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OSCILLATION OF NONLINEAR IMPULSIVE
PARABOLIC EQUATIONS OF NEUTRAL TYPE

ANPING LIU, QINGXIA MA AND MENGXING HE

ABSTRACT. In this paper, oscillatory properties of solu-
tions for certain nonlinear impulsive parabolic equations of
neutral type with several delays are investigated and a se-
ries of new sufficient conditions and a necessary and sufficient
condition for oscillation of the solutions are established.

1. Introduction. The theory of delay partial differential equations
can be applied to many fields, such as to biology, population growth,
engineering, generic repression, control theory and climate model. In
the last few years, the fundamental theory of partial differential equa-
tions with deviating argument has undergone intensive development.
The qualitative theory of this class of equations, however, is still in an
initial stage of development. A few papers have been published on os-
cillation theory of partial differential equations with delay. Many have
been done under the assumption that the state variables and system
parameters change continuously. However, one may easily visualize sit-
uations in nature where abrupt change such as shock and disasters may
occur. These phenomena are short-time perturbations whose duration
is negligible in comparison with the duration of the whole evolution
process. Consequently, it is natural to assume, in modeling these prob-
lems, that these perturbations act instantaneously, that is, in the form
of impulses. In 1991, the first paper [9] on this class of equations was
published. But, for instance, on oscillation theory of impulsive par-
tial differential equations, only a few of papers have been published.
Recently, Bainov, Minchev, Fu, Deng and Luo [3 5, 10, 11, 14, 21]
investigated the oscillation of solutions of impulsive partial differential
equations with or without deviating argument. But there is a scarcity
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in the study of oscillation theory of nonlinear impulsive parabolic equa-
tions with several delays.

In this paper, we shall discuss the oscillatory properties of solutions
for a class of nonlinear impulsive parabolic equations with several delays
(1), under the boundary conditions (3), (4). It should be noted that
the equation we discuss here is nonlinear and boundary condition (3)
also is nonlinear. Up to now, we do not find the work for oscillations
of these kinds of problem.

(1)
∂

∂t
(u(t, x) + q(t) u(t − μ, x))

= a(t)h(u)Δu +
m∑

i=1

ai(t)hi(u(t − τi, x))Δu(t − τi, x)

−
n∑

j=0

qj(t, x)fj(u(t − σj , x)), t �= tk, (t, x) ∈R+× Ω = G.

(2) u(t+k , x) − u(t−k , x) = bu(tk, x),

with the boundary conditions

∂u

∂n
= g(t, x, u), (t, x) ∈ R+ × ∂Ω,(3)

∂u

∂n
+ c(x)u = 0, (t, x) ∈ R+ × ∂Ω(4)

and the initial condition u(t, x) = Φ(t, x), (t, x) ∈ [−δ, 0] × Ω. Here
Ω ⊂ RN is a bounded domain with boundary ∂Ω smooth enough
and n is a unit exterior normal vector of ∂Ω, δ = max{μ, τi, σj},
Φ(t, x) ∈ C2([−δ, 0] × Ω, R), c(x) ∈ C(∂Ω, (0,∞)).

This article is organized as follows. Section 2 studies the oscillatory
properties of solutions for problems (1), (3). Section 3 discusses
oscillatory properties of solutions for problems (1), (4). In Section 4,
we, for the linear case, obtain a necessary and sufficient condition for
oscillation of solutions.

Assume that the following conditions are fulfilled:
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H1) a(t), ai(t) ∈ PC(R+, R+), q(t) ∈ C(R+, (−1, 0]); μ, τi, σj =
const > 0, σ0 = 0, qj(t, x) ∈ C(R+ × Ω, (0,∞)), i = 1, 2, . . . , m,
j = 0, 1, 2, . . . n; where PC denote the class of functions which are
piecewise continuous in t with discontinuities of first kind only at t = tk
and left continuous at t = tk, k = 1, 2, . . . , tk − tk−1 = μ.

H2) h′(u), h′
i(u), fj(u) ∈ C(R, R); fj(u)/u ≥ Cj = const > 0, for

u �= 0; uh′(u) ≥ 0, uh′
i(u) ≥ 0, uh(u)g(t, x, u) < 0, uhi(u)g(t, x, u) < 0,

g(t, x, u) is continuous, dk = const > −1, b = const > 0, 0 < t1 < t2 <
· · · < tk < · · · , limt→∞ tk = ∞.

H3) u(t, x) is piecewise continuous in t with discontinuities of first
kind only at t = tk and left continuous at t = tk, u(tk, x) = u(t−k , x),
k = 1, 2, . . . .

Let us construct the sequence {t̄k} = {tk}∪{tkμ}∪{tki}∪{tkj}, where
tkμ = tk + μ, tki = tk + τi, tkj = tk + σj and t̄k < t̄k+1, i = 1, 2, . . . , m,
j = 1, 2, . . . , n, k = 1, 2, . . . .

Definition 1.1. By a solution of problems (1), (3) ((4)) with initial
condition, we mean that any function u(t, x) for which the following
conditions are valid:

1. If − δ ≤ t ≤ 0, then u(t, x) = Φ(t, x).

2. If 0 ≤ t ≤ t̄1 = t1, then u(t, x) coincides with the solution of the
problems (1), (2) and (3) ((4)) with initial condition.

3. If t̄k < t ≤ t̄k+1, t̄k ∈ {tk} \ ({tkμ} ∪ {tki} ∪ {tkj}), then u(t, x)
coincides with the solution of the problems (1), (2) and (3) ((4)).

4. If t̄k < t ≤ t̄k+1, t̄k ∈ {tkμ}
⋃{tki}

⋃{tkj}, then u(t, x) satisfies
(3)((4)) and coincides with the solution of the following problem

∂

∂t
(u(t+, x) + q(t) u((t− μ)+, x))

= a(t)h(u(t+, x))Δu(t+, x)

+
m∑

i=1

ai(t)hi(u((t − τi)+, x))Δu((t − τi)+, x)

−
n∑

j=0

qj(t, x)fj(u((t − σj)+, x)), (t, x) ∈ R+ × Ω = G,
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u(t̄+k , x) = u(t̄k, x), for t̄k ∈
(
{tkμ}

⋃
{tki}

⋃
{tkj}

)
\ {tk},

or
u(t̄+k , x) = (1+b) u(t̄k, x),

for t̄k ∈
(
{tkμ}

⋃
{tki}

⋃
{tkj}

) ⋂
{tk}.

We introduce the notations: Γk = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω},
Γ = ∪∞

k=0Γk, Γ̄k = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω̄}, Γ̄ = ∪∞
k=0Γ̄k,

v(t) =
∫
Ω

u(t, x) dx and pj(t) = min qj(t, x), x ∈ Ω̄.

Definition 1.2. The solution u ∈ C2(Γ)∩C1(Γ̄) of problems (1), (3)
((4)) is called nonoscillatory in the domain G if it is either eventually
positive or eventually negative. Otherwise, it is called oscillatory.

2. Oscillation properties of the problems (1), (3). The
following is the main theorem of this paper. The proof of the theorem
needs the following lemma [23].

Lemma 2.1. Let ρ = const > 0, a0(t), p(t) ∈ ([0, +∞), R) be locally
summable functions and p(t) > 0; y(tk) = y(t−k ), k = 1, 2, . . . . If the
following condition is satisfied

lim inf
t→∞

∫ t

t−ρ

p(s) exp
( ∫ s

s−ρ

a0(r) dr
) ∏

s−ρ<tk<s

(1 + dk)−1 ds >
1
e
,

then the following differential inequality has no eventually positive
solution.

y′(t) + a0(t) y(t) + p(t) y(t − ρ) ≤ 0, t ≥ 0, t �= tk,

y(t+k ) − y(t−k ) = dk y(tk), k = 1, 2, . . . .

Theorem 2.2. Suppose that the conditions H1), H2) and the
following condition (5) hold for some j ∈ {1, . . . , n},
(5)

lim inf
t→∞

∫ t

t−σj

Cjpj(s) exp
( ∫ s

s−σj

C0p0(r) dr
) ∏

s−σj<tk<s

(1+b)−1 ds >
1
e
.

Then every solution of problems (1), (3) oscillates in G.
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Proof. Suppose that the assertion is not true and u(t, x) is a nonoscil-
latory solution of problems (1), (3). Without loss of generality, we may
assume that there exists a t0 ≥ T such that u(t, x) > 0, u(t−μ, x) > 0,
u(t− τi, x) > 0, i = 1, 2, . . . , m and u(t− σj , x) > 0, j = 1, 2, . . . , n for
any (t, x) ∈ [t0,∞) × Ω.

For t ≥ t0, t �= tk, k = 1, 2, . . . , integrating (1) with respect to x over
Ω yields

d

dt

[ ∫
Ω

(u(t, x) + q(t) u(t − μ, x)) dx
]

= a(t)
∫

Ω

h(u)Δu dx

+
m∑

i=1

ai(t)
∫

Ω

hi(u(t − τi, x))Δu(t − τi, x) dx

−
n∑

j=0

∫
Ω

qj(t, x)fj(u(t − σj , x)) dx, t ≥ t0, t �= tk.

By Green’s formula and the boundary condition we have
∫

Ω

h(u)Δu dx =
∫

∂Ω

h(u)
∂u

∂n
ds −

∫
Ω

h′(u) |gradu|2 dx

≤ −
∫

Ω

h′(u) |gradu|2 dx ≤ 0,

∫
Ω

hi(u(t − τi, x))Δu(t − τi, x) dx ≤ 0.

From condition H2), we can easily obtain
∫

Ω

qj(t, x)fj(u(t − σj , x)) dx ≥ Cjpj(t)
∫

Ω

u(t − σj , x) dx.

Then v(t) > 0, it follows that

d

dt
[v(t) + q(t) v(t − μ)] +

n∑
j=0

Cjpj(t) v(t − σj) ≤ 0,

t ≥ t0, t �= tk.
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Hence, we obtain

(6)
d

dt
[v(t) + q(t) v(t− μ)] + C0p0(t) v(t) + Cjpj(t) v(t− σj) ≤ 0.

Now in inequality (6), set

(7) y(t) = v(t) + q(t) v(t − μ).

Then we have

(8) y′(t) + Cjpj(t) v(t − σj) ≤ 0, t ≥ t0, t �= tk.

From inequality (8) it is easy to see that y(t) is nonincreasing on
intervals [tk, tk+1) and, together with condition b > 0, u(t+k , x) −
u(t−k , x) = bu(tk, x), we can easily obtain that y(t) is either eventually
positive or eventually negative.

(1) If we suppose that y(t) is eventually negative, then it is easy
to see that limt→∞ y(t) = −∞. From equality (7), we can get that
v(t) is unbounded, consequently there exists {sk : k → ∞, sk → ∞},
such that y(sk) < 0, v(sk) = max v(r), r ∈ [t0, sk]. Therefore
y(sk) = v(sk)+ q(sk)v(sk −μ) ≥ v(sk)[1+ q(sk)] ≥ 0. This contradicts
y(sk) < 0.

(2) If we suppose that y(t) is eventually positive, then from equality
(7) we get y(t) < v(t) and, from inequality (6), we obtain the following
differential inequality

(9) y′(t) + C0p0(t) y(t) + Cjpj(t) y(t− σj) ≤ 0, t ≥ t0, t �= tk,

For t > t0, t = tk, k = 1, 2, . . . , since q(t) is continuous on [t0, +∞), it
is easy to verify that
(10)

y(t+k ) − y(t−k ) = v(t+k ) − v(t−k ) + q(t+k ) v(t+k − μ) − q(t−k ) v(t−k − μ)
= bv(tk) + q(tk) bv(tk − μ) = by(tk).

Hence we obtain that y(t) > 0 is an eventually positive solution of
differential inequality (9), (10). But, according to Lemma 2.1 and
condition (5), the differential inequality (9), (10) has no eventually
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positive solution. This is a contradiction. This ends the proof of the
theorem.

Similarly, we can obtain the following theorems.

Theorem 2.3. Suppose that the conditions H1), H2) and the
following condition hold for some j ∈ {1, . . . , n},

lim sup
t→∞

∫ t

t−σj

Cjpj(s) exp
( ∫ s

s−σj

C0p0(r) dr
) ∏

s−σj<tk<s

(1+b)−1 ds > 1.

Then every solution of the problems (1), (3) oscillates in G.

If we assume that m1 μ ≥ σj for some integer m1, then we have the
following Theorems 2.4, 2.5.

Theorem 2.4. Suppose that the conditions H1), H2) and the
following condition hold for some j ∈ {1, . . . , n},

lim inf
t→∞

∫ t

t−σj

Cjpj(s) exp
( ∫ s

s−σj

C0p0(r) dr
)

ds >
(1 + b)m1

e
.

Then every solution of problems (1), (3) oscillates in G.

Theorem 2.5. Suppose that the conditions H1), H2) and the
following condition hold for some j ∈ {1, . . . , n},

lim sup
t→∞

∫ t

t−σj

Cjpj(s) exp
( ∫ s

s−σj

C0p0(r) dr
)

ds > (1 + b)m1 .

Then every solution of problems (1), (3) oscillates in G.

More generally, we have the following Theorem 2.6.
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Theorem 2.6. Suppose that the conditions of Theorem 2.2 still
hold and the condition (5) is replaced by the differential inequality (9),
(10) which has no eventually positive solution. Then every solution of
problems (1), (3) oscillates in G.

The proofs are easy so we just omit them.

It should be noted that obviously all solutions of problems (1), (3)
are oscillatory if b < −1.

3. Oscillation properties of problems (1), (4). Making use
of the following lemma of eigenvalue, we can obtain many results for
problem (1), (4). We suppose that h(u), hi(u) are constants (suppose
them all to be 1).

Lemma 3.1. Suppose that λ0 is the smallest eigenvalue of the
problem

Δϕ(x) + λϕ(x) = 0, x ∈ Ω
∂ϕ(x)

∂n
+ c(x)ϕ(x) = 0, x ∈ ∂Ω.

and ϕ(x) is the corresponding eigenfunction of λ0. Then λ0 > 0,
ϕ(x) > 0, x ∈ Ω.

Theorem 3.2. Suppose that the conditions H1), H2) and the
following condition hold for some j ∈ {1, . . . , n}.

(11) lim inf
t→∞

∫ t

t−σj

Cjpj(s) exp
( ∫ s

s−σj

(λ0a(r) + C0p0(r)) dr
)

×
∏

s−σj<tk<s

(1 + b)−1 ds >
1
e
.

Then every solution of problems (1), (4) oscillates in G.
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Proof. Suppose that the assertion is not true and u(t, x) is a nonoscil-
latory solution of problems (1), (4). Without loss of generality, we may
assume that there exists a t0 ≥ T such that u(t, x) > 0, u(t−μ, x) > 0,
u(t − τi, x) > 0, i = 1, 2, . . . , m and u(t − σj , x) > 0, j = 1, 2, . . . , n,
for any (t, x) ∈ [t0,∞) × Ω.

For t ≥ t0, t �= tk, k = 1, 2, . . . , multiplying equation (1) with ϕ(x),
which is the same as that in Lemma 3.1 and then integrating (1) with
respect to x over Ω we have

d

dt

[ ∫
Ω

(u(t, x) + q(t) u(t − μ, x))ϕ(x) dx
]

= a(t)
∫

Ω

Δuϕ(x)dx +
m∑

i=1

ai(t)
∫

Ω

Δu(t − τi, x)ϕ(x) dx

−
n∑

j=0

∫
Ω

qj(t, x)fj(u(t − σj , x))ϕ(x) dx.

By Green’s formula and the boundary condition, we obtain

∫
Ω

uΔϕ dx −
∫

Ω

ϕΔu dx =
∫

∂Ω

∂ϕ

∂n
u ds −

∫
∂Ω

∂u

∂n
ϕ ds = 0.

It follows that
∫

Ω

Δu(t, x)ϕ(x) dx =
∫

Ω

Δϕ(x) u(t, x) dx

= −λ0

∫
Ω

ϕ(x) u(t, x) dx,

∫
Ω

Δu(t − τj , x)ϕ(x) dx =
∫

Ω

Δϕ(x) u(t − τi, x) dx

= −λ0

∫
Ω

ϕ(x) u(t − τi, x) dx.

From the condition H2), we can easily obtain

(12)
∫

Ω

qj(t, x)fj(u(t−σj , x))ϕ(x) dx ≥ Cjpj(t)
∫

Ω

u(t−σj , x)ϕ(x) dx.
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Denote v(t) =
∫
Ω

u(t, x)ϕ(x) dx. Then v(t) > 0; it follows that we have

(13)
d

dt
[v(t) + q(t) v(t− μ)] + λ0a(t) v(t) + λ0

m∑
i=1

ai(t) v(t− τi)

+
n∑

j=0

Cjpj(t) v(t− σj) ≤ 0, t ≥ t0, t �= tk.

Hence we obtain the similar differential inequality as (5).

(14)
d

dt
[v(t)+q(t) v(t−μ)]+(λ0a(t)+C0p0) v(t)+Cjpj(t) v(t−σj) ≤ 0.

The following proof is similar to that used in Theorem 2.2. We omit
it. This ends the proof of the theorem.

Theorem 3.3. Suppose that the conditions H1), H2) and the
following condition hold for some j ∈ {1, . . . , n},

(15) lim sup
t→∞

∫ t

t−σj

Cjpj(s) exp
( ∫ s

s−σj

(λ0a(r) + C0p0(r)) dr
)

×
∏

s−σj<tk<s

(1 + b)−1 ds > 1.

Then every solution of problems (1), (4) oscillates in G.

If we assume that m1 μ ≥ σj for some integer m1, then we have the
following Theorems 3.4, 3.5.

Theorem 3.4. Suppose that the conditions H1), H2) and the
following condition hold for some j ∈ {1, . . . , n},

lim inf
t→∞

∫ t

t−σj

Cjpj(s) exp
( ∫ s

s−σj

(λ0a(r)+C0p0(r)) dr
)

ds >
(1 + b)m1

e
.

Then every solution of problems (1), (4) oscillates in G.



OSCILLATION OF EQUATIONS OF NEUTRAL TYPE 1021

Theorem 3.5. Suppose that the conditions H1), H2) and the
following condition hold for some j ∈ {1, . . . , n},

lim
t→∞ sup

∫ t

t−σj

Cjpj(s) exp
(∫ s

s−σj

(λ0a(r)+C0p0(r)) dr
)

ds > (1+b)m1 .

Then every solution of problems (1), (4) oscillates in G.

The proofs are easy, we just omit them.

Theorem 3.6. Suppose that the conditions H1), H2) and the
following condition hold for some ai(t),

lim inf
t→∞

∫ t

t−τi

λ0ai(s) exp
( ∫ s

s−τi

λ0a(r) dr
) ∏

s−τi<tk<s

(1 + b)−1 ds >
1
e
.

Then every solution of problems (1), (4) oscillates in G.

Proof. From differential inequality (13) we can obtain

(17)
d

dt
[v(t) + q(t)v(t − μ)] + λ0a(t)v(t) + λ0ai(t)v(t − τi) ≤ 0,

t ≥ t0, t �= tk.

The following proof is the same as that used in Theorem 3.2. We just
omit it. This ends the proof of Theorem 3.6.

It should be noted that the criterion in this theorem only depends on
diffusion coefficient ai(t).

Theorem 3.7. Suppose that the conditions H1), H2) and the
following condition hold for some ai(t),

(18)

lim
t→∞ sup

∫ t

t−τi

λ0ai(s) exp
( ∫ s

s−τi

λ0a(r) dr
) ∏

s−τi<tk<s

(1 + b)−1 ds > 1.

Then every solution of problems (1), (4) oscillates in G.
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4. Necessary and sufficient condition. In this section, we will
establish a necessary and sufficient condition for oscillation of impulsive
parabolic equations with several delays. We consider the following
linear problem.

(19)
∂

∂t
(u(t, x) + q(t) u(t − μ, x))

= a(t)Δu +
m∑

i=1

ai(t)Δu(t − τi, x) −
n∑

j=0

pj(t) u(t − σj , x),

t �= tk, (t, x) ∈ R+ × Ω = G

(20) u(t+k , x) − u(t−k , x) = bu(tk, x), k = 1, 2, . . .

with boundary condition (4).

Theorem 4.1. Every solution of the problem (19), (20), (4) is
oscillatory in domain G if and only if every solution of the following
impulsive delay differential equation (21), (22) is oscillatory.

(21)
d

dt
[v(t) + q(t) v(t − μ)] + a(t)λ0v(t)

+ λ0

m∑
i=1

ai(t) v(t − τi) +
n∑

j=0

pj(t) v(t − σj) = 0,

(22) v(t+k ) − v(t−k ) = bv(tk), k = 1, 2, . . . .

Proof. Sufficiency. Using reduction to absurdity. Let u(t, x) be a
nonoscillatory solution of the problem (19), (20), (4). Without loss
of generality, we may assume that there exists a t0 ≥ T such that
u(t, x) > 0, u(t − μ, x) > 0, u(t − τi, x) > 0 and u(t − σj , x) > 0,
i = 1, . . . , m; j = 1, . . . , n for any (t, x) ∈ [t0, +∞) × Ω.

For t ≥ t0, t �= tk, k = 1, 2, . . . , multiplying equation (19) with ϕ(x),
which is the same as that in Lemma 3.1, then integrating (19) with
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respect to x over Ω we have

(23)
d

dt

∫
Ω

[u(t, x) + q(t)u(t − μ)]ϕ(x) dx

= a(t)
∫

Ω

Δu(t, x)ϕ(x) dx +
m∑

i=1

ai(t)
∫

Ω

Δu(t − τi, x)ϕ(x) dx

−
n∑

j=0

∫
Ω

pj(t)u(t − σj , x)ϕ(x) dx.

By Green’s formula and boundary condition, we have
∫

Ω

uΔϕ(x) dx−
∫

Ω

ϕ(x)Δu dx =
∫

∂Ω

u
∂ϕ(x)

∂n
ds−

∫
∂Ω

ϕ(x)
∂u

∂n
ds = 0.

It follows that∫
Ω

ϕ(x)Δu dx =
∫

Ω

uΔϕ(x) dx = −λ0

∫
Ω

ϕ(x)u(t, x) dx

∫
Ω

ϕ(x)Δu(t − τi, x) dx =
∫

Ω

u(t − τi, x)Δϕ(x) dx

= −λ0

∫
Ω

ϕ(x)u(t − τi, x) dx.

Denote v(t) =
∫
Ω

ϕ(x)u(t, x)dx, then v(t) > 0. It follows from that we
can easily obtain

(24)
d

dt
[v(t) + q(t) v(t − μ)] + a(t)λ0v(t)

+ λ0

m∑
i=1

ai(t) v(t − τi) +
n∑

j=0

pj(t) v(t − σj) = 0.

For t > t0, t = tk, k = 1, 2, . . . , we have
∫

Ω

u(t+k , x) dx −
∫

Ω

u(t−k , x) dx = b

∫
Ω

u(tk, x) dx.

This implies

(25) v(t+k ) − v(t−k ) = bv(tk).
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Hence we obtain that v(t) > 0 satisfies equation (21), (22). This means
that impulsive delay differential equation (21), (22) has a nonoscillatory
solution. A contradiction. This ends the proof of sufficient condition.

Necessity (still using reduction to absurdity). Let v(t) be a nonoscil-
latory solution of the equation (21), (22). Without loss of generality,
we may assume that there exists a t1 large enough such that v(t) > 0,
v(t−μ) > 0, v(t− τi) > 0 and v(t−σj) > 0, i = 1, . . . , m; j = 1, . . . , n
for any t ∈ [t1, +∞).

For t ≥ t1, t �= tk, k = 1, 2, . . . , set u(t, x) = v(t)ϕ(x); we have
u(t, x) > 0 and we can easily obtain

Δu(t, x) = Δ[v(t)ϕ(x)] = v(t)Δϕ(x) = −λ0v(t)ϕ(x)
Δu(t− τi, x) = Δ[v(t− τi)ϕ(x)] = v(t− τi)Δϕ(x) = −λ0v(t− τi)ϕ(x).

Making use of these results, from equation (21). We obtain

(26)
d

dt
[(v(t) + q(t) v(t − μ))ϕ(x)] + a(t)λ0v(t)ϕ(x)

+ λ0

m∑
i=1

ai(t) v(t − τi)ϕ(x) +
n∑

j=0

pj(t) v(t − σj)ϕ(x) = 0.

This means that u(t, x) = v(t)ϕ(x) satisfies equation (19).

For t ≥ t1, t = tk, k = 1, 2, . . . , from the conditions (22), it is easy
to see that function u(t, x) = v(t)ϕ(x) satisfies (20). And because
(∂ϕ(x)/∂n) + c(x)ϕ(x) = 0, x ∈ ∂Ω. That is, u(t, x) = v(t)ϕ(x) also
satisfies boundary condition (4). This indicates that problems (19),
(20) and (4) have a nonoscillatory solution. This is a contradiction.
This ends the proof of Theorem 4.1.

Example.

(27)

∂

∂t

(
u(t, x) − 1

2
u(t− π, x)

)
= 2u2Δu − u(t− π, x) exp[u(t− π, x)]2,

t �= k π, (t, x) ∈ R+ × Ω = G.

(28) u(t+k , x) − u(t−k , x) = 2u(tk, x), t = k π
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with the boundary condition

(29)
∂u

∂n
= −cu, (t, x) ∈ R+ × ∂Ω, c > 0.

It is easy to verify all hypotheses of Theorem 2.2 for this case, and thus
all solutions of (27) (29) are oscillatory.
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