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GENERALIZED CONDITIONAL
YEH-WIENER INTEGRAL

JOO SUP CHANG AND JOONG HYUN AHN

ABSTRACT. In this paper, we introduce the generalized
conditional Yeh-Wiener integral which includes the condi-
tional Yeh-Wiener integral and the modified conditional Yeh-
Wiener integral. We also show that some of the results in
the conditional Yeh-Wiener integral and the modified condi-
tional Yeh-Wiener integral can be obtained as corollaries of
our result. We also treat the generalized conditional Yeh-
Wiener integral for the functional containing a generalized
quasi-polyhedric function.

1. Introduction. Kitagawa [5] introduced the Wiener space of
functions of two variables which is the collection of the continuous
functions z(s,t) on the unit square [0,1] x [0, 1] satisfying x(s,t) = 0
for st = 0, and he treated the integration on this space. Yeh [7] treated
the integration of this space for more general functions and made a firm
logical foundation of this space. We call this space a Yeh-Wiener space
and the integral a Yeh-Wiener integral.

In [8, 9], Yeh introduced the conditional expectation and the condi-
tional Wiener integral. He also evaluated conditional Wiener integrals
for a real-valued conditioning function using the inversion formulae.
Chang and the first author [4] treated the conditional Wiener integral
for vector-valued conditioning function. Park and Skoug [6] introduced
a simple formula for the conditional Yeh-Wiener integral which is very
useful in evaluating the conditional Yeh-Wiener integrals.

Recently the first author [1] introduced the modified conditional
Yeh-Wiener integral and evaluated it for various functionals. In [6],
Park and Skoug treated the conditional Yeh-Wiener integral for the
functional on a set of continuous functions which are defined only on
a rectangular region 2. But in [1], the first author considered the set
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of continuous functions on various regions €2, for example, triangular,
parabolic and circular regions. In this paper we consider even more
general region ) than were considered in [1].

The purpose of this paper is to introduce the generalized conditional
Yeh-Wiener integral which includes the conditional Yeh-Wiener integral
in [6] and the modified conditional Yeh-Wiener integral in [1]. To
do so, we consider the space of continuous functions on the region
Q={(s,t) | a <s<b 0<t < g(s)} where g is a monotone
decreasing and continuous function which is sectionally decreasing or
constant on [a, b] with g(b) > 0. To make a partition of the region €2,
we use a similar, but slightly different notation than the one used in
[4] and we divide the partitions of the region ) into the two different
types depending on whether g(s) is constant immediately to the right of
s = a or g(s) is strictly decreasing just to the right of s = a. We call the
new resulting space and the resulting new integral the generalized Yeh-
Wiener space and the generalized Yeh-Wiener integral, respectively.

We also obtain a simple formula for the generalized conditional
Yeh-Wiener integral using the generalized quasi-polyhedric function.
Using this formula we show that some of the results in [1, 6, 9]
can be obtained as corollaries of our result. Finally we treat the
generalized conditional Yeh-Wiener integral for the functional F' given
by F(z) = [,([z](s,t))* dsdt where k is a nonnegative integer and [z]
is the generalized quasi-polyhedric function on €.

2. Generalized conditional Yeh-Wiener integral. Let g be
a monotone decreasing and continuous function which is sectionally
constant or decreasing on [a,b] with g(b) > 0. Let a =79 <71 < -+ <
Tr, < Tk+1 = b be chosen in such a way that on each interval [r;_1, 7],
g is either constant or (strictly) decreasing and ¢ is not constant or
decreasing on two consecutive intervals. Thus, if £ = 0, then g is either
a constant function or a decreasing continuous function on [a, b].

To make a partition {sg, s1,... , 84} of [a,b], we use the notation

2.1) =580 <85 < <8, =TI < <S4, = T2
’ <"'<511+-~»+lk:Tk<"'<5d:b

where d =13 +---+lpy1 and [; > 1 for i =1,... ,k + 1. The notation
(2.1) is similar but slightly different than the notation used in [4]. For
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notational convenience, we let [; = 0 for ¢ < 0, and we let A; = (7,-1, %)
fori=1,... ,k+1.

We first consider the case g is constant on A;. Let g(a) = T', and let

(2.2) ]%:{k-i-l k :odd
k k : even.

Forn > ly+1l4+4---+1; when g(b) >0andn = lo+1ly+---+1;

when ¢(b) = 0, construct a partition {¢o,?1,... ,t,} of [0,T] satisfying

0=ty <ty <---<t, =T and the following properties:

(2.3)

Y

. . k+2
iog(s) =tn-ty—ty—raly,_n ON Ao q, i=1,2,... ’<T>
ii. for 0 <p <y, g(5l1+l2+~~-+l2¢71+p) =tnly——lyi_o—p
on Ay, i=1,2,...,k/2,
where, for real number y, (y) denotes the greatest integer less than or
equal to y.

Let Q ={(s,t) | a <s<b, 0<1t<g(s)}, and let C(£2) be the space
of continuous functions z on ) satisfying z(s,0) = z(a,t) = 0 for all
(s,t) in Q. In [2, 5-7], the various authors worked with the rectangle
Q = [a,b] x [0,T7], i.e., g(s) =T on Ay = [a,b], which is a special case
of (2.3) for k= 0.

Let L, =1; 4+ -+ +1p, and let A be the partition of Q given by
(2.4) A = {(si,t;) | t1 <t; <g(si), 1 <0< Lpya}

where ¢(s;) is given by (2.3). Let N be the number of elements in A.
If we let M, =n —1ly — -+ — Iy, then we have

k/2

1
(25) N—d’l’—F;|:d—lk+1—lk—"'—lgi—Fi(lgi—l) lQi,

where d = Ly4; and r = M,;/Q.

Let X5 be a random vector from C(Q) to RN, and let I = X, *(B),
B € B, the Borel g-algebra of N-dimensional Euclidean space. Define
the set function m of a set I by

(2.6) mm:éwmmm
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where

(2.7) W(A, @)

r (k/2)
= {(27T)N {H(A]t)d} |: H [(SLgi+1 — TZi) e (7-2“_1 _ SL2i+1_1)] M1:|
J=1 i=0
k/2—=112542 ‘ | e
1 (ALm+1+js)”“J(AM,,,J-m)me1}}
i=0 j=1

/2L2p 1 My

'eXp{ zd:imsms IIDINDS 2A5At

i=1 j=1 p=1 i=1 j=M,+1
k/2 1g;—1 Mi_1—p 2
_2 : 2 : 2 : AL27 1+p,j U )
2A A
i=1 p=1 j=M;+1 Lo; 1+p5 t

with Ais = 8;— Si—1, Ajt = tj— tjfl, Am-u = ui,j_ uifl,j— Ui’jfl +
Ui—1,j—1 and ug; = u;0 = 0 for all 4 and j.

Let Z be the collection of subsets of type I. Then it can be shown
that Z is a semi-algebra of subsets of C'(2) and the set function m
is a measure defined on Z and the factor W (A, @) is chosen to make
m(C(2)) = 1. The measure m can be extended to a measure on the
Caratheodory extension of interval class Z in the usual way. With
this Caratheodory extension, measurable functionals on C'(2) may be
defined and their integration on C'(2) can be considered.

The case when ¢ is decreasing on A; can be dealt with in a similar
manner (with obvious adjustments in subscripts) as the case where g
is constant on A; handled above. Thus we may conclude the following.

Let €2 be a region given by Q = { (s,t) | 0 <t < g(s), a < s < b} for
a monotone decreasing and continuous function g which is sectionally
constant or decreasing on [a,b] with g(b) > 0. Let N be the number
of elements of A = {(s;,t;) | 0 < t; < g(s;), 0 < i < d} and m the
measure satisfying m(C(Q2)) = 1. Here we call the space C(2) with the
measure m a generalized Yeh-Wiener space Which can be obtained by
the similar method as in [5]. And we call E(F fc o F(@) dn(z)
a generalized Yeh-Wiener integral of F' on C'( ) if it exists and the
process {z(s,t), (s,t) € Q} a generalized Yeh-Wiener process. We can
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easily obtain mean E(z(s,t)) = 0 and covariance E(z(s,t)z(u,v)) =
min{s,u} min{¢,v} for z in C'(2), and we can also state the existence
of a generalized Yeh-Wiener process.

Let Py, be the probability distribution induced by the random
vector Xy, that is, Px,(B) = m(X,"(B)) for B in BN. Then, by
the definition of conditional expectation [8], for each function F' in

Li(C()
@8) [ Fw e = [ B | Xa) =) apx, (@)

for B in BY and E(F(x) | Xa(x) = @) is a Borel measurable function
of @ which is unique up to Borel null sets in RY. Here we call
E(F | Xp)(©) = E(F(x) | Xa(x) = @) a generalized conditional Yeh-
Wiener integral of F' given Xj,.

For each partition A of Q and z in C(), we define the generalized
quasi-polyhedric function [z] of z on Q by

[z](s,t) = 2(si-1,tj-1)
S — 8;—
+ A—sl (w(s4,t5-1) —x(s5-1,t-1))
t—t;_,
AL (w(si—1,t5) — x(si-1,tj-1))
J

(s —sim1)(t —tj—1)
AiSAjt

+

+

Aija:(s, t)

on each Qij = (87;,1, Si} X (tjfl,tj], t1 < tj < g(Si), 1< < d, and

[z](s,t) = 2(si-1, 9(s))
5— 581

(2.10) + A5 (#(si59(s0)) — x(si-1,9(s4)))
+ % (x(si—hg(si—ﬂ) - 95(51—1,9(81-)))

on ; = {(s,t) | sic1 < s < s, g(si) <t < g(s)}, where A;js =
Si — Si—1, Djt = t; —ti_1, Ajg = g(si—1) — g(ss), and Ajz(s,t) =
J)(Si,tj) - J)(Si_l,tj) — J?(Si,tj_l) + .T(Si_l,tj_l), and [a:](s,t) =0 if
(s —a)t = 0. Here the function [z] in (2.10) is defined on the set §;
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with A;g # 0 and the generalized quasi-polyhedric function [x] defined
by the function g is different from the quasi-polyhedric function in [6]
and modified quasi-polyhedric function in [1].

Similarly, for @ in RN, we define the generalized quasi-polyhedric
function [@] of @ on 2 by

— S — S;—
[@](s,t) = wi—1,j—1 + Tsl (ij—1 — Ui-1,5-1)
t—ti_1
(2.11) + A‘Jt (wi-1j — i-1,j-1)
J
(s—si-)(t—tj—1) -
A
+ AiSAjt i
on each ;;, and
. S —S8i—1
[U](S,t) = uifl,g + A.s (uz,z uifl,f)
2.12 !
(2.12) t-g(s),
+ Ag (U1 =1 = Uim13)

on each Q;, where t; = g(s;), uo,; = u;,0 = 0 for all ¢, 7, and [@](s,t) =0
for (s — a)t = 0. Here the function [@] in (2.12) is defined on the set
The following theorem plays a key role in this paper.

Theorem 2.1. If {z(s,t) | (s,t) € Q} is the generalized Yeh-Wiener
process, then the two processes {x(s,t)—[z](s,t) | (s,t) € Q} and X ()
are stochastically independent.

Proof. Let (sp,t,) be in A. By (2.10), we have
(2.13)
(s, t) = [2](s,t) = (s,t) — w(si-1, 9(si))

_ % (z(s5,9(si)) — z(si-1,9(5:)))
_t—g(s)

Asg ((si—1,9(si-1)) — @(si-1,9(s1)))
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for (s,t) in Q; = {(s,t) | si—1 < s < s4, g(8;) <t < g(s)}. For each Q;
and (sp,t,) in A, we have three cases:

(i) sp <sic1, tg < g(si)
(2.14) (ii) Sp > s,  tg<g(s;)
(i)  sp < sic1, tg > g(sio1)-

For each case in (2.14), we can easily obtain E[z(sp,tq)(x(s,t) —
[x](s,t))] = 0 using (2.13) and E(z(s,t)z(u,v)) = (s Au)(t Av). For
(s,t) in §;;, we already know that E[z(sp,tq)(x(s,t) — [z](s,t))] = 0
[8]. Since both z(sp,t,) and {x(s,t) — [z](s,t) | (s,t) € Q} are Gaus-
sian and uncorrelated, we may conclude that they are stochastically
independent. u]

Using Theorem 2.1 and the similar technique in the proof of Theo-
rem 2 in [6], we have the following theorem.

Theorem 2.2. Let F be in L1(C(Q2),m). Then we have

(2.15) /X | F(@) dif(a) = /B E(F(x — [2] + [d)) dPy. ()

A (B)
for B in BN, and
(2.16) B(F | Xa)(@) = B[F(z — [2] + )],
where the righthand side of (2.16) is any Borel measurable function of

@ which is equal to E(F(x — [z] + [id])) for almost every @ in RN . In
particular, if F' is Borel measurable, then

(2.17) E(F | X)) (@) = E[F(x — [z] + [d])].

The equalities in (2.16) and (2.17) mean that both sides are Borel
measurable functions of 4 and they are equal except for Borel null sets.

Equation (2.17) in Theorem 2.2 is a simple formula for the generalized
conditional Yeh-Wiener integral which is very convenient to apply in
application.



1106 J.S. CHANG AND J.H. AHN

3. Evaluation of the generalized conditional Yeh-Wiener
integral for various regions. For ¢ in [a,b] and 0 < S < T, let
t = g(s) be a function on [a, b] defined by g(s) = T on [a,c] and g(s) =
ns+3d on [c,b] where n = (S—=T)/(b—c) and § = (Tb — Sc)/(b—c). Let
(3.1) Q={(st)] a<s<b 0<t<g(s)}
and A be a partition of 2 given by
(3.2) A= {(sit) | t1 <tj < g(si), 1 << d}

which satisfies the properties:

i. {so,81,...,84} is a partition of [a, b] satisfying
a=58)<5 < <5, =c<8,41<-<83=>b,
and d =11 + lo;

(33) N y .

ii. {to,t1,...,t,} is a partition of [0,T] satisfying

O=to<tr1 <---<tp, =T, g(s) =T on Ay,
and g(sy,4+p) = th—p for 0 < p < ls.

Let N be the number of elements of A. Then we have N = dn —
(I2(l2 +1))/2. Let X5 be a random vector on C(2) given by X (z) =
(x(s1, t1), .- yx(S1,tn), x(s2,t1)y ... ,2(Sd, t1), - - s 2(Sdy tn-ty)) In RN,

Theorem 3.1. Let F be a functional on C(Q2) given by F(x) =
Jox(s,t)dsdt. Then the generalized conditional Yeh-Wiener integral
E(F | Xp)(%) given conditioning function X, at @ in RN is

(3.4) E(F|[Xa) ()

1 d n—ls
=1 Z (i1 o1+ uim1y +uijo1 +ui ) AisAjt
i=1 j=1
1 n n+ly—j
+ 1 Z Z (Wim1,j—1 F Wity + U1 + ui ) AisAgt

j=n—la+1 =1

T

6 Z (o + Bi + %) AisAnyr, — it
i=l1+1

+
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S N _ — =
at @ in RY, where a; = Ui_1ni1,—i, Bi = Uint,—i and vy =
Ui—1,n+1; —i+1-

Proof. Using Theorem 2.2 and the Fubini theorem, we have

B(F| Xy)(@ /E (5,8) — [2](5, ) + [i](5, 1)) ds dt
_/[ 7(s, ) ds dt
Q
d ?’L—lz
= s, t)dsd
(3.5) ;;/Qu[ 1) t

+ > Z /Qu[ﬂ](s,t)dsdt
+ Z/ (s, t) ds dt

i=l1+1

where Q;; = (si—1,8;) % (tj—1,%;] and Q; = {(s,t) | s;i—1 < s < sy,
g(s;) <t < g(s)}. The second equality in (3.5) follows from the fact
E(x(s, 1)) = E([x](s, 1)) = 0 and m(C(Q)) = 1.

On in g(Sz) = tn-‘rll—i fori = ll—|—1, e 7d. If we let A = Ui—1,n+1—1>
61' = Ujn+l;—i and Yi = Wi—1,n4l;—i+1; then we have, by (212),

[@](5,1) = i + 5”& X (s~ si1)
(3.6) i
LT
Apti,—ig1t nHh

In (2.12), we know that A;g = g(si—1) — 9(8:) = Anyi,—it1t. Thus we
obtain

/[ﬁ](s,t)dsdt:aiA(Qi)—Fﬂi_ai/ (s — si_1)dsdt
Q; Ais Jo,

(3.7)

Vi — Q4
—1—7/ t—tnti,—qi)dsdt
An+l1—i+1t L( n+ly 2)
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where the area of Q; is A(%;) = (1/2)A;s Apti,—i1t. Using g(s;) =
NS;i+6 = tnti,—i, we have Ay, —iv1t = —nA;s on ;. Thus we obtain

S; 1 .
(3.8) / (s— s;—1)dtds = / (s—si—1)n(s —s;)ds = ~5 77(Ais)‘3
Q; Si—1
and

1 1
(3.9) /(t—tnﬂl_i)dtds: 5/ (9540 ts1, 1) ds = ¢ P (Bs)

i 1—1

From (3.7), (3.8), (3.9) and the fact A, 4, —i+1t = —nA;s, we have
1
(3.10) / [t](s,t) dsdt = 6(041‘ + B+ 7i) AisApyg, —it1t.
Qi
It is a well-known fact [1] that

1
(311) / [ﬁ](&t) dsdt = Z(ui,l,j,l +Ui—1,5 + U1 —l—ui,j)AisAjt.
Q

ij

From (3.5), (3.10), and (3.11), our theorem is proved. O

Corollary 3.2. Let F be a functional on C(Q) given by F(z) =
Jo z(s,t) ds dt where Q is the region (3.1) with g(s) =T on [a,b]. Then
the condztzonal Yeh-Wiener integral E(F | Xa) of a functional F given
X is

E(F | X)(u)
d n
(3.12) 1
ZZ (i1 -1 Fuim1y +uijo1 +ui ) AisAjt

j=1

—

i=
for i in RN.

Corollary 3.3. Let F be a functional on C(Q) given by F(zr) =
Jq z(s,t) ds dt where Q is the region (3.1) with g(s) = (S —T)/(b — a)s+
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(Tb—Sa)/(b—a) on [a,b] and 0 < S <T. Then the modified condi-
tional Yeh-Wiener integral E(F|XA) of a functional F given Xy is

(313) (Wim1j—1 + Uim1j + Ui j—1 + Ui ;) DisAjt
. =1 j—1

d
1
T35 > i+ Bi+vi)AisAigat.

=1

Jor @ in R™, where a; = ui—1pn—i, Bi = Uin—i and v = Ui—1 n—iy1-

Corollary 3.2 and Corollary 3.3 are special cases of Theorem 3.1 for
lo = 0 and l; = 0, respectively. The results [6, Example 1] and [1,
Example 3.1] are the same as (3.12) and (3.13) with d = m, respectively.

Let 73 and 7o be the points in [a,b] with a < 71 < 7 < b,
and let 0 < Q@ < § < T. Define the function g on [a,b] by
g9(s) = v\/(n—a)?—(s—a)> + S on [a,7], g(s) = S on [r1,7],
and g(s) = wy/s — 13 + S on [r2,b] where v = (T — S)/(71 —a) and
w=(Q—295)/(v/b—T2). Let

(3.14) D={(s,t) |a<s<b 0<t<g(s)}

Let A be a partition of Q given by
(3.15) A= {(Si,tj) | 1 S 1 S d, tl S tj S g(Sl)}
which satisfies the properties:

i. {so,S1,...,84} is a partition of [a, b] satisfying
a=8 <8 < <8, =71 <841 <<
Slytly = T2 < Siy4ipt1 < -+ < 8¢ =0 and
d=1 +1s+ 13

ii. {to,t1,...,tn} is a partition of [0,T] satisfying
O=ty<tr1<---<t, =T, g(sp) =tn_p on A;
for 0 <p <li, g(s) =tn—y, on Az, and g(si,+1,4p)
=tp_i,—p on Az for 0 < p <lIs.

(3.16)
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Let N be the number of elements of A. Then we have N =
dn — ((Ih(lh + 1) +13(l3 + 1)) /2) — 11(I2 + I3), and let X5 be a random
vector on C(f2) given by X (z) = (z(s1,t1), .-, 2(Sd, tn1,-15)) in RV,

Theorem 3.4. Let F' be a functional on C(Q) given by F(z) =
fQ t) dsdt where the region Q is given by (3.14). Then the gener-
alzzed condztzonal Yeh- Wiener integral E(F | XA ) (@) given XA at @ in
RN is

E(F | Xa)(d)
d n—ly—ls3 n—Ily n+la—j

=2 > Ayt D Y Ay(@

(3.17) j=n—li—lz+1 i=1
n—1 n—j L d
+0Y ) DY A+ > Bi@+ Y Ci(i)
j=n—li+1 i=1 i=1 =l +l2+1
where A;;(4) = fQ t)dsdt is given by (3.11), and B;(4@) and

C;(@0) are given by (3 20) and (3.22), respectively.

Proof. By Theorem 2.2, the Fubini theorem, E(x) = E([z]) = 0, and
m(C(Q)) = 1, we have

B(F|XA)( /E (5,8) — [2)(s, £) + [il] (5, 1)) ds dt

- /Q[m(s,t) ds dt

d n—li—l3 n—ly ntla—j

=2 > Au@+ > D Ay(@)

(3.18) j=n—li—lg+1 i=1
n—1 n—j l1
. ZAij(ﬁ)—i—Z/ (s, £) ds dt
j=n—l1+1 i=1 i=1 7
d
+ ) / [@](s,t) ds dt
i=l1+1la+1 Q2
where A;;(@ fQ (s,t)dsdt. Fori=1,...,l1, g(s;) =tn,_; on Q;

and so, by (2 12), the generahzed qua51-polyhedric function [@](s,t) is
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obtained by

~ S — Si_
[t](s,t) = Ui—1m—i + T;l (Win—i — Wi1,n—i)
(3.19) i
it )
~ 5 Wi—1n—iy1 — Ui—1n—i
An—i-{-lt e '

= {(s, ) | sic1 < 8 < s g(s:) < t < g(s)} with g(s) =
1/\/ (1 —a)? — (s —a)?2 +S. Then, using (3.19), we can evaluate

(3.20) Biii) = /Q [il(s. 1) ds dt

fori=1,2,...,0;. Forli+lo+1<1i<d, g(s;) = tnti,—i on ; and so,
by (2.12), the generalized quasi-polyhedric function [u](s, t) is obtained
by

T S — 8;—
[u] (Sa t) = Ui717n+l272- + T;l (Ui,n+l27i _ ul'717n+l277;)
(3.21) i
t— tn‘HQ*i
+ m (Wim1 ntly—it1 — Wi 1,ntlo—i)
n 2—1

on Q; = {(s,t) | sic1 < s < 8, g(s;) < t < g(s)} with g(s) =
wy/s — 1o + S. Hence, using (3.21), we can evaluate

(3.22) (i) = /Q [il(s. 1) ds dt

fori=10+l+1, l1+1l+2,...,d. From (3.11), (3.18), (3.20), and
(3.22), we can obtain the result (3.17).

4. Evaluation of the generalized conditional Yeh-Wiener in-
tegral for F(z fQ (s,t))* dsdt. In this section we will consider
the generahzed condltlonal Yeh Wiener integral for the functional con-
taining a generalized quasi-polyhedric function. Let g(s) be a strictly
decreasing and continuous function on [0, S] such that g(S) = 0 and
let @ = {(5,¢) ] 0<s<8 0<1t<g(s)}. And let C(Q2) denote
the space of all real-valued continuous functions z(s,t) on  such that
x(s,0) = x(0,t) = 0 for every (s,t) in £, and let g(0) = T.
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For each partition 7 = {(s;,t;) |1 <j<n—ifor1 <i<n-—1}of Q
with0 =89 <81 <--<s,= Sandt,_; =g(s;), :=0,1,2,...,n,
define X, : C(Q) — RN by X, (z) = (z(s1,t1),.-- ,2(51,tn_1),
x(Ss2,t1), ..., 2(S2,tn—2), 2(83,t1), ..., (Sp—1,t1)) for N=(n(n—1))/2.

For a nonnegative integer k, let F' be a functional on €2 given by

(4.1) Pla) = /Q([x](s,t))kds dt

where [z] is the generalized quasi-polyhedric function on Q given by
(2.9) and (2.10). We note that g(s;) = t,,—; and A;g = g(si-1)—g(s;) =
A, _; 41t since g is strictly decreasing and continuous on [0, S].

By (2.17) in Theorem 2.2 and the Fubini theorem, we have

E(F | X,)() = /QE([x ]+ [ (s, 1)) ds dt

(42) n—1ln—q

where the second equality in (4.2) comes from the fact that the quasi-
polyhedric function satisfies the linearity, [[x]](s,t) = [z](s,t) for (s,t)
in Q and m(C(R2)) = 1.

Now, using (2.11) and the simple change of variable, we have

/ ([@](s, t))* ds dt
Qi

_ /tt { / [att) + ol - a(t))r ds} it
- [, o

k

) tj
_ kAfl / S a(tPb(t) dt
t.

i=1 p=0
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where
t—ti_
a(t) = ti-1,j-1+ —x = (1,5 = Ui1,5-1)
5t
(4.4) bt
—lj—1
b(t) = ujj—1+ Ajjt (wij — uij—1)-
Doing the change of variable one more time, that is y = b(t), the

righthand side of the last equality in (4.3) becomes

Ais Ajt
k+1 Usj—Ujj—1

P e e L)
U (2¥)

(4.5)

i,5—1 Uij—1
kE _p
_ A;sAjt {Z[Z (p) (ui—1,j—ui—1,j—1)p*q
(k1) (uij—uij-1) Ll \a/ N iy — tij
U j—1(Ui—1,j —Uim1,5—1 q Ui, j _
(s = sty [ gy )|
1,] 7,5—1 Ujj—1

Combining (4.2), (4.3) and (4.5), we have the following theorem.

Theorem 4.1. Let F' be a functional on C(Q2) given by (4.1). Then
the generalized conditional Yeh-Wiener integral E(F | X;) of F given
X, s

(4.6) E(F | X;)(a)

n—

- lim {Z{Z pa——] (ki fﬂﬁj—qlr>

i=1 j=1

(-1, —ui-1,j-1)"" q(ui,jui—l,j—l—ui—l,jui,j—l)q] } AusAt
(uij = wij—1)P o

+Z/ kds dt,

for @ in RN and (5) =@p-1)---(p—q+1))/q¢"
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The result of Theorem 4.1 can be used to evaluate the generalized
conditional Yeh-Wiener integral for the functional ' on C(2) given by
F(z) = [,(2(s,t))" ds dt where k is a nonnegative integer.
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