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THE RIEMANN INTEGRAL
USING ORDERED OPEN COVERINGS

ZHAO DONGSHENG AND LEE PENG YEE

ABSTRACT. We define the Riemann integral for bounded
functions defined on a general topological measure space.
When the space is a compact metric space the integral is
equivalent to the R-integral defined by Edalat using domain
theory.

0. Introduction. Edalat [1] defined a Riemann type integral on
a compact metric space, called the R-integral, using domain theory.
The integral so defined has applications in various fields such as dy-
namic systems and chaos, and the work in [1] has also inspired other
interesting research, see [2, 3, 5]. The main properties of this new
integral among others are: (1) If the space is [a, b], then this integral
coincides with the ordinary Riemann integral;(2) a bounded function
f is R-integrable if and only if it is continuous almost everywhere; (3)
if f is R-integrable then it is also Lebesgue integrable and the value of
the R-integral equals that of the Lebesgue integral of f . However, as
the definition of the R-integral and most of the proofs in [1] rely heav-
ily on very technical details of domain theory, this integral is hardly
accessible to those who know little about domain theory. Furthermore,
unlike the Riemann sum over a partition, the Riemann sum over a sim-
ple valuation, the key structure in defining the R-integral, lacks a clear
geometric interpretation. In this paper we define a Riemann type in-
tegral with a domain-free approach. To make it easier to compare this
integral with other known integrals we first introduce the more gen-
eral M-integral for a given collection M of some measurable subsets
satisfying certain conditions. The integral introduced here is defined
for bounded real valued functions on an arbitrary topological measure
space X which need not be a compact metric space as required in [1];
it is a generalization of the Riemann integral on intervals; a function
f is integrable if and only if it is continuous almost everywhere when
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the space is compact; when f is integrable it is Lebesgue integrable
and the values for these two integrals equal. All these then imply that
this integral is equivalent to the R-integral defined by Edalat when the
space X is a compact metric space.

1. Ordered coverings. Let X be a nonempty set and M be a
collection of subsets of X satisfying

(M1) X and ∅ are in M;

(M2) A,B ∈ M imply A ∩B ∈ M.

Definition 1.1. An ordered M-covering of X is an ordered tuple

A = 〈A1, A2, . . . , AN 〉

of sets Ai in M such that ∪N
i=1Ai = X. We also use the ordered chain

A1 < A2 < · · · < AN

to denote the above ordered covering. Here N could be any positive
integer.

Put ΔM = {A : A is an ordered M-covering of X}.

Remark 1.2. (1) The set Ai in an ordered covering could be empty.

(2) For any X and any M, 〈X〉 is an ordered M-covering.

Example 1.3. (1) If X is a topological space and M is the collection
of all open sets then M satisfies (M1) and (M2). Such ordered M-
coverings will be called ordered open coverings of X. Ordered open
coverings are used by Edalat in [2] to construct a sequence of simple
valuations that approaches a given measure.

(2) If X is a measure space and M is the set of all measurable sets
of X, then M satisfies (M1) and (M2). Such ordered M-coverings are
called ordered measurable coverings.

(3) Let X be a topological space and M the collection of all closed
subsets of X. Then M satisfies (M1) and (M2).
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(4) Let X be the set R of all real numbers. A subset A of X is said
to be of density 1 at a point c if

lim
h→0+

μ(A ∩ (c− h, c+ h))
2h

= 1.

Let M be the collection of all subsets A of X such that A is of density 1
at each point c ∈ A. Then M satisfies (M1) and (M2).

Definition 1.4. Let A=〈A1, A2, . . . , AN 〉 and B=〈B1, B2, . . . , BM 〉
be two ordered M-coverings of X. Define A ∗ B to be the ordered
covering in which the M-sets are Ai ∩Bj , 1 ≤ i ≤ N , 1 ≤ j ≤M , and
Ai ∩Bj < Ai′ ∩Bj′ if and only if either i < i′ or i = i′ and j < j′.

2. The Riemann sums over ordered coverings. We now define
the lower and upper Riemann sums of a bounded function defined on
a measure space and then use these to define the Riemann integral.

In the following we assume that (X,H, μ) is a measure space with
μ(X) = 1, and M is a collection of measurable subsets satisfying (M1)
and (M2). Let f : X → R be a bounded real valued function on X and
A ⊆ X. Define

inf f(A) = inf{f(x) : x ∈ A} and sup f(A) = sup{f(x) : x ∈ A}.
We assume that inf f(∅) = 0 and sup f(∅) = 0.

Definition 2.1. Let f : X → R be a bounded real valued function.
For each A = 〈A1, A2, . . . , AN 〉 ∈ ΔM, define

Sl(f,A) =
N∑

i=1

μ(A∗
i ) inf f(Ai) and Su(f,A) =

N∑
i=1

μ(A∗
i ) sup f(Ai),

where A∗
1 = A1 and A∗

i = Ai − ∪j<iAj , i = 2, 3, . . . , N .

We call Sl(f,A) and Su(f,A) the lower and upper Riemann sums of
f over A, respectively.

Lemma 2.2. Let A,B ∈ ΔM. Then, for any bounded function
f : X → R we have

Sl(f,A) ≤ Sl(f,A ∗ B) ≤ Su(f,A ∗ B) ≤ Su(f,A),
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and
Sl(f,B) ≤ Sl(f,A ∗ B) ≤ Su(f,A ∗ B) ≤ Su(f,B).

Proof. Let A = 〈A1, A2, . . . , AN 〉 and B = 〈B1, B2, . . . , BM 〉. Notice
that A∗B = {Ai ∩Bj} in which Ai ∩Bj < Ai′ ∩Bj′ if either i < i′, or
i = i′ and j < j′. So we have

(Ak ∩Bl)∗ = Ak ∩Bl −
⋃

(i,j)<(k,l)

Ai ∩Bj ,

where (i, j) < (k, l) if either i < k or i = k and j < l. Notice that
∪1≤j≤MBj = X, hence

⋃
(i,j)<(k,l)

Ai ∩Bj =
⋃
i<k

( ⋃
1≤j≤M

(Ai ∩Bj)
)
∪

⋃
j<l

(Ak ∩Bj)

=
⋃
i<k

(
Ai ∩

( ⋃
1≤j≤M

Bj

))
∪

(
Ak ∩

⋃
j<l

Bj

)

=
⋃
i<k

Ai ∪
(
Ak ∩

⋃
j<l

Bj

)
.

Hence

(Ak ∩Bl)∗ = (Ak ∩Bl) −
( ⋃

i<k

Ai ∪
(
Ak ∩

⋃
j<l

Bj

))
.

We first prove

Sl(f,A) ≤ Sl(f,A ∗ B) ≤ Su(f,A ∗ B) ≤ Su(f,A).

Now

Sl(f,A ∗ B)

=
∑

1≤i≤N,1≤j≤M

μ((Ai ∩Bj)∗) inf f(Ai ∩Bj)

= μ(A1 ∩B1) inf f(A1 ∩B1) + μ(A1 ∩B2 −A1 ∩ B1)
× inf f(A1 ∩B2) + · · ·
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+ μ

(
A1 ∩ BM −A1 ∩

⋃
j<M

Bj

)
inf f(A1 ∩ BM ) + · · ·

+ μ

(
Ak ∩B1 −

⋃
i<k

Ai

)
inf f(Ak ∩B1)

+ μ

(
Ak ∩B2 −

((
Ak ∩ B1) ∪

⋃
i<k

Ai

))
inf f(Ak ∩ B2) + · · ·

+ μ

(
Ak ∩ BM −

((
Ak ∩

⋃
j<M

Bj

)
∪

⋃
i<k

Ai

))

× inf f(Ak ∩ BM ) + · · ·
+ μ

(
AN ∩B1 −

⋃
i<N

Ai

)
inf f(AN ∩B1)

+ μ

(
AN ∩B2 −

(
(AN ∩ B1) ∪

⋃
i<N

Ai

))
inf f(AN ∩ B2) + · · ·

+ μ

(
AN ∩ BM −

((
AN ∩

⋃
j<M

Bj

)
∪

⋃
i<N

Ai

))

× inf f(AN ∩ BM ).

For each 1 ≤ k ≤ N , we have

μ

(
Ak ∩B1 −

⋃
i<k

Ai

)
inf f(Ak ∩B1)

+ μ

(
Ak ∩B2 −

(
(Ak ∩ B1) ∪

⋃
i<k

Ai

))
inf f(Ak ∩ B2) + · · ·

+ μ

(
Ak ∩ BM −

((
Ak ∩

⋃
j<M

Bj

)
∪

⋃
i<k

Ai)
)

inf f(Ak ∩ BM )

≥
[
μ

(
Ak ∩B1 −

⋃
i<k

Ai

)
+ μ

(
Ak ∩B2 −

(
(Ak ∩B1) ∪

⋃
i<k

Ai

))
+ · · ·

+ μ

(
Ak ∩ BM −

((
Ak ∩

⋃
j<M

Bj

)
∪

⋃
i<k

Ai

))]
inf f(Ak)
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= μ

((
Ak ∩B1−

⋃
i<k

Ai

)
∪

(
Ak ∩B2−

(
(Ak ∩ B1) ∪

⋃
i<k

Ai

))
∪ · · ·

∪
(
Ak ∩ BM −

((
Ak ∩

⋃
j<M

Bj

)
∪

⋃
i<k

Ai

)))
inf f(Ak)

= μ

(
Ak −

⋃
i<k

Ai

)
inf f(Ak),

where the last and the second to the last equation follow from the fact
that the sets

Ak ∩B1 −
⋃
i<k

Ai, Ak ∩B2 −
(
Ak ∩ B1 ∪

⋃
i<k

Ai

)
, . . . ,

Ak ∩ BM −
((

Ak ∩
⋃

j<M

Bj

)
∪

⋃
i<k

Ai

)

are pairwise disjoint and their union is Ak − ⋃
i<k Ai.

Since Ak − ∪i<kAi = A∗
k, it then follows that

Sl(f,A ∗ B) ≥ Sl(f,A).

Similarly we can prove

Su(f,A ∗ B) ≤ Su(f,A).

Now we prove
Sl(f,B) ≤ Sl(f,A ∗ B).

For each 1 ≤ l ≤M , the sum of the terms in Sl(f,A ∗ B) involving Bl

is

μ((A1 ∩ Bl)∗) inf f(A1 ∩ Bl) + μ((A2 ∩ Bl)∗) inf f(A2 ∩ Bl) + · · ·
+ μ((AN ∩ Bl)∗) inf f(AN ∩ Bl)

≥ [μ((A1 ∩ Bl)∗) + μ((A2 ∩ Bl)∗) + · · · + μ((AN ∩ Bl)∗)] inf f(Bl).

In addition, μ((A1 ∩ Bl)∗) + μ((A2 ∩ Bl)∗) + · · · + μ((AN ∩ Bl)∗)) =
μ((A1∩ Bl)∗∪ (A2∩ Bl)∗∪· · ·∪ (AN ∩ Bl)∗) because (A1∩ Bl)∗, (A2∩
Bl)∗, . . . , (AN ∩ Bl)∗ are pairwise disjoint.



RIEMANN INTEGRAL 2135

Notice that for any four sets A,B,C and D we have the equation
(A−B) ∩ (C −D) = A ∩ C − ((B ∩ C) ∪D). Then for each m ≤ N ,

(Am ∩Bl)∗ = (Am ∩ Bl) −
((

Am ∩
⋃
j<l

Bj

)
∪

⋃
i<m

Ai

)

=
(
Bl −

⋃
j<l

Bj

)
∩

(
Am −

⋃
i<m

Ai

)

= Bl
∗ ∩

(
Am −

⋃
i<m

Ai

)
.

Hence

(A1 ∩ Bl)∗ ∪ (A2 ∩ Bl)∗ ∪ · · · ∪ (AN ∩ Bl)∗

= Bl
∗ ∩

N⋃
i=1

(
Ai −

⋃
j<i

Aj

)

= Bl
∗ ∩

N⋃
i=1

Ai = Bl
∗ ∩X = Bl

∗.

Therefore, Sl(f,A∗B) ≥ ∑
j≤M μ(B∗

j ) inf f(Bj) = Sl(f,B). Similarly,
we can show Su(f,A ∗ B) ≤ Su(f,B). The proof is complete.

Corollary 2.3. For any A,B ∈ ΔM, Sl(f,A) ≤ Su(f,B).

Proof. This follows from

Sl(f,A) ≤ Sl(f,A ∗ B) ≤ Su(f,A ∗ B) ≤ Su(f,B).

Definition 2.4. Let M be a collection of measurable sets of X
satisfying (M1) and (M2). For any bounded function f : X → R define

(M)
∫
−
fdμ = Sup {Sl(f,A) : A ∈ M},

(M)
∫ −

fdμ = Inf {Su(f,A) : A ∈ M}.
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Remark 2.5. (1) From Corollary 2.3 it follows immediately that

(M)
∫
−
f dμ ≤ (M)

∫ −
f dμ.

(2) If M1 ⊆ M2, then obviously

(M1)
∫
−
f dμ ≤ (M2)

∫
−
f dμ ≤ (M2)

∫ −
f dμ ≤ (M1)

∫ −
f dμ.

(3) If in an ordered covering A = 〈A1, A2, . . . , AN 〉, Ai is contained
in the union of those Aj with j < i, then we can remove Ai from A
without effecting the values of the Riemann sums. In particular we can
always remove the empty set from A.

3. The M-integral. Now we can define a Riemann type integral for
each M satisfying the conditions (M1) and (M2) which includes both
the Riemann integral and the Lebesgue integral as special cases when
the functions considered are bounded.

Definition 3.1. Given a collection M of measurable sets satisfying
the conditions (M1) and (M2). A bounded real valued function f :
X → R is called M-integrable if

(M)
∫
−
f dμ = (M)

∫ −
f dμ.

In this case we call (M)
∫
− fdμ = (M)

∫ −
fdμ the M-integral of f on

X and denote it by

(M)
∫
f dμ.

Corollary 3.2. If M1 ⊆ M2 then by Remark 2.5, every M1-
integrable function is also M2-integrable, and in this case

(M1)
∫
f dμ = (M2)

∫
f dμ.
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For any scalar k and any two functions f and g we have

(M)
∫
−
k f dμ = k(M)

∫
−
f dμ, (M)

∫ −
k f dμ = k(M)

∫ −
f dμ

and

(M)
∫
−
f dμ+ (M)

∫
−
g dμ

≤ (M)
∫
−

(f + g) dμ ≤ (M)
∫ −

(f + g) dμ

≤ (M)
∫ −

f dμ+ (M)
∫ −

g dμ.

From these we obtain

Corollary 3.3. If f and g are M-integrable functions and k is any
scalar, then both kf and f + g are M-integrable, and in these cases

(M)
∫

(f + g) dμ = (M)
∫
f dμ+ (M)

∫
g dμ,

(M)
∫
k f dμ = k(M)

∫
f dμ.

The following lemma can be verified directly.

Lemma 3.4. Let f : X → R be any bounded function. Then the
following statements are equivalent:

(1) The function f is M-integrable.

(2) For any ε > 0 there exists A ∈ ΔM such that

Su(f,A) − Sl(f,A) < ε.

(3) There is a number b such that for any ε > 0 there exists
A = 〈A1, A2, . . . , AN 〉 ∈ ΔM such that

∣∣∣∣
N∑

i=1

μ(A∗
i )f(ξi) − b

∣∣∣∣ < ε
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holds for arbitrary points ξi ∈ Ai, i = 1, 2, . . . , N .

(4) For any ε > 0 there is A = 〈A1, A2, . . . , AN 〉 ∈ ΔM such that

N∑
i=1

μ(A∗
i )ω(f,Ai) < ε,

where ω(f,Ai) is the oscillation of f on Ai.

4. The Lebesgue integral for bounded functions. In this
section we consider the L-integral where L is the set of all measurable
sets of X. It turns out with no surprise that this is exactly the Lebesgue
integral.

The Lebesgue integral of a bounded real valued function can be
defined in various equivalent ways. Here we adopt the following
definition. For the case when X = [a, b] see [4, Definition 3.6].

Let s : X → R be a measurable function. The function s is a
simple function if it has a finite range, equivalently, if there are pairwise
disjoint measurable sets E1, E2, . . . , En of X which form a covering of
X and s =

∑n
k=1 ckχEk

, where χEk
is the characteristic function of

Ek. The Lebesgue integral of the simple function s =
∑n

k=1 ckχEk
is

defined by ∫
s dμ =

n∑
k=1

ck μ(Ek).

Definition 4.1. Let f be a bounded measurable function on X. The
lower and the upper Lebesgue integrals of f are defined by

∫
−
f = sup

{ ∫
φ dμ : φ ≤ f is a simple function

}
,

∫ −
f = inf

{∫
ψ dμ : ψ ≥ f is a simple function

}
.

If these two integrals are equal, then f is called Lebesgue integrable on
X and the common value is denoted by (L)

∫
X
f dμ, or simply

∫
f dμ.
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Lemma 4.2. A bounded function f is Lebesgue integrable if and
only if for any ε > 0 there is an ordered measurable covering A =
〈E1, E2, . . . , En〉 of X such that

Su(f,A) − Sl(f,A) < ε.

Proof. Suppose the condition is satisfied. For any ε > 0, let
A = 〈E1, E2, . . . , En〉 be an ordered measurable covering satisfying

Su(f,A) − Sl(f,A) < ε.

If necessary we can replace A by the ordered measurable covering
B∗ obtained by removing the empty sets from the covering A∗ =
〈E1, E2 − E1, . . . , Ek − ∪j<kEj , . . . , En − ∪j<nEj〉. This is possible
because Sl(f,A) ≤ Sl(f,A∗) ≤ Su(f,A∗) ≤ Su(f,A), and Sl(f,B∗) =
Sl(f,A∗), Su(f,B∗) = Su(f,A∗). Thus we can assume the sets Ei are
pairwise disjoint and nonempty. Define two simple functions ψ and φ
as follows:

ψ =
n∑

i=1

siχEi
, φ =

n∑
i=1

liχEi
,

where si = sup f(Ei), li = inf f(Ei). Obviously φ ≤ f ≤ ψ,
and

∫
φ dμ = Sl(f,A),

∫
ψ dμ = Su(f,A). This then deduces that∫ −

f − ∫
− f ≤ Su(f,A)−Sl(f,A) < ε. Thus f is Lebesgue integrable.

Conversely if f is Lebesgue integrable, then for any ε > 0 there are
simple functions φ and ψ such that

φ =
∑

ckχEk
≤ f ≤ ψ =

∑
siχBi

and ∫
ψ dμ−

∫
φ dμ < ε.

Let A be the ordered measurable covering formed by the pairwise
disjoint sets Ek ∩ Bi in any fixed order. Then one easily verifies that∫
φ dμ ≤ Sl(f,A) ≤ Su(f,A) ≤ ∫

ψ dμ, hence

Su(f,A) − Sl(f,A) ≤
∫
ψ dμ−

∫
φ dμ < ε.
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Corollary 4.3. A bounded function f is Lebesgue integrable if and
only if it is L-integrable. In this case the values for the two integrals
are equal.

Since L is the largest collection of measurable sets satisfying the
conditions (M1) and (M2), by Corollary 3.2 we deduce the following.

Corollary 4.4. Let M be a collection of measurable sets satisfying
the conditions (M1) and (M2). If a bounded function f is M-integrable
it is also Lebesgue integrable, and in this case

(M)
∫
f dμ = (L)

∫
f dμ.

5. The R-integral. In this section we consider an integral
for bounded real valued functions defined on a topological space X
equipped with a normed Borel measure μ, that is μ(X) = 1. Let O be
the collection of all open sets of X. The O-integrable functions will be
called R-integrable functions. We shall prove that the R-integral is a
generalization of the Riemann integral on intervals.

An ordered O-covering of X is called an ordered open covering.

Let f : X → R be a bounded function. Recall that, for each subset
A of X, the oscillation of f on A is defined by

ω(f,A) = sup{f(x) : x ∈ A} − inf{f(x) : x ∈ A},

and for each point a ∈ X, the oscillation of f at a is defined by

ω(f, a) = inf{ω(f, U) : U is an open neighborhood of a}.

It is well known that f is continuous at a if and only if ω(f, a) = 0.
For each ε > 0, the set D(f ; ε) = {x : ω(f, x) ≥ ε} is a closed subset of
X, and the set of discontinuity points of f , denoted by D(f), is

D(f) =
+∞⋃
n=1

D(f ; 1/n).
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A function f is said to be continuous almost everywhere if
μ(D(f)) = 0.

Lemma 5.1. If a function f is R-integrable, then f is continuous
almost everywhere.

Proof. Suppose, on the contrary, μ(D(f)) �= 0. Then μ(D(f ; 1/n)) �=
0 for some n. Now for any ordered open covering A = 〈A1, A2, . . . , AN 〉
of X,

Su(f,A) − Sl(f,A) =
N∑

k=1

μ(A∗
k)ω(f,Ak)

≥
N∑

k=1

μ(D(f ; 1/n) ∩A∗
k)ω(f,Ak).

Notice that D(f ; 1/n)∩A∗
k ⊆ D(f ; 1/n)∩Ak. If μ(D(f ; 1/n)∩A∗

k) �= 0,
then D(f ; 1/n) ∩Ak �= ∅. Since Ak is open, it follows that ω(f,Ak) ≥
1/n, thus μ(D(f ; 1/n) ∩ A∗

k)ω(f,Ak) ≥ μ(D(f ; 1/n) ∩ A∗
k)1/n. If

μ(D(f ; 1/n) ∩ A∗
k) = 0, then trivally μ(D(f ; 1/n) ∩ A∗

k)ω(f,Ak) =
μ(D(f ; 1/n) ∩A∗

k)1/n.

Hence we have

N∑
k=1

μ(D(f ; 1/n) ∩A∗
k)ω(f,Ak) ≥

N∑
k=1

μ(D(f ; 1/n) ∩A∗
k)

1
n

=
1
n

N∑
k=1

μ(D(f ; 1/n) ∩A∗
k) =

1
n
μ(D(f ; 1/n)).

The last equation follows from the fact that the A∗
k’s are pairwise

disjoint and their union is X. This contradicts the assumption that
f is R-integrable. Hence μ(D(f)) = 0.

For the converse conclusion to be true we need the measure to have
the following property:

For any measure zero set A and any ε > 0, there is an open set U ,
such that

(∗) A ⊆ U and μ(U) < ε.
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Lemma 5.2. Let X be a compact Hausdorff space with a normed
Borel measure μ satisfying the condition (∗). If f is bounded and
continuous almost everywhere, then f is R-integrable.

Proof. Assume that f is continuous almost everywhere and |f(x)| ≤
B for all x ∈ X, where B is a positive number. Now for each ε > 0,
by condition (∗) we can choose an open set A1 containing D(f) such
that μ(A1) < (ε/4B). As a closed subset of X, F = X − A1 is
compact, and f is continuous at every point in F . Thus there is an
open covering of F , say {A2, A2, . . . , AN} such that ω(f,Ak) < (ε/2)
for each k = 2, 3, . . . , N . Put A = 〈A1, A2, . . . , AN 〉. Then

Su(f,A) −Sl(f,A) =
N∑

k=1

μ(A∗
k)ω(f,AK) <

ε

4B
2B +

ε

2

N∑
k=2

μ(A∗
k) ≤ ε.

Hence f is R-integrable.

Theorem 5.3. Let X be a compact Hausdorff space with a normed
Borel measure satisfying the condition (∗). Then a bounded function is
R-integrable if and only if it is continuous almost everywhere.

It is well known that a bounded function defined on an interval [a, b]
is Riemann integrable if and only if it is continuous almost everywhere.
And in this case the Riemann integral and the Lebesgue integral of f
are equal. The Lebesgue measure μ on [a, b] satisfies the condition (∗).
Thus combining the above results we obtain the following corollary
which shows that the R-integral is a generalization of the Riemann
integral.

Corollary 5.4. A bounded function f on [a, b] is Riemann integrable
if and only if it is R-integrable. And in this case the values of the two
integrals of f are equal.

Remark 5.5. (1) Let X = [a, b] and I = {[c, d] : a ≤ c ≤ d ≤ b}∪{∅}.
Then I satisfies the conditions (M1) and (M2) and we can prove that
I-integral also coincides with the Riemann integral.

(2) Suppose B is a basis of a topological space X which includes X
and ∅, so B satisfies (M1) and (M2). It is natural to ask if B-integral
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is equivalent to the R-integral. Since B ⊆ O, by Corollary 3.2 if f is B-
integrable, then it isR-integrable and the values of the two integrals of f
are equal. Now suppose f is R-integrable and X is a compact Hausdorff
space with a normed Borel measure satisfying the condition (∗). Then
f is continuous almost everywhere by Theorem 5.3. Let B be a bound
of f . For each ε > 0 choose n > 0 with 1/n < (ε/2). Then there is
an open set U of X with μ(U) < (ε/4B) and D(f ; (1/n)) ⊆ U . There
exist U1, U2, . . . , Um ∈ B such that D(f ; (1/n)) ⊆ U1∪U2 · · ·∪Um ⊆ U
because D(f ; (1/n)) is a closed subset of the compact space X and
B is a basis. Let W = U1 ∪ U2 · · · ∪ Um. Now for each x ∈ W c we
have ω(f, x) < (1/n), so there exists an open neighborhood V of x
such that ω(f, V ) < (1/n), and this V can be chosen from B. Since
W c is compact it follows that there are Um+1, . . . , UN ∈ B such that
W c ⊆ ∪N

i=m+1Ui and ω(f, Ui) < (1/n) for each i = m+ 1, . . . , N . Let
A = 〈U1, U2, . . . , UN 〉. Then A is an ordered B-covering, and we have
the following equations and inequalities:

Su(f,A) − Sl(f,A) =
N∑

i=1

μ(U∗
i )ω(f, Ui)

=
m∑

i=1

μ(U∗
i )ω(f, Ui) +

N∑
i=m+1

μ(U∗
i )ω(f, Ui)

≤ 2B
m∑

i=1

μ(U∗
i ) +

1
n

N∑
i=m+1

μ(U∗
i )

≤ 2Bμ(U) +
ε

2
μ(X) ≤ 2B

ε

4B
+
ε

2
= ε.

Hence f is B-integrable.

Remark 5.6. In [1] Edalat defines a Riemann type integral on compact
metric spaces, also called R-integral, by using domain theory. He
also proves that a bounded function f is R-integrable if and only if
it is continuous almost everywhere [1, Theorem 6.5], and in this case
R-integral of f is equal to the Lebesgue integral of f [1, Theorem
7.2]. Thus when X is a compact metric space then our R-integral is
equivalent to Edalat’s R-integral, and the values of the two integrals
coincide for every integrable function.
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6. Computability of R-integral. Compared with the Lebesgue
integral, a distinct virtue of the Riemann integral is its computability,
as was pointed out by Edalat in [1]. In terms of the definition given in
this paper, computability means that one can choose a fixed countable
collection {Ai}∞i=1 of ordered open coverings such that for each R-
integrable function f , we have

∫
f dμ = lim

n→∞Sl(f,An) = lim
n→∞Su(f,An).

For compact metric spaces, Edalat has proved the computability of
R-integral by using the domain theory. Here we provide an elementary
proof for this fact.

In the following we assume that X is a compact metric space with a
normed Borel measure μ satisfying the condition (∗).

The main step in the proof is to show that if f is R-integrable then
for any ε > 0 there is δ > 0 such that for each ordered open covering
A = 〈A1, A2, . . . , AN 〉, if dim (Ai) < δ for i = 1, 2, . . . , N, then
Su(f,A) − Sl(f,A) < ε, where dim (Ai) = sup{d(x, y) : x, y ∈ Ai}.

To prove the main result we need the following lemma.

Lemma 6.1. Let f : X → R be a real valued function defined on a
compact metric space and ω(f, x) < δ hold for all x ∈ X. Then there
is an ε > 0 such that

|f(x) − f(y)| ≤ δ

whenever d(x, y) < ε.

Lemma 6.2. Let f : X → R be R-integrable. Then for each
ε > 0 there is δ > 0 such that for any ordered open covering A =
〈A1, A2, . . . , AN 〉 if dim (Ai) < δ for each i = 1, 2, . . . , N, then

Su(f,A) − Sl(f,A) < ε.

Proof. Suppose |f(x)| ≤ B for all x ∈ X. By Lemma 5.1, f is
continuous almost everywhere. Choose a number r > 0 with r < (ε/2).
The setD(f ; r) = {x ∈ X : ω(f, x) ≥ r} is closed and has zero measure.
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Take an open set U ⊇ D(f ; r) such that μ(U) < (ε/4B). Since X is
compact there is an open set V satisfying

D(f ; r) ⊆ V ⊆ cl (V ) ⊆ U, cl (V ) �= U,

where cl (V ) is the closure of V . Let δ1 = inf{d(x, y) : x ∈ cl (V ), y ∈
X − U}. Then δ1 > 0 and ω(f, x) < r for all x �∈ V . By Lemma 6.1,
it follows that there exists δ2 > 0 such that for any x, y ∈ V c, if
d(x, y) < δ2 then |f(x) − f(y)| ≤ r < (ε/2). Let δ = min{δ1, δ2}. Now
suppose A = 〈A1, A2, . . . , AN 〉 is an ordered open covering such that
dim (Ai) < δ for i = 1, 2, . . . , N . Then each Ai is either contained in
U or is contained in V c. Assume that Ai1 , Ai2 , . . . , Aim

are contained
in U and the rest of them are contained in V c. Then

Su(f,A) − Sl(f,A) =
m∑

j=1

μ(Aij

∗)(sup f(Aij
) − inf f(Aij

))

+
∑
k �=ij

μ(A∗
k)(sup f(Ak) − inf f(Ak))

≤ 2B
m∑

j=1

μ(Aij

∗) +
ε

2

∑
k �=ij

μ((Ak)∗).

Note that the sets Ai
∗ are pairwise disjoint sets, so

m∑
j=1

μ(A∗
ij

) = μ(∪j=1A
∗
ij

) ≤ μ(U).

Similarly ∑
k �=ij

μ(A∗
k) ≤ μ(V c).

Hence

Su(f,A) − Sl(f,A) ≤ 2Bμ(U) +
ε

2
μ(V c) ≤ ε

2
+
ε

2
= ε.

The proof is complete.

Theorem 6.3. For each n ∈ N choose an ordered open covering An

such that each Ai in An has diameter less than 1/n. Then a bounded
function f is R-integrable if and only if

lim
n→∞Sl(f,An) = lim

n→∞Su(f,An),
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and in this case

∫
f dμ = lim

n→∞Sl(f,An) = lim
n→∞Su(f,An).

Proof. By Lemma 3.4 the condition is evidently sufficient. The
necessity follows from Lemma 6.2. The equations

∫
f dμ = lim

n→∞Sl(f,An) = lim
n→∞Su(f,An)

obviously hold.

Remark 6.4. Since X is a compact metric space, for each n > 0
there exists an ordered open covering An such that for each Ai in
A, dim (Ai) < (1/n). Also by Lemma 2.2, if we define Bn+1 =
An+1 ∗Bn for n = 1, 2, . . . , then {Bn}∞n=1 is a sequence of ordered open
coverings that can replace {An}∞n=1. In addition, for each bounded
real valued function f we have two monotone sequences Sl(f,Bn) ↗
and Su(f,Bn) ↘, which converge to the same number when f is R-
integrable.
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