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INDUCED REPRESENTATIONS OF
LOCALLY C*-ALGEBRAS

MARIA JOITA

ABSTRACT. In this paper, by analogy with the case of
C*-algebras, we define the notion of induced representation
of a locally C*-algebra and then we prove the imprimitivity
theorem for induced representations of locally C*-algebras.

1. Introduction. Locally C*-algebras generalize the notion of
C*-algebra. A locally C*-algebra is a complete Hausdorff complex
topological x-algebra A whose topology is determined by its continuous
C*-seminorms in the sense that the net {a;},c; converges to 0 if and
only if the net {p(a;)}icr converges to 0 for every continuous C*-
seminorm p on A. The terminology “locally C*-algebra” is due to
Inoue, see [2]. Locally C*-algebras were also studied by Phillips, under
the name of pro -C*-algebra, see [7], Fragoulopoulou, and other people.

A representation of A on a Hilbert space H is a continuous -
morphism ¢ from A to L(H), the C*-algebra of all bounded lin-
ear operators on H. Given a locally C*-algebra A which acts non-
degenerately on a Hilbert module E over a locally C*-algebra B and
a non-degenerate representation (¢, H) of B, exactly as in the case
of C*-algebras, see [8], we construct a representation of A, called the
Rieffel-induced representation from B to A via E, and then we prove
some properties of this representation. Thus, we prove that the theorem
on induction in stages, Theorem 5.9 in [8], is also true in the context
of locally C*-algebras, Theorem 3.6. In Section 4, we prove that if
A and B are two locally C*-algebras which are strong Morita equiv-
alent, then any non-degenerate representation of A is induced from a
non-degenerate representation of B, Theorem 4.4.

2. Preliminaries. Let A be a locally C*-algebra, and let S(A)
be the set of all continuous C*-seminorms on A. If p € S(A),
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then A, = A/kerp is a C*-algebra in the norm induced by p and

A = lim S A,. The canonical map from A onto A, is denoted by
pe

mp and the image of a under 7, by a,.

An isomorphism from a locally C*-algebra A to a locally C*-algebra
B is a bijective, continuous *-morphism ® from A to B such that &'
is continuous.

If (¢, H) is a representation of A, then there is p € S(A) and a
representation (¢p, H) of A, such that ¢ = ¢,om,. We say that (¢, H)
is a representation of A, associated to (¢, H). The representation
(p, H) is non-degenerate if ¢(A)H is dense in H. Clearly, (p, H) is
non-degenerate if and only if (¢,, H) is non-degenerate. We say that
the representations (¢1, H1) and (p2, Hz) of A are unitarily equivalent
if there is a unitary operator U from H; onto Hs such that Uop;(a) =
wa(a) o U for all a € A.

Definition 2.1. A pre-Hilbert A-module is a complex vector space
FE which is also a right A-module, compatible with the complex algebra
structure, equipped with an A-valued inner product (-,-): Ex E — A
which is C- and A-linear in its second variable and satisfies the following
relations:

(i) (€&, m" = (n, ) for every &,n € E;
(ii) (£,€) > 0 for every € € E;
(iil) (£,&) = 0 if and only if £ = 0.

We say that F is a Hilbert A-module if E is complete with respect
to the topology determined by the family of semi-norms {||-[|, }pes(a);

where ||€][, = /P ((§,€)), § € E, Definition 4.1 of [7].

Let E be a Hilbert A-module. For p € S(A), the vector space
E, =E/&,, where &, = {£ € E;p((£, &) = 0}, is a Hilbert A,-module
with the action of A, on E, defined by (£ +&,) (a +kerp) = a + &,
and the inner product defined by (£ +&,,n+&p) = mp ((§,m)), [T,
Lemma 4.5]. The canonical map from E onto E, is denoted by o,
and the image of £ under o, by &,. Thus, for p,q € S(A), p > g,
there is a canonical morphism of vector spaces o,, from E, into
E, such that o, (&) = & & € Ep. Then {E,, Ay o0, @ Ep —



LOCALLY C*-ALGEBRAS 1925

E;.p > ¢;p,q € S(A)} is an inverse system of Hilbert C*-modules
in the following sense: 0,q(§pap) = 0pg(&p)Tpg(ap),&p € Ep,ap € Ap;
(0pa(&p)s pa(Mp)) = Tpa({€ps M) Eps My € Eps 0pp(&p) = &py &p € Ep
and o4 0 0pg = 0pr if p > ¢ > 7 and lim; E, is a Hilbert A-module
which may be identified with the Hilbert A-module E, [7, Proposition
44].

A Hilbert A-module F is full if the ideal of A generated by {{¢,n), &,n €
E} is dense in A.

Let E and F be two Hilbert A-modules. The set of all adjointable lin-
ear operators from F to F' is denoted by L (FE, F), and we write L4 (E)
for Ly(E, E). We consider on L 4(E, F') the topology determined by the

family of semi-norms {5} ,c54), where p(T) = sup { ITE], ; lill, < 1}.
Then L4(E,F) is isomorphic to lim; La,(Ep, Fy), [T, Proposition
4.7), and L (F) becomes a locally C*-algebra. The canonical maps
from La(E,F) to La,(Ey,, Fp), p € S(A) are denoted by (m,), and
(1), (T) (9,(€)) = o (TE).

We say that the Hilbert A-modules F and F' are unitarily equivalent
if there is a unitary operator in L4 (E, F).

A locally C*-algebra A acts nondegenerately on a Hilbert B-module
E if there is a continuous *-morphism ® from A to Lp(FE) such that
O(A)E is dense in E.

The closed vector subspace of L4(E, F) spanned by {0,¢; & € E,
n € F'}, where 0, ¢({) = n (£, (), is denoted by K 4(FE, F'), and we write
KA(FE) for K4(E,E). Moreover, the locally C*-algebras K4(E, F)
and lim. K A, (Ep, Fp) are isomorphic as well as the C*-algebras
(Ka(E,F)), and Ka,(Ep, Fp) for all p € S(A). Since K4s(E)E is
dense in E, K4(FE) acts non-degenerately on F.

3. Induced representations. Let A and B be two locally C*-
algebras, let E be a Hilbert B-module, let ® : A — Lg(F) be a non-
degenerate continuous *-morphism and let (¢, H) be a non-degenerate
representation of B. We will construct a non-degenerate representation
(4, gH) of A from (¢, H) via E.
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Construction 3.1 (for C*-algebras, see [8]). Define a sesquilinear
form (-,)§ on the vector space E ®uq H by

(€@ h1,n®@ha)§ = <h1,80(<§a77>15)h2>q,

where (-, '>90 denotes the inner product on the Hilbert space H. It is
easy to see that (E ®ag H) /Ny, where N, is the vector subspace of
E a5 H generated by {{ @ h € E @ H; (€@ h,E@h)5 = 0}, is a
pre-Hilbert space with the inner product defined by

(€@ h1+ N, ®ha + No)* = (£ @ ha,n® o) .
The completion of (E Qag H) /N, with respect to the inner product

(-,-Y¥ is denoted by gH. Let T € Lg(E). Define a linear map ge (T)
from E Qqg H into E Qg H by

ep(T)(E®@h) =TE® h.
If (g, H) is a representation of B, associated to (v, H), then we have

(50 (T) (€© h) 50 (T) (€ )G = (b0 (TETE) ) ).,
= (ha ({(m). (1)o(©), (7). (T)ou()) s, ) b
a(T) (h. oy ((04(©). 00(O)5, ) 1)

q(T) (h, (pq 0 7q) ({5, €) ) h><p
T (€0 hEoh);

©

IN

for all £ € E and h € H. From this we conclude that g (T) may
be extended to a bounded linear operator g (T) on gH. In this way
we have obtained a map gy from Lp(E) to L(gH). It is easy to see
that (go, gH) is a representation of Lg(E) on gH. Moreover, gy is
non-degenerate. Then gy o ® is a non-degenerate representation of A
on gH and it is denoted by ggo.

Definition 3.2. The representation (ggo, eH ) constructed above is
called the Rieffel-induced representation from B to A via E.
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Remark 3.3. 1. Let (¢1,H1) and (@2, H2) be two non-degenerate
representations of B. If (1, Hy) and (2, Hy) are unitarily equivalent,
then (gcpl, EHl) and (ggog, EHQ) are unitarily equivalent.

2. Let F be a Hilbert B-module which is unitarily equivalent to
E. If U is a unitary element in Lp(F,F) and A acts on F' by
a — U o ®(a) o U*, then the representations (égp, EH) and (?gp, FH)
of A are unitarily equivalent.

Proof. (1) If U is a unitary operator from H; onto Ha, then it is not
hard to check that the linear operator V from E ®,1, H1 onto E ®a1 Ho
defined by V(§ ® h) = £ ® Uh may be extended to a unitary operator
V from gH; onto gHsy and, moreover, V of ¢1(a) = #pa(a) oV for all
ain A.

(2) Consider the linear operator W from E ®a, H onto F' Qa1 H
defined by W(§ ® h) = U¢ ® h. Then we have

(Fe(a) o W) (€@ h) = (Uo®(a)oU*) (U @ h=U (2 (a)€) ®h
=W (@ (a)§®h) = (W o p(a) (€@ h)

for all @ in A, £ in E and h in H. It is not difficult to see that
W may be extended to a unitary operator from gH onto pH and
Ao(a) oW =W o p(a) for all @ in A. o

Proposition 3.4. Let (p, H) be a non-degenerate representation of
B. If (¢4, H) is a non-degenerate representation of By associated to
(p, H), then there is p € S(A) such that A, acts non-degenerately on

E, and the representations (¢, gH) and (gzapq o Wp,EqH) of A are
unitarily equivalent.

Proof. Define a linear map U from E ®,1s H into E; ®ag H by
U®h)=0,(&) @ h.
Since
W Een),UEon)§ =(hes(0,),00©)p,) )
(&g h),

©
0

©
= (h, (pg 0 mq)
=(RhERN

< —~
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for all £ € E and h € H, U may be extended to a bounded linear
operator U from gH onto g H. It is easy to verify that U is unitary
and U o o(T) = (p,p0(my),) (T) o U for all T € Lp(E). Hence
the representations (gp, gH) and (quoq o (mq), 7EqH) of Lp(E) are
unitarily equivalent.

The continuity of ® implies that there is p € S(A) such that
g(®(a)) < p(a) for all @ in A and so there is a *-morphism ®,, from A, to
Lp,(E,) such that ®,om, = (7,), o®. Moreover, ®, is non-degenerate.
From

Uog¢(a) = Uop o(®(a) = (5,040 (7y),) (2(a) o U
= (Eq@q (@ (mp (a)))) olU = (gjsaq o Wp) (a)oU

for all @ € A, we conclude that the representations (’égp, pH ) and
(g: pqomp, B, H ) of A are unitarily equivalent and the proposition is
proved. ]

Corollary 3.5. If (¢, H) = (Dicrvi, DicrH;), then (é(p,EH) is
unitarily equivalent to (@iel é%‘, Dier EHZ-).

Proof. Let (¢4, H) be a representation of B, associated to (¢, H).
It is easy to see that there is a representation (¢4, H;) of B, such
that ¢, 0o my = ¢; for each ¢ € I. Moreover, ¢, = ®icrpiq- By
Proposition 3.4, there is a p € S(A) such that the representations

(’égp, pH ) and (g:’ pqomp, g, H ) of A are unitarily equivalent as well

as the representations (ggpi, EH) and (g:’ $iq © Tp, E, Hz) forall ¢ € 1.

. A
On the other hand, we know that the representations ( ES 0g, B, H )
and (EBZ-GI 2:%,1, Dier E, Hz> of A, are unitarily equivalent, [8, Corol-
lary 5.4]. This implies that the representations (2{ Pq 0 Tp, B, H ) and

(@iel gZ<piq 0 Tp, Dier Equ) of A are unitarily equivalent and the
corollary is proved. |
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Let A, B and C be three locally C*-algebras, let E be a Hilbert
B-module and F' a Hilbert C-module and let ®; : A — Lp(FE) and
®; : B — L¢(F) be non-degenerate continuous s-morphisms. If
E ®¢, F is the inner tensor product of E and F using P, then
E®e, F=lim -~ E®g,. F, and thelocally C*-algebras Lo (E®q, F)

resS(C)
and lim S L¢, (E ®a,, F,) are isomorphic as well as K¢ (E ®¢, F)
re
and lim e K¢ (E ®g,, F.), where ®o. = (m.), o Po, see [3].
re

Moreover, there is a non-degenerate continuous *-morphism (®5), from
Lp(E) to Lo (E®g, F) defined by (®2), (T) (§ ®a, 1) = TE@g, 1. Let
® = (P3), o ;. Then P is a non-degenerate continuous #-morphism
from A to Lc(E R, F)

Theorem 3.6. Let A, B,C,E,F, ®; and P, be as above. If
(p, H) is a non-degenerate representation of C, then the representations
(égﬁ,gH), where G = E Rg, F, and (’é (E(p) 7E(FH)) of A are
unitarily equivalent.

Proof. Let (¢, H) be a non-degenerate representation of C,. associ-
ated to (p, H). Then there is ¢ € S(B) and a non-degenerate continu-
ous s-morphism ¥y, : By — L, (F)) such that ¥y 0 1y = (7,), 0 P
and there is p € S(A) and a non-degenerate continuous *-morphism
Uy, : Ay — Lp,(E,) such that ¥y, om, = (7y), o ®; and a non-
degenerate continuous s-morphism ®, : A, — L¢, (G,) such that
¢, om, = (m,), 0 ®.

According to Proposition 3.4, the representations (éw,gH) and

(?;f@r o, G, H ) of A are unitarily equivalent as well as the repre-
sentations (gnp, FH) and (?q P O Ty, FH) of B. Since the representa-

tions (%p, rH ) and (?: oromg, g, H ) of B are unitarily equivalent, by
Proposition 3.4 and Remark 3.3 (1) we deduce that the representations
(2 (By) . g (rH)) and (25 (?f @r) o Ty, E, (FTH)) of A are unitarily
equivalent.

To show that the representations (&¢,¢H) and (4 (B¢) .5 (rH))
of A are unitarily equivalent it is sufficient to prove that the repre-

sentations (éi(pr, GTH> and (g;’ (?:gp,«) o (FTH)) of A, are unitar-
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ily equivalent. But we know that the representations (iﬁf(pr, x, H ),
where X, = E;, ®y,, F,, and (}3: (?fcpr) \ B, (FTH)) of A, are uni-

tarily equivalent, [8, Theorem 5.9], and so it is sufficient to prove that
the representations (;’Zgor, x, H ) and (é” Or,a, H ) of A, are unitarily
equivalent.

It is not hard to check that the linear map U : G, — X, defined by
U (£ ®a,, 1) = 04 () @w,, 1 is a unitary operator in L¢, (G, X;) and
moreover, (®a,), (T) = U* o (¥a,), ((mg), (T)) o U for all T in Lp(E),
see the proof of Proposition 4.4 in [3]. Since

Dy (mp(a)) = (), ((P2), (@ ())) (®2,), (P1(a))
)

=U" O(‘Ij2q) ( @1 (a ))
— U* o ((Uay), owlp)( n(a)) o

O

for all @ in A and by Remark 3.3 (2), the representations (g’; or,a. H )

and ()A(’: ©r, x, H ) of A, are unitarily equivalent and the theorem is
proved. a

4. The imprimitivity theorem. Let A and B be locally C*-
algebras. We recall that A and B are strongly Morita equivalent,
written A ~jp; B, if there is a full Hilbert A-module E such that
the locally C*-algebras B and K4(E) are isomorphic. The strong
Morita equivalence is an equivalence relation in the set of all locally
C*-algebras, see [4]. Also the vector space K4(F, A), denoted by FE, is
a full Hilbert K 4(F)-module with the action of K4(F) on K4(E, A)
defined by (T,S) - ToS ,S € Kao(F) and T € Ka(FE,A), and the
inner product defined by (T, S) =T*0 S, T,S € Ka(FE, A). Moreover,

the linear map a from A to Kg , (g (E) defined by a(a) (0b.¢) = Oab.e

is an isomorphism of locally C*-algebras, see [4]. Since the locally C*-

algebras B and K 4(F) are isomorphic, E may be regarded as a Hilbert
B-module.

It is not hard to check that the linear operator U, from (E) to E;,
p
defined by U, (T'+ ker (p)) = (mp), (T') is unitary. Thus the Hilbert
K 4,(Ep)-modules (E) and EZ may be identified.
P
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Lemma 4.1. If A ~y B, then for each p € S(A) there is a g, €
S(B) such that A, ~n By,. Moreover, the set {q, € S(B);p € S(A)
and A, ~n By, } is a cofinal subset of S(B).

Proof. If ® is an isomorphism of locally C*-algebras from B onto
K 4(F), then the map po®, denoted by gp, is a continuous C*-seminorm
on B. Since kerm, = ker(m,), o ®, there is a unique continuous *-
morphism ®, from B, onto K4, (E,) such that &, om, = (m,), o ®.
Moreover, @, is an isomorphism of C*-algebras, and since F), is a full
Hilbert A,-module, we conclude that A, ~y B, .

To show that {¢q, € S(B);p € S(A) and A, ~n By, } is a cofinal
subset of S(B), let ¢ € S(B). Then there is py € S(A) such that

q (271 (@ (1)) < po (2 (b))

for all b € B, whence, since ¢ (27 (® (b)) = q(b) and po (® (b)) =
p, (b), we deduce that ¢ < g,. O

Remark 4.2. If F is a Hilbert B-module which gives the strong Morita
equivalence between the locally C*-algebras A and B, then E, gives
the strong Morita equivalence between the C*-algebras A, and B, .

Theorem 4.3. Let A and B be two locally C*-algebras such that

A ~p B and let (o, H) be a non-degenerate representation of A.
Then (@, H) is unitarily equivalent to <% (By) ’E(EH)>’ where E is
a Hilbert A-module which gives the strong Morita equivalence between
A and B.

Proof. Let (¢p, H) be a non-degenerate representation of A, as-
sociated to (¢, H). By Lemma 4.1 there is a ¢ € S(B) such that
Ap, ~um By, Moreover, the Hilbert A,-module E, gives the strong
Morita equivalence between A, and B,;, Remark 4.2. Then the rep-

resentations (¢,, H) and <%’i (gi cpp) B (Ep H)> of A, are unitarily
P P
equivalent, [8, Theorem 6.23] and by Remark 3.3 (2), the represen-
. A, (B, A, (Bqg
tations </Evp (Epgap> "B, (EPH)) and <Ep (Epgpp) B, (EpH)> of A,
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are unitarily equivalent. From these facts we conclude that the repre-

. A, (B o
sentations (p, H) and (EZ (Eigop) °Tp 7 (EPH)) of A are unitarily
equivalent.

On the other hand, according to Proposition 3.4, the representations
(ggo,E H) and (gz pp O Ty, EpH) of B are unitarily equivalent. From
this, using Remark 3.3 (1) and Proposition 3.4, we deduce that the

. Ap (Bg
representations (‘% (o) 5 (EH)) and (Ep (Ep‘Pp> © Tps 35 (EPH)) of

A are unitarily equivalent and the theorem is proved. a

Theorem 4.4. Let A and B be locally C*-algebras. If A ~pr B,
then there is a bijective correspondence between equivalence classes of
non-degenerate representations of A and B which preserves direct sums
and irreducibility.

Proof. Let E be a Hilbert A-module which gives the strong Morita
equivalence between A and B. By Theorem 4.3 and Remark 3.3 (1)
the map from the set of all non-degenerate representations of A to
the set of all non-degenerate representations of B which maps (p, H)
onto (gnp, eH ) induces a bijective correspondence between equivalence
classes of non-degenerate representations of A and B. Moreover, this
correspondence preserves direct sums, Corollary 3.5.

Let (¢, H) be an irreducible, non-degenerate representation of A.
Suppose that (ggo, EH) is not irreducible. Then (gcp, EH) = (1 ® Y2,
H, @ H3) and by Corollary 3.5 and Theorem 4.3 the representations

(%1&1 69% Yo, zH1 ®5 Hg) and (¢, H) of A are unitarily equivalent, a
contradiction. So the bijective correspondence defined above preserves
irreducibility.
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