

n+ 1
< |ϕ̂mn

(x)| < n+ 1
n

for ‖x‖ ≤ n+ 1.

Let ψn ∈ S be such that

(5.1) ψ̂n =
ω̂n

ϕ̂mn

.

Note that (ψn) ∈ ∆S and

F =
gn

ϕn
=
gmn

ϕmn

=
gmn

∗ ψn

ϕmn
∗ ψn

=
gmn

∗ ψn

ωn
.

Lemma 5.2. Let Fn ∈ B(S,∆S). If δ- limFn = 0, then Fn ∗ ψ → 0
in S for every ψ ∈ S such that ψ̂ ∈ D.

Proof. If δ- limFn = 0, then there exists a delta sequence (ϕn) ∈ ∆S
such that, for every k ∈ N, we have Fn ∗ ϕk → 0 in S as n → ∞. Let
ψ ∈ S be such that ψ̂ ∈ D. There exists a k ∈ N such that ϕ̂k �= 0 on
supp ψ̂. Then

Fn ∗ ψ = Fn ∗ ϕk ∗ γ → 0,

where γ ∈ S is defined by

γ̂ =
ψ̂

ϕ̂k
.
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In the proof of the next lemma we use the Fourier transform of
Boehmians. For the definition and basic properties, see [6].

Lemma 5.3. ∆- limFn = 0 if and only if δ- limFn = 0.

Proof. If ∆- limFn = 0, then Fn ∗ ϕn → 0 in S for some (ϕn) ∈ ∆S .
Then F̂nϕ̂n → 0 in S. Let k ∈ N. Since

ω̂k = ϕ̂n
ω̂k

ϕ̂n
,

for all sufficiently large n ∈ N, we have F̂nω̂k → 0 in S as n → ∞.
Since k is arbitrary, δ- limFn = 0.

Now assume that δ- limFn = 0. Then there is (ϕn) ∈ ∆S such that,
for every k ∈ N, Fn ∗ ϕk → 0 in S as n → ∞. Since S is a metric
space, there exists a nondecreasing sequence of indices mn such that
Fn ∗ ϕmn

→ 0 in S.

Theorem 5.4. The topology of ∆-convergence in B(S,∆S) is locally
convex.

Proof. For k, l,m = 0, 1, 2, . . . define

qk,l,m(F ) = sup
|α|≤l

sup
x∈RN

(1 + x2
1 + · · · + x2

N )m|Dα(F ∗ ωk)(x)|.

Note that qk,l,m(F ) is well-defined for all F ∈ B(S,∆S) and all
k, l,m = 0, 1, 2, . . . , by Lemma 5.1. Moreover, δ- limFn = 0 if and only
if qk,l,m(Fn) → 0 as n → ∞ for all k, l,m = 0, 1, 2, . . . , by Lemma 5.2.
Consequently, the topology of δ-convergence is locally convex. This
proves that the topology of ∆-convergence is locally convex in view of
Lemma 5.3.

By a modification of the above argument, one can prove that there is
a convergence preserving isomorphism between the space of tempered
Boehmians B(T ,∆S) and the space of Schwartz distributions D′. Here
T denotes the space of all complex-valued continuous slowly increasing
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functions. A function f is called slowly increasing if there exists a
polynomial p such that |f(x)| ≤ p(x) for all x ∈ RN .
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