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EXISTENCE AND PROPERTIES OF MULTIPLE
POSITIVE SOLUTIONS FOR SEMI-LINEAR
EQUATIONS WITH CRITICAL EXPONENTS

YINBIN DENG, YAMING MA AND CHARLES XUEJIN ZHAO

1. Introduction and main results. In this paper we consider the
following semi-linear elliptic problem

− Δu+ u = up + μf(u+ φ)(1.1)μ
u ∈ H1(RN ), u > 0 in RN(1.2)

where μ ≥ 0 is a given constant, p = (N + 2)/(N − 2) is the critical
Sobolev’s exponent. φ(x) is some given function in L1(RN ) ∩Cα(RN )
and

H1) φ(x) ≥ 0, φ(x) �≡ 0 in RN , |x|N−2φ(x) is bounded.

The hypotheses for f(t) are as follows:

f1) f ∈ C2(R+), f ′(t) ≥ 0, f ′′(t) ≥ 0 for all t ≥ 0.

f2) There exists a δ > 0 such that tf ′(t) ≥ (1 + δ)f(t) for t ≥ 0 if
N ≥ 6.

f3) limt→0 f(t)/t = 0, and limt→∞ f(t)/tq = 0 for some q ≥ p.

f4) limt→∞ f(t)/t = +∞.

Critical semi-linear elliptic equations arise from widely diverse prob-
lems in differential geometry, quantum physics, astrophysics, and other
scientific areas. Many researchers have studied the second order semi-
linear elliptic boundary value problems involving critical exponents.
Here we mention the articles written by Brezis and Nirenberg [4], Ce-
rami, Fortunato and Struwe [5], Lions [14], Ambrosetti and Struwe
[2]. In their papers, many interesting results about the existence and
nonexistence have been obtained by using variational methods when
nonlinear function is homogeneous. For the inhomogeneous case, Zhu
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and Zhou in their work [20] have obtained the existence of two positive
solutions of the problem

−Δu+ u = λ(g(u) + f(x)), u ∈ H1
0 (Ω)

by using variational and barrier methods when Ω = RN\ω, and ω ⊂ RN

is a bounded no-empty smooth domain. A similar result has also been
obtained in [17] for problem

−Δu+ u = λf(u+ φ), u ∈ H1
0 (Ω).

They require, however, that f and g have lower growth than critical
Sobolev’s exponents.

Recently, we studied in [12] the existence and nonexistence of multi-
ple positive solutions for problem

(∗)μ
{−
 u+ u = f (x, u) + μh (x) , x ∈ RN ,
u ∈ H1

(
RN

)
,

where h ∈ H−1
(
RN

)
, N ≥ 3, |f (x, u)| ≤ C1u

p + C2u with C1 > 0,
C2 ∈ [0, 1) being some constants and 1 < p < +∞. Under some
assumptions on f and h, we proved that there exists a positive constant
μ∗ < +∞ such that problem (∗)μ has at least one positive solution uμ if
μ ∈ (0, μ∗), there is no solution for (∗)μ if μ > μ∗, and uμ is increasing
with respect to μ ∈ (0, μ∗). Furthermore, problem (∗)μ has at least two
positive solutions for μ ∈ (0, μ∗) if p < (N + 2)/(N − 2) and a unique
positive solution for μ = μ∗ if p ≤ (N + 2)/(N − 2). As you can find
from above result that we still require nonlinear function f(x, u) have
lower growth than the critical exponents, p < (N + 2)/(N − 2), when
we try to find the second solution.

For the critical growth, for example (1.1)μ, (1.2), there are serious
difficulties when trying to find solutions by using variational methods
because the embedding H1(Ω) ↪→ Lp+1(Ω) is not compact even if Ω is
bounded. This double lack of compactness exhibits many interesting
existence and non-existence scenarios. These kinds of phenomena for
problem (1.1)μ have been investigated by [7 10] when f(u+ φ) = φ.

Deng and Li in their recent paper [11], studied the existence and
nonexistence of multiple positive solutions for homogeneous problem⎧⎨

⎩
Δu+K(x)up = 0 in Ω
u > 0 in Ω u ∈ H1

loc(Ω) ∩ C(Ω)
u
∣∣
∂Ω

= 0 u→ μ > 0 as |x| → ∞
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when Ω = RN \ ω is an exterior domain in RN , ω ⊂ RN is a bounded
domain with smooth boundary and N > 2. μ ≥ 0, p > 1 are some given
constants which could be equal to the critical Sobolev’s exponents.
Some existence and nonexistence of multiple positive solutions have
been discussed under different assumptions on K.

The main goal of this paper is to exhibit the existence results of (1.1)μ,
(1.2) with a very general nonlinear term f which is nonhomogeneous.
The results of this paper are stated in the following:

Theorem 1.1. Suppose H1), f1) and f3) hold. Then there exists a
constant μ∗ > 0 such that

(i) (1.1)μ, (1.2) possesses a minimal solution uμ for all μ ∈ (0, μ∗),
and uμ is increasing with respect to μ if μ ∈ (0, μ∗).

(ii) (1.1)μ, (1.2) possesses a unique solution for μ = μ∗ if q = p in
the assumption f3).

(iii) There are no solutions of (1.1)μ, (1.2) for μ > μ∗. Furthermore

(1.3) μ1 ≤ μ∗ < μ2

where
(1.4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wε = (N(N − 2)ε)(N−2)/4
(

1
ε+|x|2

)(N−2)/2

ε = N(N + 2)

C =
(

3N+2
N−2

)(N+2)/4 4
N+2

(
N−2
N+2

)(N−2)/4

μ1 = min
{

[N2(N+2)(N−2)](N−2)/4

supx∈RN {(N(N+2)+|x|2)(N−2)/2f(wε+φ)} ,
1

supx∈RN {f ′(φ)}
}

μ2 = CSN/2∫
RN

f(φ(x))wp+1
ε dx

and S is the Sobolev’s constant for the embedding H1(RN ) ↪→ L2∗
(RN ),

2∗ = (2N)/(N − 2).

It should be noted that we needn’t the increase restriction on the
nonlinear function f when we get the minimal solution of (1.1)μ, (1.2).
That means the nonlinear function f may be supercritical.
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Theorem 1.2. Suppose H1), f1) f4) with q = p. Then there exists
a constant μ∗∗ with μ∗ ≥ μ∗∗ > 0 such that (1.1)μ, (1.2) possesses at
least two positive solutions for all μ ∈ (0, μ∗∗).

Theorem 1.3. Suppose H1), f1) f4) with q = p. Then there exists
a constant μ∗∗ with μ∗ > μ∗∗ > 0 such that (1.1)μ, (1.2) has at least
two solutions if μ ∈ (μ∗∗, μ∗).

Remark 1.1. We are not sure whether μ∗∗ = μ∗∗ or not.

Theorem 1.4. Suppose H1), f1) f4) with q = p. Define

Φ = {(μ, u) ∈ R+×C2,α(RN ) ∩H1(RN ) :
u �≡ 0, and (1.1)μ, (1.2) are satisfied}.

We have

(i) For any (μ, u) ∈ Φ, both u(x) and |∇u(x) have uniform limits
zero as | x |→ ∞;

(ii) uμ is continuous with respect to μ;

(iii) uμ is uniformly bounded in L∞(RN )∩H1(RN ) for all μ ∈ (0, μ∗),
Uμ is uniformly bounded in H1(RN ) for μ small enough and uμ → 0
in L∞(RN ) ∩H1(RN ) as μ→ 0 ‖Uμ‖H1(RN ) → SN/2 as μ→ 0;

(iv) (μ∗, uμ∗) is the bifurcation point for (1.1)μ, (1.2), where uμ is
the minimal solution of (1.1)μ, (1.2) and Uμ is the second solution of
(1.1)μ, (1.2) constructed in Theorems 1.2 and 1.3.

We shall organize this paper as follows. The minimal positive solution
is obtained in Section 2 by means of the standard barrier method.
The existence of the second positive solution is proved in Section 3 by
the variational method and the concentration-compactness principle.
Further analysis of the set of solutions are made in Section 4 according
to the bifurcation theory.

2. The minimal positive solution. In this section we prove
Theorem 1.1 by the standard barrier method. To this end, we need
some lemmas.
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Lemma 2.1. Suppose H1), f1) and f3). Then (1.1)μ, (1.2) possess
a minimal solution for all μ ∈ (0, μ1), where μ1 is given by (1.4).

Proof. For any ε > 0, let

(2.1) wε = (N(N − 2)ε)(N−2)/4

(
1

ε+ |x|2
)(N−2)/2

.

It is well known that wε(x) satisfies the following problem

(2.2)
{

Δwε = wpε in RN ,
wε(x) → 0 as |x| → ∞

and

(2.3) |∇wε|22 = |wε|p+1
p+1 = SN/2,

where S is the best Sobolev’s constant. Setting ū = wε, we have

(2.4) − Δū+ ū− ūp − μf(ū+ φ)
= wε − μf(wε + φ)

= (ε+ |x|2)−(N−2)/2

× [(N(N − 2)ε)(N−2)/4 − μf(wε + φ)(ε+ |x|2)(N−2)/2].

From f3) and (H1), we deduce that

f(wε + φ) ≤ C[(wε + φ) + (wε + φ)p]
≤ C[wε + φ+ 2pwpε + 2pφp]
≤ C[wε + φ+ wpε + φp]

and |x|N−2φ, |x|N−2φp, |x|N−2wpε are all bounded. Thus (ε +
|x|2)(N−2)/2f(wε(x) + φ(x)) is bounded. By H1) and f3), we also can
conclude that f ′(φ) is bounded. Set

(2.5) M = sup
x∈RN

{(ε+ |x|2)(N−2)/2f(wε(x) + φ(x))},

(2.6) μ1 = min
{

[(N + 2)N2(N − 2)](N−2)/4

M
,

1
supx∈RN {f ′(φ)}

}
.
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Then for any μ ∈ (0, μ1], −Δū + ū− ūp − μf(ū+ φ) ≥ 0 which shows
that ū = wε is a supersolution of (1.1)μ if μ ∈ (0, μ1]. On the other
hand, it is easy to verify that u = 0 is a subsolution for all μ > 0 and
u < ū. By the standard barrier method [1], there exists a solution uμ
of (1.1)μ such that 0 ≤ uμ ≤ ū. Since 0 is not a solution of (1.1)μ and
f(u+ φ) ≥ 0, the maximum principle implies that 0 < uμ ≤ ū. Again,
using a result of Amann [1], we can choose a minimal solution uμ in the
order interval [0, ū]. Furthermore, uμ can be obtained by an iteration
scheme with initial value u(0) = u = 0. The same argument in [10],
we can show that uμ is minimal among all solutions of (1.1)μ and∫

RN

(|∇uμ|2 + u2
μ) dx =

∫
RN

up+1
μ + μf(uμ + φ)uμ dx

≤
∫
RN

up+1
μ dx+ ε

∫
RN

u2
μ dx+ ε

∫
RN

uμφ dx

+ Cε

∫
RN

φpuμ dx+ Cε

∫
RN

up+1
μ dx

≤ C

∫
RN

wp+1
ε dx+ ε

∫
RN

u2
μ dx

+ C max
x∈RN

wε(x)
∫
RN

(φ+ φp) dx,

i.e.,

(1− ε)
∫
RN

(|Δuμ|2 + u2
μ) dx ≤ CSN/2 +C max

x∈RN
wε(x)

∫
RN

(φ+ φp) dx.

Choosing ε small enough, we may deduce ‖uμ‖H1(RN ) < ∞. Thus
uμ ∈ H1(RN ).

Remark 2.1. From the proof of Lemma 2.1, we can see that

1 − p up−1
μ − μf ′(uμ + φ) ≥ 0, for μ ∈ (0, μ1].

In fact, we can choose ε large enough, μ > 0 small enough such that

1 − p up−1
μ − μf ′(uμ + φ) ≥ 1 − pwp−1

ε − μf ′(wε + φ) ≥ 0.

Lemma 2.2. Suppose H1), f1) and f3). Then problem (1.1)μ, (1.2)
has no solution if μ > μ2, where μ2 is given by (1.4).
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Proof. Let u be a positive solution of (1.1)μ, (1.2). Then

(2.7) −Δuwp+1
ε + wp+1

ε u = upwp+1
ε + μf(u+ φ)wp+1

ε .

Since p > 1, we may conclude that, for any M > 0, there exists a
constant C > 0 such that

(2.8) up ≥Mu− C, u > 0.

It follows from (2.7), (2.8) that

(2.9)
−

∫
RN

Δuwp+1
ε dx+

∫
RN

uwp+1
ε dx

≥
∫
RN

(Mu− c)wp+1
ε + μf(u+ φ)wp+1

ε dx.

From [7], we have

(2.10)
∫
RN

Δuwp+1
ε dx =

∫
RN

uΔwp+1
ε dx

which gives us

(2.11) μ

∫
RN

f(u+φ)wp+1
ε dx ≤ −

∫
RN

uΔwp+1
ε dx−M

∫
RN

wp+1
ε u dx

+ C

∫
RN

wp+1
ε dx+

∫
RN

wp+1
ε u dx.

We may choose ε = N(N − 2). From [7], we get

Δ(wp+1
ε ) ≤ 2pwp+1

ε

since p > 1, wε ≤ 1. So (2.11) becomes

μ

∫
RN

f(u+φ)wp+1
ε dx ≤ C

∫
RN

wp+1
ε dx+(2p+1−M)

∫
RN

wp+1
ε u dx.

If we choose M = 2p+ 1, then by (2.3), we have

μ ≤
C

∫
RN

wp+1
ε dx∫

RN

f(u+ φ)wp+1
ε dx

≤ CSN/2∫
RN

f(φ)wp+1
ε dx

≡ μ2.
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By the same argument in [7], we can get the expression of C which is

C = sup
u≥0

h(u) =
(

3N + 2
N − 2

)(N+2)/4 4
N + 2

(
N − 2
N + 2

)(N−2)/4

,

where h(u) = (2p+ 1)u− up.

Proof of Theorem 1.1. From Lemma 2.2, we set

(2.12) μ∗ = sup{μ > 0 | (1.1)μ, (1.2) possesses at least one solution}.

By Lemma 2.1 and Lemma 2.2, we have

0 < μ1 ≤ μ∗ < μ2 < +∞.

For any μ ∈ (0, μ∗), by the definition of μ∗ we can find a μ̄ ∈ (μ, μ∗)
such that (1.1)μ̄, (1.2) have a minimal positive solution uμ̄ and

−Δuμ̄ + uμ̄ − upμ̄ − μf(uμ̄ + φ) = μ̄f(uμ̄ + φ) − μf(uμ̄ + φ) ≥ 0.

Thus ū = uμ̄ is a supersolution of (1.1)μ, (1.2). From f(u+ φ) ≥ 0, we
can deduce that u ≡ 0 is a subsolution of (1.1)μ, (1.2) for all μ > 0. By
the standard Barrier method there exists a solution uμ of (1.1)μ, (1.2)
such that 0 ≤ uμ ≤ uμ̄. Since 0 is not a solution of (1.1)μ, μ̄ > μ and
f(u+φ) ≥ 0, the maximum principle implies that 0 < uμ < uū. Again
by the results of Amann [1], we can obtain a minimal solution uμ by
the iteration scheme with initial value u(0) = 0. Thus uμ is a minimal
solution of (1.1)μ, (1.2) and

∫
RN

|∇uμ|2 + u2
μ dx =

∫
RN

up+1
μ + μf(uμ + φ) dx

≤
∫
RN

up+1
μ̄ + μ̄f(uμ̄ + φ) dx

=
∫
RN

|∇uμ̄|2 + u2
μ̄ dx < +∞.

Thus uμ ∈ H1(RN ). By the definition of μ∗, we can conclude that
(1.1)μ and (1.2) have no solution for μ > μ∗. Therefore the proofs of
Theorem 1.1 (i) and (iii) are completed.
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In order to show the existence and uniqueness of (1.1)μ∗ and (1.2),
we shall use the following Lemmas 2.3 2.5. The proofs of the lemmas
are similar to those in [11]. For simplicity, we will omit the detailed
proofs here.

Lemma 2.3. Suppose H1), f1) and f2) with q = p. Let uμ be the
minimal positive solution given by Theorem 1.1 (i). The corresponding
eigenvalue problem

(2.13μ)
{−Δϕ+ ϕ = λ [p up−1

μ + μf ′(uμ + φ)]ϕ

ϕ ∈ H1(RN )

has the first eigenvalue λ1 > 1 and the corresponding eigenfunction
φ1 > 0 in RN .

Lemma 2.4. Suppose H1), f1) and f3) with q = p. Let uμ be
the minimal solution of (1.1)μ, (1.2) for μ ∈ [0, μ∗). Then for any
g(x) ∈ H−1(RN ), problem

(2.14) −ΔW +W = [p up−1
μ + μf ′(uμ + φ)]W + g(x)

has a solution.

Lemma 2.5. Suppose H1), f1) and f3) with q = p. If uμ∗ is a
solution of (1.1)μ∗ , (1.2), then problem (2.13)μ∗ has its first eigenvalue
λ1(μ∗) = 1. Moreover, the solution uμ∗ is unique.

Now we are going to prove (ii) of Theorem 1.1. From Lemma 2.3 we
have

∫
RN

(|∇uμ|2 + u2
μ) dx >

∫
RN

p up+1
μ dx+ μ

∫
RN

f ′(uμ + φ)uμ dx

and also we have

∫
RN

(|∇uμ|2 + u2
μ) dx =

∫
RN

up+1
μ dx+ μ

∫
RN

f(uμ + φ)uμ dx.
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Thus∫
RN

(|∇uμ|2 + u2
μ) dx

<
1
p

∫
RN

(|∇uμ|2 + u2
μ) dx+ μ∗

∫
RN

f(wε + φ)uμ dx

≤
(

1
p

+
δ

2
μ∗

)
‖uμ‖2 +

μ∗

2δ

∫
RN

(w2
ε + φ2 + φ2p + w2p

ε ) dx

for any δ > 0, since p > 1, we can obtain that

‖uμ‖H1(RN ) ≤ C < +∞

for all μ ∈ (0, μ∗) by taking δ small enough. Since uμ is monotone
increasing with respect to μ, we may suppose that uμ → uμ∗ weakly
in H1(RN ) as μ → μ∗ and hence uμ∗ is a solution of (1.1)μ. The
uniqueness of uμ∗ is obtained by Lemma 2.5.

Remark 2.2. Set μ∗∗ = sup{μ ∈ (0, μ∗) : 1−p up−1
μ −μf ′(uμ+φ) ≥ 0}.

From Remark 2.1, we have

0 < μ∗∗ ≤ μ∗

and
1 − p up−1

μ − μf ′(uμ + φ) ≥ 0

for all μ ∈ (0, μ∗∗).

3. Existence of the second positive solution. Let uμ be the
minimal positive solution of (1.1)μ, (1.2) for μ ∈ (0, μ∗). In order to find
a second solution of (1.1)μ (1.2), we introduce the following problem:

(3.1)μ

{−Δv + v = (uμ + v)p − upμ + μ[f(φμ + v) − f(φμ)],
v ∈ H1(RN ), v > 0 in RN ,

where φμ = uμ + φ. Clearly we can get another solution Uμ = uμ + vμ
of (1.1)μ, (1.2) if (3.1)μ possesses a solution vμ. To this end we set

f̄(v) =
{
f(v) for v ≥ 0,
−f(−v) for v < 0,
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a(x) = 1 − [p up−1
μ + μf ′(uμ + φ)],

h(x, v) = (v+uμ)p− upμ− vp + μ[f(v+ φμ− f(φμ)]− [p up−1
μ + μf ′(φμ)]v

and

(3.2) h̄(x, v) =
{
h(x, v) for v ≥ 0,
−h(x,−v) for v < 0.

Then (3.1)μ is equivalent to

(3.3)
{−Δv + a(x)v = |v|p−1 v + h̄(x, v),
v ∈ H1(RN ), v > 0 in RN .

The corresponding variational function is

I(v) =
1
2

∫
RN

|∇v|2 +a(x)v2 dx− 1
p+1

∫
RN

|v|p+1 dx−
∫
RN

H(x, v) dx,

where H(x, v) =
∫ v
0
h(x, s) ds. Set

I∞(v) =
1
2

∫
RN

|∇v|2 + v2 dx− 1
p+1

∫
RN

|v|p+1 dx− μ

∫
RN

F (v) dx

M∞ =
{
v ∈ H1(RN )

∣∣∣∣
∫ N

R

|∇v|2 + v2 dx

=
∫
RN

|v|p+1 dx+ μ

∫
RN

f̄(v)v dx,
}

and

J∞ = inf{I∞(v) | v ∈M∞},

where F (v) =
∫ v
0
f̄(t) dt. From [8], we can get the following theorem

and corollary.

Theorem A. Suppose a(x), h(x, v) is a continuous function satisfy-
ing the following conditions

(a) a(x) ≥ 0 for any x ∈ RN , a(x) → ā > 0 as |x| → ∞,

(b) limt→0 h̄(x, t)/t = 0, limt→∞(h̄(x, t))/(|t|p−1t) = 0.
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(c) (1/2)th̄(x, t) ≥ H(x, t) for any x ∈ RN , t ∈ R1.

(d) h̄(x, t) → ḡ(t) as |x| → ∞ for t bounded uniformly. Then I(v)
satisfies the (p.s)c condition for any c ∈ (0,min{J∞, (1/N)SN/2}).

Corollary A. Suppose H1), f1) f4) with q = p. Then J∞ can be
attained by a function w ∈ H1(RN ) if J∞ < (1/N)SN/2.

Remark 3.1. By Remark 2.2 and f1), f2), it is easy to verify that
h̄(x, v) defined by (3.2) satisfies conditions (b) and (d) of Theorem A.
Since uμ → 0, φ(x) → 0 as |x| → +∞, a(x) → 1 > 0 as |x| → ∞, a(x)
satisfies condition (a) of Theorem A.

The following lemmas can be found in [8].

Lemma 3.1. Suppose f1) holds. Then

s

2
(f(s+ φμ) − f(φμ)) ≥

∫ s

0

(f(t+ φμ) − f(φμ)) dt for all s ≥ 0.

Lemma 3.2. Let 3 ≤ N ≤ 6. Then

1
2
s((s+ uμ)p − upμ − sp) ≥

∫ s

0

((t+ uμ)p − upμ − tp) dt for s ≥ 0.

Lemma 3.3. Suppose f1) f4) with q = p. Then I(v) satisfies (p.s)c
conditions for all c ∈ (0,min{J∞, (1/N)SN/2}) if 3 ≤ N ≤ 6 and
μ ∈ (0, μ∗∗).

Lemma 3.4.

1
2
s((s+ uμ)p − upμ) ≥

∫ s

0

((t+ uμ)p − upμ) dt for all s ≥ 0.

Lemma 3.5. Let 3 ≤ N ≤ 5 and μ ∈ (0, μ∗∗). Then

(v + uμ)p − vp − upμ ≥ p uμv
p−1 for all v ≥ 0, x ∈ RN .
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Remark 3.2. By f2), we can conclude that there exists a θ ∈ (0, 1/2)
such that θtf(t) ≥ F (t), for t ≥ 0 if N ≥ 6, where F (t) =

∫ t
0
f(s) ds.

Lemma 3.6. Suppose f1) f4) with q = p. Then I(v) satisfies the
(p.s)c condition for any c ∈ (0,min{J∞, (1/N)SN/2}) if μ ∈ (0, μ∗∗).

Proof. From Lemma 3.3 we are only required to prove this lemma for
N ≥ 7. Let c ∈ (0,min{J∞, (1/N)SN/2}) and {vn} ⊂ H1(RN ) be a
(p.s)c sequence of I. That means I(vn) → c as n → ∞, I ′(vn) → 0 in
H−1(RN ) as n→ ∞. Thus

(3.4)

∫
RN

|∇vn|2 + v2
n dx

−
∫
RN

[(|vn|+ uμ)p− upμ+ μf(|vn| + φμ)− μf(φμ)]|vn| dx

= 〈ζn, vn〉,

(3.5)

1
2

∫
RN

|∇vn|2 + v2
n dx

−
∫
RN

∫ |vn|

0

[(s+ uμ)p − upμ + μf(s+ φμ) − μf(φμ)] ds dx

= c+ 0(1),

where ζn = I ′(vn). By Remark 3.2, we have

0(1) + c ≥ 1
2

∫
RN

|∇vn|2 + v2
n dx

− θ∗
∫
RN

(|vn| + uμ)[(|vn| + uμ)p + μf(|vn| + φμ)] dx

− θ∗
∫
RN

μφf(|vn| + φμ) dx+
∫
RN

upμ|vn| + μf(φμ)|vn| dx,



1492 Y. DENG, Y. MA AND C.X. ZHAO

where θ∗ = max{1/(p+1), θ}. Taking θ̄ ∈ (θ∗, 1/2) from (3.4), we have

0(1) + c ≥ θ̄ < ζn, vn > +
(

1
2
− θ̄

) ∫
RN

|∇vn|2 + v2
n dx

+ (θ̄ − θ∗)
∫
RN

|vn|(|vn| + uμ)p dx

+ (θ̄ − θ∗)
∫
RN

|vn|[μf(|vn| + φμ)] dx

− θ∗
∫
RN

uμ[(|vn| + uμ)p] + μ(uμ + φ)f(|vn| + φμ) dx

+ (1 − θ̄)
∫
RN

upμ|vn| + μf(φ+ uμ)|vn| dx

≥ θ̄〈ζn, vn〉 +
(

1
2
− θ̄

) ∫
RN

|∇vn|2 + v2
n dx+ (θ̄ − θ∗)

×
∫
RN

[
|vn| − θ∗

(θ̄− θ∗)
φμ

]
[(|vn| + uμ)p + μf(|vn| + φμ)] dx.

Setting τ = θ∗/(θ̄ − θ∗), we have

0(1) + c ≥ θ̄〈ζn, vn〉 +
(

1
2
− θ̄

) ∫
RN

|∇vn|2 + v2
n dx

+ (θ̄ − θ∗)
∫
{|vn|≤τ(uμ+φ)}

[|vn| − τ (uμ + φ)]

× [(|vn| + uμ)p + μf(|vn| + φ+ uμ)] dx

≥ θ̄〈ζn, vn〉 +
(

1
2
− θ̄

) ∫
RN

|∇vn|2 + v2
n dx

− θ∗
∫
{|vn|≤τ(uμ+φ)}

(uμ+φ)[(|vn|+uμ)p+μf(|vn|+uμ+φ)] dx

≥ θ̄〈ζn, vn〉 +
(

1
2
− θ̄

) ∫
RN

|∇vn|2 + v2
n dx

− θ∗
∫
RN

(uμ + φ)[τ (uμ+ φ) + uμ]p + μf [(τ + 1)(uμ + φ)] dx.

Thus (
1
2
− θ̄

) ∫
RN

|∇vn|2 + v2
n dx ≤ c+ 0(1) + θ̄〈ζn, vn〉 + θ∗c.
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By using Young’s Inequality we can deduce

‖vn‖H1(RN ) ≤ C <∞

By taking a subsequence we suppose that

vn −→ v weakly in H1(RN )
vn −→ v a.e. in RN .

Letting ρn = |∇vn|2 + a(x)v2
n, we may assume that

∫
RN

ρn(x) dx −→ l ≥ 0 as n→ ∞.

First, we show l > 0. In fact, if l = 0, by Remark 3.1 and Sobolev
embedding, we have

∫
RN |vn|p+1 dx → 0,

∫
RN H(x, |vn|) dx → 0 as

n→ ∞. Then by (3.5), we get c = 0, a contradiction.

Applying the concentration-compactness Lemma due to Lions [14],
there exists a subsequence (still denoted by ρn) satisfying one of the
following three possibilities: (i) compactness, (ii) vanishing, (iii) di-
chotomy.

We should rule out (ii) and (iii) that couldn’t occur by contradiction.
If (ii) (vanishing) occurs, i.e., for all R < +∞, limn→∞ supy∈RN ×∫
y+BR

(|∇vn|2 + a(x)|vn|2) dx = 0. By a lemma due to Lions [14], we
have

(3.6) vn −→ 0 in Lq(RN ), 2 < q <
2N
N − 2

.

By Remark 3.1, for all ε > 0, there exists a Cε such that for fixed
q ∈ (2, 2∗),

∣∣∣∣
∫
RN

|vn|h(x, |vn|) dx
∣∣∣∣ ≤ ε

∫
RN

(|vn|2 + |vn|2∗) dx+ Cε

∫
RN

|vn|q dx.

Since {vn} is bounded in H1(RN ) and (3.6) holds, we have
∫
RN

|vn|h(x, |vn|) dx −→ 0 as n→ ∞.
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Similarly
∫
RN H(x, vn) dx→ 0 as n→ ∞. By (3.4) and (3.5)

l = lim
n→∞ ‖vn‖2 = lim

n→∞

∫
RN

|vn|2∗
dx

and
1
2
l − 1

2∗
l = c, i.e.

1
N
l = c.

Hence
S‖vn‖2

L2∗ (RN ) ≤ ‖∇vn‖2
L2(RN ) ≤ ‖vn‖2

H1(RN ).

Thus Sl2/2
∗ ≤ l, i.e., lN/2 ≥ S. Therefore, c ≥ (1/N)SN/2, a

contradiction.

If (iii) occurs, we denote Qn to be the concentration function of ρn

Qn(t) = sup
y∈RN

∫
y+Bt

ρn(x) dx, t ≥ 0.

Without loss of generality, we may assume

lim
n→∞Qn(t) = Q(t) for any t ≥ 0

and

lim
t→∞Q(t) = α ∈ (0, l) (because dichotomy occurs).

By Lemma 3.4, using the same argument in [8], we can rule out (iii).

Thus, only case (i) occurs, i.e., there exists a sequence {yn} ∈ RN

such that for any ε > 0, there exists an R < +∞ such that

(3.7)
∫
{x−yn≥R}

(|∇vn|2 + a(x)v2
n) dx ≤ ε.

Same as in ruling out dichotomy, we may prove that {yn} is bounded.
Choosing R large enough such that {yn} ⊂ BR, applying Sobolev’s
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compact embedding on a bounded domain and (3.7), we may deduce
that there exists a subsequence of {vn} such that

vn −→ v strongly in Lq(RN ) for 2 ≤ q < 2N/(N − 2)

vn −→ v a.e. on RN

vnh̄(x, vn) −→ vh̄(x, v) a.e. in RN

H(x, vn) −→ H(x, v) a.e. in RN

a(x)vn −→ a(x)v a.e. in RN

|vn|p−1vn −→ |v|p−1v weakly in (LP+1(RN ))∗.

From I ′(vn) → 0 in H−1(RN ) we can conclude that

(3.8) −Δv + a(x)v = vp + h(x, v) in H−1(RN ).

Next, we shall show that vn → v strongly in H−1(RN ). Indeed, by
Strauss’s lemma [16], for any R < +∞,

∫
BR

|h̄(x, vn)vn − h̄(x, v)v| dx −→ 0 as n→ +∞.

By tightness and continuity of integral, for any ε > 0 we may choose
R sufficiently large such that

∫
{RN−BR}

|vnh̄(x, vn)| dx < ε,

∫
{RN−BR}

| vh̄(x, v)| dx < ε.

Then we deduce

(3.9)
∫
RN

vnh̄(x, vn) dx −→
∫
RN

vh̄(x, v) dx.

Similarly,

(3.10)

∫
RN

a(x)v2
n dx −→

∫
RN

a(x)v2 dx,

∫
RN

H(x, vn) dx −→
∫
RN

H(x, v) dx.
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Since {vn} is a (p.s)c sequence
(3.11)

1
2

∫
RN

|∇vn|2+ a(x)v2
n dx− 1

p+1

∫
RN

|vn|p+1 dx−
∫
RN

H(x, vn) dx

= c+ o(1).

(3.12)∫
RN

|∇vn|2 + a(x)v2
n dx−

∫
RN

|vn|p+1 dx−
∫
RN

h̄(x, vn)vn dx

= o(1).

Denote Wn = vn−v. By (3.9), (3.10) and using the Brezis-Lieb lemma,
as n→ ∞, equation (3.11) becomes

(3.13) I(v) +
1
2

∫
RN

|∇Wn|2 − 1
p+ 1

∫
RN

|Wn|p+1 dx = c+ o(1).

Similarly, (3.12) becomes
∫
RN

|∇v|2dx+
∫
RN

|∇Wn|2 dx−
∫
RN

|v|p+1 dx−
∫
RN

|Wn|p+1 dx

+
∫
RN

a(x)v2 dx−
∫
RN

vh(x, v) dx = o(1).

By (3.8) we have

(3.14)
∫
RN

|∇Wn|2 dx =
∫
RN

|Wn|p+1 dx+ o(1).

Thus

(3.15) I(v) +
1
N

∫
RN

|Wn|p+1 dx = c+ o(1).

Because {Wn} is bounded, we may suppose
∫
RN |∇Wn|2 dx → l̄ ≥ 0.

By Sobolev’s inequality,

∫
RN

|∇Wn|2 dx ≥ S

(∫
RN

|Wn|p+1

)2/(p+1)

.
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Let n→ +∞ and, noting (3.14), we have l̄ ≥ S(l̄)2/(p+1), i.e., l̄ ≥ SN/2

or l̄ = 0. If l̄ ≥ SN/2, from (3.15) we have c = I(v) + (1/N)l̄. On the
other hand, by Lemma 3.1,

I(v) =
1
2

( ∫
RN

|∇v|2 + a(x)v2 dx−
∫
RN

|v|p+1 dx−
∫
RN

h̄(x, |v|)|v| dx
)

+
1
2

∫
RN

|v|p+1 + h(x, |v|)|v| dx

− 1
p+ 1

∫
RN

|v|p+1 dx−
∫
RN

H(x, |v|) dx

=
∫
RN

1
2
[(|v| + uμ)p − upμ]|v| −

∫ |v|

0

[(s+ uμ)p − upμ] ds dx

+
∫
RN

μ

2
|v|[f(|v| + φ+ uμ) − f(φ+ uμ)]

− μ

∫ |v|

0

[f(s+ φ+ uμ) − f(φ+ uμ)] ds dx+
1
N

∫
RN

|v|p+1 dx

≥ 1
N

∫
RN

|v|p+1 dx ≥ 0.

So we deduce

c = I(v) +
1
N
l̄ ≥ 1

N
l̄ ≥ 1

N
SN/2,

a contradiction with c ∈ (0,min{J∞, (1/N)SN/2}). Hence l̄ = 0, and
vn → v strongly in H1(RN ) as n→ ∞.

In the following we are going to verify the existence of the nontrivial
positive solution of (3.3) by the Mountain Pass lemma. We check
the conditions of the Mountain Pass lemma by the following obvious
lemmas.

Lemma 3.7. Suppose H1), f1) f4) with q = p. Then there exist
α > 0, ρ > 0 such that

I(v)|∂Bρ
≥ α > 0,

where Bρ = {u ∈ H1(RN ) | ‖u‖ ≤ ρ}.
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Lemma 3.8. Suppose H1), f1) f4) with q = p. For any v ∈
H1(RN ), v �≡ 0, there exists an R0 > 0 such that I(Rv) ≤ 0 for
all R ≥ R0.

Now we give the existence result.

Theorem 3.1. Suppose H1), f1) f4) with q = p. If there exists a
v0 ∈ H1(RN ), v0 �≡ 0, such that

(3.16) sup
t≥0

I(tv0) < min
{
J∞,

1
N
SN/2

}
,

then (3.1)μ possesses at least one solution for μ ∈ (0, μ∗∗).

Proof. By Lemma 3.7 and Lemma 3.8, there exists an R1 > 0 such
that e = R1v0 /∈ Bρ and I(e) ≤ 0. Define

(3.17) c = inf
Γ∈ℵ

sup
v∈Γ

I(v),

where ℵ denotes the class of continuous paths joining 0 to e in H1(RN ).
Clearly

0 < α ≤ c = inf
Γ∈ℵ

sup
v∈Γ

I(v) ≤ sup
t≥0

I(tv0) < min
{
J∞,

1
N
SN/2

}
.

By Lemma 3.6, I(v) satisfies the (p.s)c condition. So c can be achieved
by some function v ∈ H1(RN ) via the Mountain Pass lemma. Because
h̄(x, v) is an odd function with respect to v, we have |v| which also
achieves c. So we may suppose v ≥ 0. By applying the strong maximum
principle we have v > 0 in RN . Thus v is a positive solution of (3.1)μ.

In the following, we shall verify that condition (3.16) holds naturally.
To this end we set

ψε(x) = φ(x)wε(x),

where φ(x) ∈ C∞
0 (RN ) is a cutoff function and wε is as in (1.4). For

R > 0, let φ(x) ≡ 1 if |x| < R; φ(x) ≡ 0 if |x| ≥ 2R. From [7] we have
the following estimates

(3.18) |∇ψε|2 = SN/2 + o(ε(N−2)/2).
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|ψε|2∗
2∗ = SN/2 + o(εN

2/(2N−2)).(3.19)

|ψε|2 =

⎧⎪⎨
⎪⎩
k1ε+ o(ε(N−2)/2) N ≥ 5,

k1ε| ln ε| + o(ε(N−2)/2) N = 4,

o(ε1/2) N = 3,

(3.20)

where S is the best Sobolev’s constant and k1 is a positive constant
independent of ε.

Lemma 3.9. Suppose f1). Then

(3.21)
μ[f(s+ φ+ uμ) − f(φ+ uμ)] ≥ μf(s) ≥ 0

for all μ ≥ 0, s ≥ 0,

where uμ is the minimal solution of (1.1)μ, (1.2) given by Theorem 1.1.

Proof. Set g(s) = μ[f(s + φ + uμ) − f(φ + uμ] − μf(s). Then
g′′(s) = μ[f ′(s+ φ+ uμ)− f ′(s)]. Since f ′′(s) > 0, g′′(s) > 0. Because
g(0) = 0 and g′(0) = 0, we have g(s) ≥ 0 for s ≥ 0. This gives (3.21).

Lemma 3.10. Assume H1 and f1) f4) with q = p. Then there exists
a constant tε > 0 such that

(3.22) sup
t≥0

I(tψε) = I(tεψε)

(3.23) I(tεψε) ≤ 1
N
SN/2 −

∫
RN

G(x, tεψε) dx+

⎧⎨
⎩
o(ε) N≥5
o(ε| ln ε|) N=4
o(ε1/2) N=3

where

G(x, tεψε) =
∫ tεψε

0

[(s+uμ)p−upμ−sp+μf(s+φ+uμ)−μf(φ+uμ)] ds.

Proof. By Lemma 3.8, we can easily show that there exists tε > 0
such that supt≥0 I(tψε) = I(tεψε). We claim that there exist some
constants c1, c2 such that

(3.24) 0 < c1 ≤ tε ≤ c2 <∞ for ε small enough.
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In fact, since I(tεψε) = supt≥0I(tψε), it follows that

I ′(tεψε) = tε

∫
RN

|∇ψε|2 + ψ2
ε dx−

∫
RN

[(tεψε + uμ)pψε − upμψε] dx

− μ

∫
RN

[f(tεψε + φμ) − f(φμ)]ψε dx = 0.

Thus

(3.25)
|∇ψε|2 + |ψε|22

|ψε|p+1
p+1

− tp−1
ε

=

∫
RN {(tεψε+uμ)p−upμ−(tεψε)p+μ[f(tεψε+φμ)−f(φμ)]}ψε dx

|ψε|p+1
p+1tε

≥ 0.

By (3.18) (3.20),

(3.26) tp−1
ε ≤ |∇ψε|2 + |ψε|22

|ψε|p+1
p+1

≤ Cp−1
2 <∞ for ε small enough.

On the other hand, using

lim
u→∞

(u+ uμ)p − up − upμ + μ[f(u+ φμ) − f(φμ)]
up

= 0

and (3.18) (3.20), we see that for any δ > 0 there exists a constant
Cδ > 0 such that

[|ψε|p+1
p+1]

−1

·
∫
RN

{(tεψε+uμ)p−upμ−(tεψε)p+μ[f(tεψε+φμ)−f(φμ)]}ψε
tε

dx

≤ [|ψε|p+1
p+1]

−1

∫
RN

δtpεψ
p+1
ε + tεCδψ

2
ε

tε
dx

= δtp−1
ε + o(ε1/2).

Again by (3.18) (3.20) and (3.25)

1 − tp−1
ε − δtp−1

ε + o(ε1/2) ≤ 0.
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Choosing δ, ε small enough we can find a constant c1 > 0 such that
tε ≥ c1. Therefore we obtain (3.24). Thus

I(tεψε) =
1
2
t2ε

∫
RN

|∇ψε|2 + ψ2
ε dx− 1

p+1

∫
RN

tp+1
ε ψp+1

ε dx

−
∫
RN

G(x, tεψε) dx

≤
(

1
2
− 1
p+ 1

)
SN/2 +

1
2
c22

∫
RN

ψ2
ε dx

−
∫
RN

G(x, tεψε) dx+ 0(ε(N−2)/2)

≤ 1
N
SN/2 −

∫
RN

G(x, tεψε) dx+

⎧⎪⎨
⎪⎩
o(ε) N ≥ 5,

o(ε| ln ε|) N = 4,

o(ε1/2) N = 3.

Lemma 3.11. Suppose H1) and f1) f4) with q = p. Then there
exists a function v0 ∈ H1

0 (RN ), v0 �≡ 0, such that (3.16) holds.

Proof. If N ≥ 6, by f2) we have

(
μf(t)
t1+δ

)′
=
μ[tf ′(t) − (1 + δ)f(t)]

t2+δ
> 0

for all t > 0, μ > 0. Thus there exists a constant C > 0 such that

(3.27) μF (t) ≥ C t2+δ if t > 1.

From (3.24) and Lemma 3.9

lim
ε→o+

ε−1

∫
RN

G(x, tεψε) dx

≥ lim
ε→0+

ε−1

∫
BR

μF (tεψε) dx

≥ lim
ε→0+

ε(N−2)/2wN

∫ Rε−1/2

0

μF

[
c1ε

(2−N)/4

(1 + s2)(N−2)/2

]
sN−1 ds,
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where wN denotes the area of unit sphere and s = rε−1/2, r = |x|. We
can choose ε small enough such that

Rε−1/2 ≥ (ε−1/2c
2/(N−2)
1 − 1)1/2.

By (3.27)

lim
ε→0+

ε−1

∫
RN

G(x, tεψε) dx

≥ lim
ε→0+

ε(N−2)/2wN

∫ (ε−1/2c
2/(N−2)
1 −1)1/2

0

μF

(
c1ε

(2−N)/4

(1+s2)(N−2)/2

)
sN−1 ds

≥ lim
ε→0+

ε(N−2)/2wN

∫ (ε−1/2c
2/(N−2)
1 −1)1/2

0

C

(
c1ε

(2−N)/4

(1+s2)(N−2)/2

)2+δ

sN−1 ds

≥ lim
ε→0+

Cε[(2−N)δ]/4

∫
{|y|≤(ε−1/2c

2/(N−2)
1 −1)1/2}

(
1

1+|y|2
)[(N−2)(2+δ)]/2

dy

= +∞.

Thus from (3.23) we have

(3.28) I(tεψε) <
1
N
SN/2 if ε is small enough, N ≥ 6

if 3 ≤ N ≤ 5. Applying (3.24), Lemma 3.5 and Lemma 3.9, we have

(3.29)

∫
RN

G(x, tεψε) ≥
∫
RN

uμ(x)(tεψε)pdx

≥ min
x∈BR

uμ(x)c1
∫
BR

ψpε dx

= c

∫
BR

ψpε dx.

For N = 3 we have

(3.30)

lim
ε→0+

ε−1/2

∫
RN

G(x, tεψε) dx

≥ lim
ε→0+

cε−1/2

∫
BR

ψpε dx

= lim
ε→0+

cε−1/2

∫
BR

[
ε1/4

(ε+ |x|2)1/2
]5

dx

= lim
ε→0+

cε−1/4

∫
{|y|≤Rε−1/2}

(
1

1 + |y|2
)5/2

dy = +∞.
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Similarly, we can prove

(3.31) lim
ε→0+

(ε| ln ε|)−1

∫
RN

G(x, tεψε) dx = +∞ if N = 4,

(3.32) lim
ε→0+

ε−1

∫
RN

G(x, tεψε) dx = +∞ if N = 5.

By (3.30) (3.32) and (3.23), we have

(3.33) I(tεψε) <
1
N
SN/2 if ε small enough and 3 ≤ N ≤ 5.

Case (i). If (1/N)SN/2 ≤ J∞, we can take v0 = ψε, ε small enough
by (3.22), (3.28) and (3.33) we have

sup
t≥0

I(tv0) = sup
t≥0

I(tψε) = I(tεψε) <
1
N
SN/2

for small ε, which gives (3.16).

Case (ii). If (1/N)SN/2 > J∞, by Corollary A there exists a
w ∈ H1(RN ), w �≡ 0 such J∞ = I∞(w) and

(3.34)
∫
RN

(|∇w|2 + w2) dx =
∫
RN

(wp+1 + μf(w)w) dx.

Because f̄(t) is an odd function we may suppose w ≥ 0. By f1) we
deduce (f(t)/t)′ ≥ 0 for t ≥ 0. Setting q(t) = I∞(tw), by (3.34) we can
easily deduce that t = 1 is the unique critical point of q(t) in (0,∞)
and q′′(1) ≤ 0. Because limt→0 q(t) = 0 and limt→∞ q(t) = −∞, we
have I∞(w) = supt≥0 I

∞(tw). From Lemma 3.8 there exists t0 > 0
such that

I(t0w) = sup
t≥0

I(tw).

Thus by Lemma 3.9

sup
t≥0

I(tw) = I(t0w) < I∞(t0w) ≤ I∞(w) = J∞.
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Taking v0 = w, we obtain (3.16).

Proof of Theorem 1.2. From Theorem 1.1, (1.1)μ and (1.2) possesses
a minimal positive solution uμ if μ ∈ (0, μ∗). By Theorem 3.1 and
Lemma 3.11 we have that (3.1)μ possesses a solution vμ if μ ∈ (0, μ∗∗).
Setting Uμ = uμ+vμ, we can easily verify that Uμ is the second solution
of (1.1)μ, (1.2) for μ ∈ (0, μ∗∗).

4. Properties and bifurcation of solutions. In this section, we
give some further properties and bifurcation of solutions for problem
(1.1)μ and (1.2). In particular, we will prove Theorem 1.3.

Proposition 4.1. Suppose H1), f1) f4) with q = p. Let u be a weak
solution of (1.1)μ, (1.2). Then u ∈ Lqloc(R

N ) for all q ∈ (1,∞) and
u(x), |∇u(x)| have uniform limits zero as |x| → ∞.

Proof. Let ϕ(x) ≡ 0; if |x − x0| < 2, ϕ(x) ≡ 0 if |x − x0| ≥ 3 is a
smooth cutoff function with |∇ϕ| ≤ 1. For s ≥ 0, l > 0, testing (1.1)μ
with ϕ2u min{u2s, L2}, we obtain

∫
RN

∇u∇(ϕ2u min{u2s, L2}) dx+
∫
RN

ϕ2u2 min{u2s, L2} dx

=
∫
RN

ϕ2up+1 min{u2s, L2} + μf(u+ φ)ϕ2u min{u2s, L2} dx.

Suppose u ∈ L2s+2
loc (RN ). Then we may conclude by applying the

Holder’s and Sobolev’s inequalities that, for k > 1,

f(u+ φ)
≤ C[(u+ φ) + (u+ φ)p]

≤ C[u+ φ+ up+ φp]
∫
RN

f(u+ φ)ϕ2u min{u2s, L2} dx

≤ C

[ ∫
RN

up−1u2ϕ2 min{u2s, L2} dx+
∫
|x−x0|<3

u2 min{u2s, L2} dx

+
∫
RN

φϕ2u min{u2s, L2} dx+
∫
RN

ϕ2φpu min{u2s, L2} dx
]
.
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and

∫
RN

|∇(ϕu min{us, L})|2 dx+
∫
RN

(ϕu min{us, L})2 dx

≤ C

[ ∫
RN

uP−1ϕ2u2 min{u2s, L2} dx+
∫
{|x−x0|<3}

u2 min{u2s, L2} dx

+
∫
RN

μf(u+ φ)ϕ2u min{u2s, L2} dx
]

≤ C

[ ∫
RN

up−1ϕ2u2 min{u2s, L2} dx+
∫
{|x−x0|<3}

u2 min{u2s, L2} dx

+
∫
RN

φϕ2 min{u2s, L2} dx+
∫
RN

φpϕ2u min{u2s, L2} dx
]

≤ C

[
k

∫
{|x−x0|<3}

u2s+2 dx+ ‖φ‖p(2s+2)
L∞(B3(x0))

+ ‖φ‖2s+2
L∞(B3(x0))

+
∫
{x∈RN ,up−1≥k}

up−1ϕ2u2 min{u2s, L2} dx
]

≤ C

{
k

∫
|x−x0|<3

u2s+2 dx+ ‖φ‖p(2s+2)
L∞(B3(x0))

+ ‖φ‖2s+2
L∞(B3(x0))

+
[ ∫

{|x−x0|<3,up−1>k}
(up−1)N/2 dx

]2/N

×
[ ∫

RN

(ϕu min{us, L})2N/(N−2) dx

](N−2)/N}

≤ C

[
k

∫
|x−x0|<3

u2s+2 dx+ ‖φ‖p(2s+2)
L∞(B3(x0))

+ ‖φ‖2s+2
L∞(B3(x0))

+ ε(k)
∫
RN

|∇(ϕu min{us, L})|2 dx
]
,

where

ε(k) = sup
x0

[ ∫
{|x−x0|<3,up−1≥k}

(up−1)N/2 dx
]2/N

.

Because u ∈ H1(RN ), we deduce that ε(k) → 0 as k → ∞. We may
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now conclude that
∫
{|x−x0|<2,us<L}

|∇(us+1)|2 + (us+1)2 dx

≤ Ck

∫
{|x−x0|<3}

u2s+2 dx+ C
(‖φ‖2s+2

L∞(B3(X0))
+ ‖φ‖p(2s+2)

l∞(B3(x0))

)

remains uniformly bounded in L. Hence we may let L → ∞ to derive
that

us+1 ∈ H1({|x− x0| < 2}) −→ L2∗
({|x− x0| < 2})

with
∫
{|x−x0|<2}

u(2s+2)N/(N−2) dx ≤ Ck

∫
{|x−x0|<3}

u2s+2 dx

+ C
(
‖φ‖2s+2

L∞(B3(x0))
+ ‖φ‖p(2s+2)

L∞(B3x0))

)
.

Let q = [(2s+ 2)N ]/(N − 2). Hence u ∈ Lq(RN ) for q > 0 large.
Obviously u satisfies the linear problem

−Δu+ u = F (x) = up + μf(u+ φ), x ∈ RN , u ∈ H1(RN ).

Choosing q > max{N/2, 2N/(N − 2)}, by Holder’s inequality in B2(x)
we get

‖u‖L2(B2(x)) ≤ C‖u‖Lq(B2(x)).

By f3), we have

‖F‖Lq/p(B2(x)) ≤ C
(‖u‖Lq(B2(x)) + ‖φ‖Lq(B2(x))

)
.

It’s deduced by the elliptic regular theory that u ∈ L2,α(RN ). By [13,
Theorem 8.24], we have

(4.1) ‖u‖Cα(B1(x)) ≤ C
(‖u‖Lq(B2(x)) + ‖φ‖Lq(B2(x))

)

then u(x) → 0 as ‖x‖ → ∞ since u ∈ Lq(RN ). By [13, Theorem 8.32]

(4.2) ‖u‖C1,α(B1(x)) ≤ C
(‖u‖Cα(B2(x)) + ‖φ‖L∞(B2(x))

)

(4.1), (4.2) give ‖∇u(x)‖ → 0 as ‖x‖ → ∞.
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Proposition 4.2. Suppose H1), f1) f4) with q = p. Let uμ be
the minimal solution of (1.1)μ, (1.2). Then uμ is uniformly bounded
in L∞(RN ) ∩ H1(RN ), for all μ ∈ [0, μ∗] and uμ → 0 in L∞(RN ) ∩
H1(RN ) as μ→ 0.

Proof. From Proposition 4.1 we can deduce that ‖u∗μ‖∞ ≤ C. Then
by Theorem 1.1 (i) (ii), we can deduce that ‖uμ‖∞ ≤ ‖uμ∗‖∞ ≤ C.
From Lemma 2.3∫
RN

(‖∇uμ‖2 + u2
μ) dx ≥ λ1

[ ∫
RN

p up+1
μ dx+

∫
RN

μf ′(uμ + φ)u2
μ dx

]

and∫
RN

(‖∇uμ‖2 + u2
μ) dx =

∫
RN

up+1
μ dx+ μ

∫
RN

f(uμ + φ)uμ dx.

Thus ∫
RN

(‖∇uμ‖2 + u2
μ) dx

≤ 1
pλ1

∫
RN

(‖∇u2
μ + u2

μ) dx+ μ

∫
RN

f(uμ + φ)uμ dx

≤ 1
pλ1

‖uμ‖2 + Cμ

∫
RN

(wε + wpε + φ+ φp)uμ dx.

By the Holder and Young inequalities we deduce
(

1 − 1
λ1p

− δ

2

)
‖uμ‖2

≤ μ

2δ
(‖wε‖H−1(RN ) + ‖wpε‖H−1(RN ) + ‖φ‖H−1(RN ) + ‖φp‖H−1(RN ))

for all δ > 0. Taking δ small enough so that

(4.3)
(

1 − 1
λ1p

− δ

2

)
> 0,

we hence have ‖uμ‖2 ≤ Cμ. From Theorem 1.1, we have

(4.4)
( ∫

RN

uqμ dx

)2/q

≤
(
wq−2∗
ε (0)

∫
RN

u2∗
μ dx

)2/q

≤ C‖uμ‖2 ≤ Cμ
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for any q ∈ (2∗,∞) if μ ∈ (0, μ1). By (4.3), (4.4), we can deduce our
proposition.

Proposition 4.3. Let Uμ be the second solution of (1.1)μ, (1.2)
constructed in Section 3. Then Uμ is uniformly bounded for μ small
enough and

lim
μ→0

‖Uμ‖H1(RN ) = SN/2.

Proof. Define

I1(u) =
1
2

∫
RN

(|∇u|2 + u2) dx− 1
p+ 1

∫
RN

up+1 dx

− μ

∫
RN

∫ u

0

f(t+ φ) dt dx.

By Lemma 3.7, Lemma 3.11, we can find a positive constant α inde-
pendent of μ ∈ (0, μ1) such that

(4.5) 0 < α < I1(Uμ) − I1(uμ) <
1
N
SN/2.

From I1(Uμ) = c+ I1(uμ) and I ′1(Uμ) = 0, we deduce

∫
RN

|∇Uμ|2 + U2
μ dx =

∫
RN

Up+1
μ dx+ μ

∫
RN

f(Uμ + φ)Uμ dx

I1(Uμ) =
1
2

∫
RN

|∇Uμ|2 + U2
μ dx− 1

p+ 1

∫
RN

Up+1
μ dx

− μ

∫
RN

∫ Uμ

o

f(t+ φ) dt dx.

By f3) we have

∫ Uμ

0

f(t+ φ) dt ≤ C ′
∫ Uμ

0

(t+ tp + φ+ φp) dt

≤ C ′
[
1
2
U2
μ +

1
p+ 1

Up+1
μ + (φ+ φp)Uμ

]
,
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I1(Uμ) ≥ 1
2
(1− μC ′)‖U2

μ‖ −
1+ μC ′

p+1
|Uμ|p+1

p+1− μC ′
∫
RN

(φ+φp)Uμ dx.

[
1
2
(1− μC ′) − 1+ μC ′

p+ 1

]
‖Uμ‖2 ≤ C+I1(uμ)+ μC ′

∫
RN

(φ+ φp)Uμ dx.

By Holder’s and Young’s inequalities, we deduce
[
1
2
(1 − μC ′) − 1 + μC ′

p+ 1
− δ

2

]
‖Uμ‖2

≤ 1
2/δ

μ2(C ′)2‖φ+ φp‖2
H−1(RN ) + C + I1(uμ).

Choose μ < [(1/2)p− (1/2)]/[(1/2)pC ′ + (3/2)], δ small enough so that
[
1
2
(1 − μC ′) − 1 + μC ′

p+ 1
− δ/2

]
> 0.

We have ‖Uμ‖2 ≤ C for μ small enough. From (4.5), we can conclude
that

α+I1(uμ)

≤ 1
N

‖Uμ‖2− μ

[ ∫
RN

∫ Uμ

0

f(t+φ) dt dx− 1
p+1

∫
RN

f(Uμ+ φ)Uμ dx
]

≤ I1(uμ) +
1
N
SN/2.

Because Uμ is uniformly bounded in H1(RN ) for μ small enough, we
have

lim
μ→0

μ

[ ∫
RN

∫ Uμ

0

f(t+ φ) dt dx− 1
p+1

∫
RN

f(Uμ + φ)Uμ dx
]

= 0.

Thus, as μ→ 0,

(4.6) 0 < α+ o(1) ≤ 1
N

‖Uμ‖2 ≤ 1
N
SN/2 + o(1).

On the other hand, by Sobolev’s inequality we have

S‖Uμ‖P+1
P+1 ≤ ‖Uμ‖2 = ‖Uμ‖p+1

p+1 +O(1).
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Thus,

(4.7) ‖Uμ‖p+1
p+1 ≥ SN/2 +O(1).

From (4.6), (4.7) we have

lim
μ→0

‖Uμ‖2
H1(RN ) = SN/2.

Proposition 4.4. (μ∗, uμ∗) is the H1(RN )-bifurcation point for
(1.1)μ and (1.2).

Proof. Define

F : R1 ×H1(RN ) −→ H−1(RN )

by
F (μ, u) = Δu− u+ up + μf(u+ φ)

From Lemma 2.5, we deduce that Fu(μ∗, uμ∗)φ = 0 has a solution
φ1 > 0. This implies that N(Fu(μ∗, uμ∗)) = span {φ1} = 1 is one-
dimensional and codimR(Fu(μ∗, uμ∗)) = 1. In the following we shall
check that Fμ(μ∗, uμ∗) /∈ R(Fu(μ∗, uμ∗)). Assuming the contrary would
imply existence of v(x) �≡ 0 such that

Δv − v + p up−1
μ∗ v + μf ′(uμ∗ + φ)v = f(uμ∗ + φ).

From Fu(μ∗, uμ∗)φ1 = 0, we conclude that
∫
RN f(u+φ)φ1 dx = 0. This

is impossible because f(u+φ) ≥ 0, f(u+φ) �≡ 0 and φ1(x) > 0 in RN .

Applying the bifurcation Theorem in [6], we conclude that (μ∗, uμ∗)
is the bifurcation point near which the solution of (1.1)μ, (1.2) form
a curve (μ∗ + τ (s), uμ∗ + sφ1 + z(s)) with s near s = 0 and τ (0) =
τ ′(0) = 0, z(0) = z′(0) = 0. We claim that τ ′′(0) < 0, which implies
that the bifurcation curve turns strictly to the left in the (μ, u) plane.
Substitute μ = μ∗ + τ (s), u = uμ∗ + sφ1 + z(s) to

(4.8) −Δu+ u− up − μf(u+ φ) = 0, u > 0.
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Differentiating (4.8) in s twice we have

−Δuss+uss−p(p−1)up−2u2
s−p up−1uss−μssf(u+φ)−2μsf ′(u+φ)us
− μf ′′(u+ φ)u2

s − μf ′(u+ φ)uss = 0.

Setting here s = 0 and using that τ ′(0) = 0, us = φ1(x) and u = uμ∗

as s = 0, we obtain

(4.9) − Δuss + uss − p(p− 1)up−1
μ∗ φ2

1 − p up−1
μ∗ uss − τ ′′(0)f(uμ∗ + φ)

− μ∗f ′′(uμ∗ + φ)φ2
1 − μ∗f ′(uμ∗ + φ)uss = 0.

Multiplying
Fu(μ∗, uμ∗)φ1 = 0

by uss, and (4.9) by φ1, integrating and subtracting the result we obtain

p(p−1)
∫
RN

up−2
μ∗ φ2

1 dx+τ
′′(0)

∫
RN

f(uμ∗+φ) dx+μ
∫
RN

f ′′(uμ∗+φ)φ2
1 dx=0

which immediately gives τ ′′(0) < 0.

Proof of Theorem 1.3. From Proposition 4.4 and its proof we can
immediately get the result of Theorem 1.3.

Proof of Theorem 1.4. The conclusions (i), (iii) (iv), (v) come
immediately from Propositions 4.1, 4.2, 4.3, 4.4. As for (ii) we can
verify it by applying the implicit function theorem.

REFERENCES

1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered
Banach spaces, SIAM Review 18 (1976), 620 709.

2. A. Ambrosetti and M. Struwe, A note on problem −Δu = λu + u|u|2∗−2,
Manuscripta Math. 54 (1986), 373 379.

3. V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems
in exterior domains, Arch. Rational Mech. Anal. 99 (1987), 283 300.

4. H. Brezis and L. Nirenberg, Positive solution of nonliear elliptic equations in-
volving critical Sobolev’s exponents, Comm. Pure. Appl. Math. 36 (1983), 437 477.

5. G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results
for nonlinear elliptic problems involving critical Sobolev’s exponents, Ann. Inst. H.
Poincaré 1 (1984), 341 350.



1512 Y. DENG, Y. MA AND C.X. ZHAO

6. M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple
eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161 180.

7. Y.B. Deng, Existence of multiple positive solution for semilinear equation with
critical exponent, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), 161 175.

8. , Existence of multiple positive solutions of inhomogeneous semilinear
elliptic problem involving critical exponents, Comm. Partial Differential Equations
(1992), 33 53.

9. , Existence of multiple positive solutions for −Δu = λu+u(N+2)/(N−2)+
μf(x) Acta Math. Sinica 9 (1993), 311 320.

10. Y.B. Deng and Yi Li, Existence and bifurcation of the positive solutions for
a semilinear equation with critical exponents, J. Differential Equations 9 (1996),
179 200.

11. , The existence of multiple positive solutions for a semilinear problem
in exterior domains, J. Differential Equations 181 (2002), 197 229.

12. Y.B. Deng, Yi Li and X.J. Zhao, Multiple solutions and bifurcation of
nonhomogeneous semilinear elliptic equations in RN , Nankai Ser. Pure Appl. Math.
Theoret. Phys. 6, World Sci. Publ., River Edge, NJ, 2000, pp. 81 102.

13. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equation of second
order, 2nd ed., Springer-Verlag, Berlin, 1983.

14. P.L. Lions, The concentration-compactness principle in the calculus of vari-
ations, the limit case, Pact I, Rev. Math. Iberoamericana 1 (1985), 145 201.

15. E.S. Noussair, C.A. Swanson and J.F. Yang, Positive finite energy solutions
of critical semilinear elliptic problems, Canad. J. Math. 44 (1992), 1014 1029.

16. W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math.
Phys. 55 (1977), 147 163.

17. J.F. Yang, Positive solutions of a semilinear elliptic problem in exterior
domains, J. Differential Equations 106 (1990), 40 69.

18. J.F. Yang and X.P. Zhu, On the existence of nontrivial solution of a qualinear
elliptic boundary value problem for unbounded domains, Acta Math. Sci. 7 (1987),
341 359.

19. X.P. Zhu and J.F. Yang, The quasilinear elliptic equations on unbounded
domain involving critical Sobolev’s exponents, J. Partial Differential Equations 2
(1989).

20. X.P. Zhu and H.S. Zhou, Existence of multiple positive solution of an
inhomogeneous semilinear elliptic problem in unbounded domains, Proc. Roy Soc.
Edinburgh Sect. A 115 (1990), 301 318.

Laboratory of Nonlinear Analysis, Department of Mathematics, Huazhong
Normal University, Wuhan, 430079 P.R. CHINA

Laboratory of Nonlinear Analysis, Department of Mathematics, Huazhong
Normal University, Wuhan, 430079 P.R. CHINA

Department of Mathematics, Savannah State University, P.O. Box 20047,
Savannah, GA 31404
E-mail address: czhao@savstate.edu


