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A NEW PROOF OF LIEBMANN CLASSICAL
RIGIDITY THEOREM FOR SURFACES

IN SPACE FORMS

JUAN A. ALEDO, LUIS J. ALÍAS AND ALFONSO ROMERO

ABSTRACT. In this paper we provide a new direct proof
of the Liebmann classical rigidity theorem for surfaces in
space forms, showing that the only compact surfaces with
constant Gaussian curvature which are immersed into the
Euclidean space E3, into the hyperbolic space H3, or into an
open hemisphere S3

+ are the totally umbilical round spheres.
Our proof is an application of the Gauss-Bonnet theorem
along with a formula involving the Gaussian curvatures of
the first and second fundamental forms of the surface, which
is interesting per se.

1. Introduction. In 1897 Hadamard [6] proved that an ovaloid,
that is, a compact connected surface with positive Gaussian curvature,
in the three-dimensional Euclidean space E3 is a topological sphere. In
view of this result, it was natural to look for conditions which allowed
one to conclude that such a surface was necessarily a totally umbilical
round sphere. In 1899 Liebmann [11] obtained his celebrated rigidity
result, which states that every compact connected surface in E3 with
constant Gaussian curvature is necessarily a totally umbilical round
sphere.

The most famous proof of Liebmann theorem was given by Hilbert,
just a short time after Liebmann’s original proof, using local computa-
tions [7, Appendix 5], see also [4], as well as [3, Theorem 1, p. 317] for
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(Grant No. PI-3/00854/FS/01).

The second author was partially supported by grant No. BFM2001-2871-C04-02,
MCYT, Spain, and by Grant No. PI-3/00854/FS/01, Fundación Séneca, CARM,
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an accessible reference). On the other hand, Minkowski formulas pro-
vide one with another nice proof of Liebmann result, now from a global
approach, see for instance [8, Theorem 6.2.10, p. 137], [10, Theorem
5.3] or [13, Corollary 6.8, p. 218].

Afterwards, there have been different generalizations of Liebmann
classical rigidity theorem from several points of view for surfaces, and
more generally hypersurfaces, into the Euclidean space [9, 15, 16,
18, 19], or into the hyperbolic space or an open hemisphere [12].
Nevertheless, it would be desirable a direct simple proof of the result
using the same techniques as in [9, 18, 19], which could be easily
understood for beginning researchers. Our main objective in this paper
is to provide with such a proof. Specifically, we will give a proof of the
following version of Liebmann classical rigidity result for the case of
surfaces in space forms.

Theorem 1. The only compact surfaces which are immersed into
the Euclidean space E3, into the hyperbolic space H3, or into an
open hemisphere S3

+ with constant Gaussian curvature are the totally
umbilical round spheres.

Our proof follows from a nice reasoning as a consequence of a
formula involving the Gaussian curvatures of the first and second
fundamental forms of the surface (10), jointly with the Gauss-Bonnet
theorem. Although the formula (10) was already known for the case
of convex hypersurfaces into Euclidean space [18], we prove it from a
modern setting according to the development of the current differential
geometry. Actually, the formula (10), and its n-dimensional version
involving the scalar curvature (9), is obtained in Section 2 from a
detailed study of the relationship between the Riemannian curvature
tensors and the Ricci tensors of the first and second fundamental forms
of the hypersurface.

In our opinion, formulas (9) and (10) are interesting per se, and they
also have interest in affine differential geometry. In that context, the
metric defined by the second fundamental form II is the so-called rel-
ative metric induced from the Euclidean normalization; the equiaffine
normalization leads to the form G−1/(n+2)II [17], where G stands for
the Gauss-Kronecker curvature of the hypersurface. Therefore, a care-
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ful study of the geometric properties of the metric defined by II is of
interest also in affine differential geometry, see [1], and it should be use-
ful to have a modern proof of formulas (9) and (10). For that reason, a
second interest of this paper is to provide with such a proof of formu-
las (9) and (10), writing and proving them in a more intrinsically way.
Our proof here is a nice application of connection theory using uniquely
elementary properties of Riemannian connections on manifolds.

2. Riemannian curvature of the second fundamental form.
Our objective in this section is to compute the curvature of the second
fundamental form of a surface, in the case where the second fundamen-
tal form defines a non-degenerate pseudo-Riemannian metric on the
surface. Although we are particularly interested in the case of surfaces
immersed into a Riemannian three-space form, it is not much extra
work to consider the more general case of hypersurfaces of a Rieman-
nian space form with non-degenerate second fundamental form. That
computation was first made by Schneider [18] for the case of convex
hypersurfaces in Euclidean space, using old fashion index gymnastics.
Although more general, our proof here follows essentially similar ideas
to Schneider’s proof, but it is written using modern and conceptual
terminology and classical results about surfaces expressed in terms of
connections.

In order to set up the notation to be used later on, let us denote by
M(c) the standard model of an (n+ 1)-dimensional Riemannian space
form of constant curvature c, c = 0, 1,−1. That is, M(c) denotes the
Euclidean space En+1 when c = 0, the sphere Sn+1 when c = 1, and the
hyperbolic space Hn+1 when c = −1. Let us consider M an orientable
hypersurface immersed into M(c), and let N be a globally defined unit
normal field on M . As usual, we agree to denote by 〈, 〉 both the
constant curvature Riemannian metric on M(c) and the Riemannian
metric induced on M . In what follows, we will assume that the second
fundamental form II of the hypersurface is non-degenerate, so that

II(X,Y ) = 〈AX, Y 〉, for every tangent vector field X,Y ∈ X(M),

defines a pseudo-Riemannian metric on M , where A denotes the shape
operator of M associated to the chosen normal field N . Observe that
the condition that II is non-degenerate is equivalent to the fact that
G = detA �= 0, and it means that the principal curvatures of the
hypersurface do not vanish on M .
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Let us consider on M both the Levi-Civita connection ∇ of the
Riemannian metric 〈, 〉 and the Levi-Civita connection ∇II of the
pseudo-Riemannian metric II. Our aim is to study the relationship
between their Riemannian curvatures. To do that, let us denote by

T (X,Y ) = ∇II
XY −∇XY, X, Y ∈ X(M),

the difference tensor of the Levi-Civita connections, which is a sym-
metric tensor on M since ∇ and ∇II are both torsion-free. Using the
well-known Koszul formula for ∇II [14, Theorem 3.11, p. 61], it follows
that

II(∇II
XY, Z) = 〈A(∇II

XY ), Z〉 = 〈A(∇XY ), Z〉 +
1
2
〈(∇A)(Y,X), Z〉

+
1
2
〈(∇A)(Z, Y ), X〉 − 1

2
〈(∇A)(X,Z), Y 〉,

for X,Y, Z ∈ X(M), where in our notation (∇A)(X,Y ) = (∇Y A)X.
Since M(c) has constant curvature, Codazzi equation implies that ∇A
is symmetric [19, Corollary 4.34, p. 115], and therefore 〈(∇A)(X,Y ),
Z〉 is symmetric in all three variables, so that the expression above
simplifies to

〈A(∇II
XY ), Z〉 = 〈A(∇XY ), Z〉 +

1
2
〈(∇A)(X,Y ), Z〉,

or equivalently

(1) T (X,Y ) =
1
2
A−1((∇A)(X,Y )),

for every tangent vector field X,Y ∈ X(M).

Now, let us denote by R and RII the Riemannian curvature tensors
of 〈, 〉 and II, respectively. By a direct computation we obtain that

(2) RII(X,Y )Z = R(X,Y )Z +Q1(X,Y )Z +Q2(X,Y )Z,

where

Q1(X,Y )Z = (∇II
Y T )(X,Z) − (∇II

XT )(Y, Z),
Q2(X,Y )Z = T (X,T (Y, Z)) − T (Y, T (X,Z)).
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Here we are following O’Neill’s choice of the Riemannian curvature
tensor, that is, R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z. Contracting in (2)
we obtain

RicII(X,Y ) = Ric (X,Y ) + Q̂1(X,Y ) + Q̂2(X,Y ),

where Ric and RicII denote, respectively, the Ricci tensor of 〈, 〉 and II,
and

Q̂1(X,Y ) = tr
(
Z �→ Q1(X,Z)Y

)
,

Q̂2(X,Y ) = tr
(
Z �→ Q2(X,Z)Y

)
.

Taking now traces with respect to the (pseudo-Riemannian) metric II
it follows that

(3) SII = trII(Ric) + trII(Q̂1) + trII(Q̂2),

where SII = trII(RicII) stands for the scalar curvature of II, and the
trace trII of a 2-covariant tensor L is, as usual, the trace of the (1,1)-
tensor L� defined by

II
(
L�(X), Y

)
= L(X,Y ), X, Y ∈ X(M).

Now, let us compute independently each term in (3). We will do this
by computing in a local 〈, 〉-orthonormal frame on M that diagonalizes
A. It is worth pointing out that such a frame does not always
exist; problems occur when the multiplicity of the principal curvatures
changes (also the principal curvatures are not necessarily everywhere
differentiable). For that reason, we will work on the subset M0 of M
consisting of points at which the number of distinct principal curvatures
is locally constant. Let us recall that M0 is an open dense subset of
M , and in every connected component of M0, the principal curvatures
form mutually distinct smooth principal curvature functions and, for
such a principal curvature κ, the assignment p �→ Vκ(p)(p) defines a
smooth distribution, where Vκ(p)(p) ⊂ TpM denotes the eigenspace
associated to κ(p), see, for instance, [2, Paragraph 16.10]. Therefore,
for every p ∈M0 there exists a local 〈, 〉-orthonormal frame defined on
a neighborhood of p that diagonalizes A, that is, {e1, . . . , en} such that
Aei = κiei, with each κi �= 0 smooth. Therefore, Ei = (1/

√|κi|)ei,
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for 1 ≤ i ≤ n, defines a local II-orthonormal frame, with signature
εi = II(Ei, Ei) = signκi. Using this frame, we can compute each term
in (3).

For the first term in (3), let us recall that the Gauss equation of the
hypersurface [19, Corollary 4.20, p. 107] implies that its Ricci curvature
can be expressed in terms of the constant curvature c of M(c) and the
shape operator A by

Ric(X,Y ) = c(n−1)〈X,Y 〉+nH〈AX, Y 〉−〈AX,AY 〉, X, Y ∈ X(M),

where as usual H = (1/n)tr (A) stands for the mean curvature of the
hypersurface. It follows from here that

trII(Ric) =
n∑

i=1

εiRic(Ei, Ei) =
n∑

i=1

1
κi

Ric(ei, ei)

= c(n− 1)
( n∑

i=1

1
κi

)
+ n2H −

n∑
i=1

κi.

That is,

(4) trII(Ric) = (n− 1)
(
nH +

cσn−1

G

)
,

where G = detA �= 0 is the Gauss-Kronecker curvature of M and

σn−1 =
∑

i1<···<in−1

κi1 · · ·κin−1

is the (n− 1)th elementary symmetric function of the principal curva-
tures.

On the other hand, we claim that the second term in (3) vanishes,

(5) trII(Q̂1) = 0.

In fact, it follows from (1) that

II
(
T (X,Y ), Z

)
=

1
2
〈(∇A)(X,Y ), Z〉
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for all X,Y, Z ∈ X(M). Consequently by the Codazzi equation
II

(
T (X,Y ), Z

)
is symmetric in all three variables, and therefore

II
(
(∇II

UT )(X,Y ), Z
)
, X, Y, Z, U ∈ X(M),

is symmetric in X,Y, Z. Using this fact, we can easily compute the
second term in (3), obtaining (5),

trII(Q̂1)

=
n∑

i,j=1

εiεjII(Q1(Ei, Ej)Ei, Ej)

=
n∑

i,j=1

εiεjII((∇II
Ej
T )(Ei, Ei), Ej) −

n∑
i,j=1

εiεjII((∇II
Ei
T )(Ej , Ei), Ej)

=
n∑

i,j=1

εiεjII((∇II
Ei
T )(Ej , Ej), Ei) −

n∑
i,j=1

εiεjII((∇II
Ei
T )(Ej , Ei), Ej)

= 0.

Finally, let us compute the third term in (3). By the symmetries of
II(T (X,Y ), Z), we have

trII(Q̂2)

=
n∑

i,j=1

εiεjII(Q2(Ei, Ej)Ei, Ej)

=
n∑

i,j=1

εiεjII(T (Ei, T (Ej , Ei)), Ej) −
n∑

i,j=1

εiεjII(T (Ej , T (Ei, Ei), Ej)

=
n∑

i,j=1

εiεjII(T (Ei, Ej), T (Ei, Ej)) −
n∑

i,j=1

εiεjII(T (Ei, Ei), T (Ej, Ej))

= II(T, T ) − II
(
trII(T ), trII(T )

)
,

where trII(T ) is the vector field obtained from the II-contraction of T .
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Remark 2. Observe that II is in general a pseudo-Riemannian metric.
For that reason, we prefer to write II(T, T ) and II

(
trII(T ), trII(T )

)
instead of ||T ||2II and ||trIIT ||2II, respectively. We will reserve that
terminology for the case where II is Riemannian.

It only remains to compute trIIT . Observe that

(6) trII(T ) =
n∑

i=1

εiT (Ei, Ei) =
1
2
A−1

( n∑
i=1

1
κi

(∇A)(ei, ei)
)
.

On the other hand, log |G| =
∑

i log |κi| is a smooth function on M
and, for every X ∈ X(M), we have

X(log |G|) =
∑

i

1
κi
X(κi) =

∑
i

1
κi

〈(∇A)(ei, ei), X〉,

where we have used again Codazzi equation. This implies that

1
G

II(X,∇IIG) =
1
G

〈X,A(∇IIG)〉 =
∑

i

1
κi

〈(∇A)(ei, ei), X〉,

for every X ∈ X(M), which by (6) means that

trII(T ) =
1

2G
∇IIG.

Consequently, we have

(7) trII(Q̂2) = II(T, T ) − 1
4G2

II(∇IIG,∇IIG).

Summing up, using (4), (5) and (7) in formula (3) we conclude that
the scalar curvature of II is given by

(8) SII = (n− 1)
(
nH +

cσn−1

G

)
+ II(T, T ) − 1

4G2
II(∇IIG,∇IIG).

Recall that a hypersurface in a Riemannian space form M(c) is said
to be convex if its second fundamental form is everywhere positive (or
negative) definite. In particular, every convex hypersurface in M(c)
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is orientable and, by choosing the appropriate orientation, II defines a
Riemannian metric on M . As an application of (8), we can state the
following result.

Proposition 2. Let M be a convex hypersurface immersed into
M(c). Then the scalar curvature SII of the Riemannian metric defined
by its second fundamental form II is given by

(9) SII = (n− 1)
(
nH +

cσn−1

G

)
+ ||T ||2II −

1
4G2

||∇IIG||2II,

where H and G stands for the mean and the Gauss-Kronecker curva-
tures of M , respectively, σn−1 is the (n − 1)th elementary symmetric
function of its principal curvatures, ||T ||2II is the square II-length of the
difference tensor T = ∇II −∇, and ∇IIG denotes the II-gradient of G.

In [18] Schneider gave a proof of formula (9) for the case of Euclidean
hypersurfaces, c = 0. Schneider’s proof follows the ideas of Eisenhart
[5], see also [5, Exercise I.18, p. 33], and makes use of local computa-
tions and index gymnastics. One of the main interests of this paper is
to give a modern proof of formula (9), writing and proving it in a more
intrinsically way. Our proof here is a nice application of connection the-
ory using uniquely elementary properties of Riemannian connections on
manifolds.

3. Proof of Theorem 1. In this section we will derive Liebmann
classical rigidity theorem for surfaces in space forms as a nice applica-
tion of our formula (9) and Gauss-Bonnet theorem. First of all, observe
that in the two-dimensional case, SII = 2KII, where KII is the Gaus-
sian curvature of II, σn−1 = σ1 = 2H and G = K − c, where K is the
Gaussian curvature of the surface. Therefore, our formula (9) simplifies
to

(10) KII =
HK

K − c
+

1
2
||T ||2II −

1
8(K − c)2

||∇IIK||2II.

On the other hand, let us observe that every compact oriented surface
M immersed into the Euclidean space E3, into the hyperbolic space H3,
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or into an open hemisphere S3
+ admits at least one elliptic point p0 ∈M

where
K(p0) > 0 and K(p0) > c.

When c = 0, such an elliptic point is precisely the point where the
square of the distance to the origin attains its maximum. Certainly,
let ψ : M → E3 be an immersion of a compact oriented surface into
the Euclidean space, and let u = 〈ψ, ψ〉 be the square of the distance
to the origin. Then, the gradient and the Hessian of u are respectively
given by

∇u = 2ψ� and ∇2u(X,Y ) = 2(〈X,Y 〉 + 〈ψ,N〉〈AX, Y 〉),

where ψ� = ψ−〈ψ,N〉N denotes the tangent component of the position
vector field. In particular,

u = |ψ�|2 + 〈ψ,N〉2 =
1
4
|∇u|2 + 〈ψ,N〉2.

Therefore, at a point p0 ∈ M where u attains its maximum, it
follows from ∇u(p0) = 0 that u(p0) = 〈ψ,N〉2(p0) > 0, so that
we may assume, by changing the orientation of M if necessary, that
〈ψ,N〉(p0) = −√

u(p0) < 0. Moreover, ∇2u(v, v) ≤ 0 for every tangent
vector v ∈ Tp0M . Let {e1, e2} be the basis of principal directions at
p0, and let us denote its corresponding principal curvatures by κ1(p0)
and κ2(p0). Then, ∇2u(ei, ei) ≤ 0 implies that

κi(p0) ≥ 1√
u(p0)

> 0, i = 1, 2,

and K(p0) = κ1(p0)κ2(p0) ≥ 1/u(p0) > 0.

Analogously, in the case where c = −1, such an elliptic point is the
point where the hyperbolic distance to a fixed arbitrary point attains its
maximum. In order to see it, let us consider the Minkowskian model of
the hyperbolic space. Let E4

1 be the four-dimensional Minkowski space
endowed with canonical coordinates (x0, x1, x2, x3) and the Lorentzian
metric given by

〈, 〉 = −dx2
0 + dx2

1 + dx2
2 + dx2

3.
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The three-dimensional hyperbolic space H3 is the simply connected
Riemannian manifold with sectional curvature −1, which is realized as
the hyperboloid

H3 = {x ∈ E4
1 : 〈x, x〉 = −1, x0 > 0}

with Riemannian metric induced from E4
1. In this model, the hyperbolic

distance between two points x, y ∈ H3 is given by

d(x, y) = arg cosh(−〈x, y〉).

Consider ψ : M → H3 an immersion of a compact oriented surface
into the hyperbolic space, fix an arbitrary point a ∈ H3, and let
u = 〈a, ψ〉. Then, the hyperbolic distance d(a, ψ) = arg cosh(−u)
attains its maximum precisely at a point p0 ∈M where the function u
attains its minimum, u(p0) < −1. Observe now that the gradient and
the Hessian of u are respectively given by

∇u = a� and ∇2u(X,Y ) = u〈X,Y 〉 + 〈a,N〉〈AX, Y 〉,

where a = a� + 〈a,N〉N − uψ, a� denoting the tangent component of
a. In particular,

−1 = |∇a|2 + 〈a,N〉2 − u2.

Therefore, at a point p0 ∈ M where u attains its minimum, it follows
from ∇u(p0) = 0 that 〈a,N〉2(p0) = u(p0)2 − 1 > 0, so that we
may assume, by changing the orientation of M if necessary, that
〈a,N〉(p0) =

√
u(p0)2 − 1 > 0. Moreover, ∇2u(v, v) ≥ 0 for every

tangent vector v ∈ Tp0M . Let {e1, e2} be the basis of principal
directions at p0, and let us denote its corresponding principal curvatures
by κ1(p0) and κ2(p0). Then, ∇2u(ei, ei) = 〈a,N〉(p0)κi(p0)+u(p0) ≥ 0
implies that

κi(p0) ≥ −u(p0)
〈a,N〉(p0)

=

√
1 + 〈a,N〉2(p0)
〈a,N〉(p0)

> 1, i = 1, 2.

In this case, the Gaussian curvature of the surface is given by K =
−1 + κ1κ2, so that K(p0) > 0 and K(p0) > −1.

Finally, in the case where c = 1, such an elliptic point is the point
where the spherical distance to the center of an open hemisphere S3

+
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attains its maximum. Before showing it, let us remark that the result
is not true if we do not assume that the surface is contained in an open
hemisphere. Actually, the family of flat tori S1(r1) × S1(r2) ⊂ S3,
with r21 + r22 = 1 are examples of flat compact surfaces without elliptic
points. The proof of the result for surfaces into an open hemisphere S3

+

is similar to that of the hyperbolic space. Consider S3
+ an immersion

of a compact oriented surface into an open hemisphere S3
+ centered at

a point a ∈ S3
+. In this case, the spherical distance to the center is

given by d(a, ψ) = arccos(u), where u = 〈a, ψ〉 (here, 〈, 〉 stands now
for the Euclidean metric in E4). Therefore, the function d(a, ψ) attains
its maximum precisely at a point p0 ∈M where the function u attains
its minimum, 0 < u(p0) < 1. A similar reasoning as in the hyperbolic
space leads to

κi(p0) ≥ u(p0)
〈a,N〉(p0)

=

√
1 − 〈a,N〉2(p0)
〈a,N〉(p0)

, i = 1, 2.

In this case, the Gaussian curvature of the surface is given by K =
1 + κ1κ2, so that we get K(p0) > 0 and K(p0) > 1.

Now we are ready to prove Theorem 1. Since K is constant, it must
be K > 0 and K − c > 0. Besides, equation (10) reduces to

(11) KII =
HK

K − c
+

1
2
||T ||2II ≥ HK

K − c
.

As

(12) H ≥ √
K − c

by the inequality between arithmetic and geometric means applied to
the principal curvatures, we obtain

(13) KII ≥ K√
K − c

on M . On the other hand, if we denote by dA and dAII the area
elements on M with respect to 〈, 〉 and II, respectively, it can be easily
seen that dAII =

√
K − c dA. Then, using the Gauss-Bonnet theorem

we obtain from (13)∫
M

KdA =
∫

M

KIIdAII ≥
∫

M

K√
K − c

dAII =
∫

M

KdA,
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so that equality holds in (12), and the proof finishes because equality
(12) holds if and only if M is a totally umbilical round sphere (note
that M is assumed to be connected).
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