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A-COMPACTNESS AND
MINIMAL SUBALGEBRAS OF C(X)

S.K. ACHARYYA AND D. DE

ABSTRACT. Let
∑

(X) be the set of all subalgebras of
C(X) containing C∗(X), where X is a Tychonoff space. Given
A(X) ≡ A ∈

∑
(X) there is associated a subset υAX of βX

which is an A-analogue of the Hewitt real compactification
υX of X. X is called A-compact if and only if υAX = X.
Redlin and Watson asked whether, for any real compact space
X, there exists in some sense a minimal Am ∈

∑
(X) for

which X becomes Am-compact. Acharyya, Chattopadhyay
and Ghosh answered this question in affirmative by defining
a suitable preorder on

∑
(X), and they made the following

conjecture that there does not exist any minimal subalgebra
A(N) of C(N) containing C∗(N), in the usual set inclusion
sense for which N is A-compact. In this paper we have shown
that, given any real compact space X there does not exist
any minimal member Am ∈

∑
(X), in the usual set inclusion

sense for which X becomes Am-compact and thereby proving
the conjecture as a special case of it. From this result it has
been further shown that for any A(X) �= C∗(X) in

∑
(X)

there does not exist any minimal member B(X) ∈
∑

(X) in
the usual set inclusion sense for which υAX = υBX.

1. Introduction. It is a remarkable fact in the theory of rings
of continuous functions that the Stone-Čech compactification βX of a
Tychonoff space X could be realized as the set of all maximal ideals
of an arbitrary subalgebra A(X) of C(X) containing C∗(X), equipped
with hull kernel topology. Such subalgebras of C(X) were initiated
and investigated in detail by Plank [7]. Let

∑
(X) be the family of all

such subalgebras of C(X). Following Redlin and Watson [8], for any
A(X) ≡ A ∈ ∑

(X), a maximal ideal M of A is called real provided
that the quotient field A/M is isomorphic to the real field R, otherwise
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M is called hyper-real. X is called A-compact if every real maximal
ideal M of A is fixed in the sense that there is a point x in X at which
every function in M vanishes. With every A(X) ∈ ∑

(X) we have
associated a subset υAX of βX, which is an A-analogue of υX, the
Hewitt real compactification of X. X is called A-compact if and only if
υAX = X. In this terminology every compact space is C∗-compact and
every real compact space is C-compact. The last two authors proved
that if A, B ∈ ∑

(X) and A ⊂ B then the assumption X is A-compact
implies that X is B-compact, in particular every A-compact space is
real compact; quite naturally they asked the following question. Given
any real compact space X, does there exist any minimal member A
of

∑
(X) in some sense for which X becomes A-compact? Acharyya,

Chattopadhyay and Ghosh [1] offered an affirmative answer to this
question after defining a suitable preorder on the class

∑
(X). But

the minimal members of
∑

(X) thus discovered are no longer minimal
in the usual set inclusion sense, and these three authors conjectured in
the same paper that there does not exist any minimal subalgebra A(N)
of C(N) containing C∗(N) in the usual set inclusion sense for which
N is A-compact. In the present paper we have shown that if X is a
noncompact real compact space then there does not exist any minimal
member Am(X) of

∑
(X) in the usual set inclusion sense for which X

becomes Am-compact. The conjecture mentioned in the last sentence is
therefore an immediate corollary to this fact. Furthermore it has been
deduced in this paper that for any A(X) �= C(X) in

∑
(X), there does

not exist in the usual set inclusion sense any minimal member B(X)
of

∑
(X) with the property υAX = υBX. Nevertheless the problem

posed by Redlin and Watson [8] does not end with these results. It is
still unknown whether there exists a minimal member A of

∑
(X) with

respect to a suitable partial ordering on it, necessarily different from
the usual set inclusion, for which X becomes A-compact. To conclude
the authors would like to refer to [2] for the benefit of a reader who is
new to the subject.

2. A-compactifications. In what follows X will stand for a
Tychonoff space and for any f in C(X), Z(f) ≡ {x ∈ X : f(x)} = 0
will be called the zero set of f . For any ideal I in C(X), Z[I] consists
of the sets Z[f ] for f in I. Each member f of C(X) has a unique
continuous extension f∗ : βX → R∗ = R

⋃{∞}, where R∗ is the one-



A-COMPACTNESS 1063

point compactification of R. If f ∈ C∗(X), f∗ is the same as fβ , the
unique continuous extension of f over βX. For our convenience we
record the following known result.

Theorem 2.1. If p ∈ βX − X and f, g are in C(X) such that
f∗(p) and g∗(p) are both real, then (f + g)∗(p) = f∗(p) + g∗(p) and
(f.g)∗(p) = f∗(p).g∗(p).

Plank has shown in [7] that, given A(X) ∈ ∑
(X), the family of

all the maximal ideals in A is exactly the set {Mp
A : p ∈ βX} where

Mp
A = {(f.g)∗(p) = 0 for all g ∈ A}; and Mp

A is a free ideal if and
only if p ∈ βX − X. Following Redlin and Watson [8], Acharyya,
Chattopadhyay and Ghosh [1] defined a maximal ideal M in A to be
real provided that the quotient field A/M is isomorphic to R, otherwise
M is called hyper-real. X is called A-compact if every real maximal
ideal of A is fixed. Set υAX = {p ∈ βX : Mp

A is real}. We call it
A-compactification of X. Then υCX and υC∗X are clearly the Hewitt
real compactification υX and the Stone-Čech compactification βX of
X, respectively. Also X is A-compact if and only if υAX = X. Now
as in [6] we have established the following results in [2].

Theorem 2.2. For any p ∈ βX, Mp
A is a real maximal ideal in A,

if and only if f∗(p) �= ∞ for all f in A(X).

Theorem 2.3. For any A(X) ∈ ∑
(X), υAX is the largest subspace

of βX to which each member of A(X) can be extended continuously.

Let fυA be the unique continuous extension over υAX of f in A(X).
Then Aυ = {fυA : f ∈ A(X)} is an algebra over R lying between
C∗(υAX) and C(υAX), furthermore υAX is an Aυ-compact space, see
[2]. Also from Corollary 3.7 of [3] we get the following result.

Theorem 2.4. Let A1(X), A2(X) in
∑

(X) be such that A2(X) ⊂
A1(X) and p ∈ υA2X. Then Mp

A1
is hyperreal if and only if Mp

A2

contains a unit of A1(X).
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The result of this theorem can now be stated in a straightforward
manner to establish the following:

Theorem 2.5. Let A1, A2 ∈ ∑
(X) with A2 ⊂ A1. Then υA1X ⊂

υA2X. In particular therefore if X is A2-compact, then it is A1-
compact.

Remark 2.6. From the above theorem it clearly follows that every
A-compact space X is real compact and therefore υAX is always real
compact.

We define a relation ‘∼’ among the members of
∑

(X) as follows:
A ∼ B if and only if υAX = υBX. Then ‘∼’ is an equivalence relation
on

∑
(X); let us denote the equivalence class of A(X) by [A(X)]. Set

B(X) = {h|X : h ∈ C(υAX)}. Then in view of Theorems 2.3 and
2.5, B(X) is a member of

∑
(X) containing A(X) with υAX = υBX.

Also, if B1(X) ∈ ∑
(X) is such that υB1X = υAX it is plain that

B1(X) ⊂ B(X). Thus we have the following:

Theorem 2.7. Each equivalence class [A(X)] has a largest mem-
ber, which consists precisely of those functions in C(X) which have
continuous extensions over υAX.

Remark 2.8. Since each function in C∗(X) has a continuous extension
over βX and no function in C(X) \C∗(X) has any such extension over
βX it is clear that [C∗(X)] = {C∗(X)}.

We write down the following known fact from [1].

Theorem 2.9. A space X is A-compact if and only if for every
p ∈ βX \X, there exists an f in C∗(X) such that f is a unit of A(X)
and fβ(p) = 0 or, equivalently, X is A-compact if and only if for every
p ∈ βX \ X, there exists a unit g of A(X) such that g−1 ∈ C∗(X) and
g∗(p) = ∞.



A-COMPACTNESS 1065

We also take down the following known fact as given in Proposi-
tion 3.3 of [4].

Theorem 2.10. Each A(X) in
∑

(X) is absolutely convex, in
particular, a lattice ordered ring.

3. The question of existence of minimal member of
∑

(X).

Theorem 3.1. Let X be a noncompact real compact space. Then
there does not exist any minimal member A(X) ∈ ∑

(X) in the usual
set inclusion sense for which X is A-compact.

Proof. Let A(X) ∈ ∑
(X) be such that X is A-compact. Since X is

a noncompact real compact space it cannot be pseudocompact. Hence
by result 1.21 of [6], X contains a closed discrete set {xn : n ∈ ω}
C-embedded in it. We fix any point p ∈ βX which is a limit point of
{xn : n ∈ ω}. Since X is A-compact, by Theorem 2.9 we can select
an f ∈ A such that f ≥ 1 and f∗(p) = ∞. By using the continuity
of f∗ at p and the fact that p is in the closure of {xn : n ∈ ω} in
βX, we can construct an increasing sequence {kn : n ∈ ω} of natural
numbers so that f(xkn

) > n for each n ∈ ω. Let N denote the
subspace {xkn

: n ∈ ω} of X, which is obviously a copy of N in X. Set
B = A(C∗(N) ∪ {f |N}), the smallest subalgebra of C(N) containing
C∗(N) and f |N , and D = A(C∗(N) ∪ {loge(1 + f)|N}). Then, as in
4.1 of [1], D ⊆ B.

Let D′ = {h ∈ A : h|N ∈ D}. Clearly C∗(X) ⊂ D′ and D′ is a
proper subset of A as f ∈ A \ D′, also D′ is an algebra over R so that
D′ ∈ ∑

(X). For each q ∈ clβXN \ X, f∗(q) = ∞, hence h∗(q) = ∞
where h = loge(1 + f). We note that h ∈ D′. On the other hand, for
each q ∈ βX \ X \ clβXN , by Theorem 2.9, we can choose an a ∈ A
with a ≥ 1 and a∗(q) = ∞; also by using just the complete regularity of
βX we can have a g ∈ C∗(X) with g∗(q) = 1 and g(N) = 0. It is clear
that a.g ∈ D′ and (a.g)∗(q) = ∞. Altogether for any point q ∈ βX \X
we can select an h′ ∈ D′ with h′∗(q) = ∞. Hence by Theorem 2.9 X
becomes D′-compact. The theorem is completely proved.
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We conclude this article after observing that each equivalence class
[A(X)] with A(X) �= C∗(X), in Theorem 2.7 is devoid of any minimal
member with respect to the usual set inclusion relation.

Theorem 3.2. Let X be a noncompact Tychonoff space not neces-
sarily real compact. Suppose A(X) �= C∗(X) is any member of

∑
(X).

Then there exists an A0(X) ∈ ∑
(X) such that A0(X) � A(X) and

υA0X = υAX.

Proof. The case with X A-compact has already been proved in
Theorem 3.1. Assume therefore that X is not A-compact. We recall the
fact as mentioned after Theorem 2.3 that υAX is an Aυ-compact space
where {fυA : f ∈ A} = Aυ with fυA being the unique continuous
extension of f to υAX. Since X is not A-compact, X � υAX and
as A(X) �= C∗(X) in view of Remark 2.8 it is clear that υAX �=
βX. Therefore υAX is a noncompact real compact space. Hence,
by Theorem 3.1 there exists a subalgebra B(υAX) of C(υAX) with
C∗(υAX) � B(υAX) � Aυ such that υAX is B(υAX)-compact. Now
set A0(X) = {f |X : f ∈ B(υAX)}. Then A0(X) ∈ ∑

(X) and A0(X) �
A(X). To complete the theorem we shall show that υA0X = υAX.
As A0(X) ⊂ A(X) by Theorem 2.5 we have υAX ⊂ υA0X. Now
from Theorem 6.7 of [6] we can write β(υAX) = βX. Then for any
p ∈ βX\υAX, as υAX is B(υAX)-compact, by Theorem 2.9 there exists
fp ∈ B(υAX) such that f∗

p (p) = ∞. Let f = fp|X , so that f ∈ A0(X).
It is clear that f∗(p) = ∞, i.e., p /∈ υA0X by Theorem 2.2. Since this
is true for any p ∈ β(υAX) \ υAX it follows that υA0X ⊂ υAX. Hence
υA0X = υAX.
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