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ON DETERMINING SETS FOR
HOLOMORPHIC AUTOMORPHISMS

B.L. FRIDMAN, K.-T. KIM, S.G. KRANTZ AND D. MA

ABSTRACT. We study sets K in the closure of a domain
D ⊂ Cn such that, if an automorphism ϕ of D fixes each
point of K, then ϕ is the identity mapping. A separate result
is proved for the case that K lies entirely in the boundary
of D.

1. Principal ideas. We begin by defining the central idea in this
paper.

Definition 1.1. Let K be a subset of the closure D of a bounded
domain D ⊂ Cn. The set K is said to be a determining subset of D
if, whenever g is an automorphism of D that is continuous up to the
boundary of D and g(k) = k for all k ∈ K, then g is the identity map
of D.

In our previous paper [1] we considered K lying entirely in D (and
automorphisms were not necessarily continuous up to the boundary).
Our goal now is to study the situation when some, or all, of the points of
K lie in the boundary of the domain D. Recall that, when the domain
D is the disc in the plane, then two interior points are a determining
set for automorphisms; but it takes three boundary points to be a
determining set. Just examining the situation in one dimension, one
might surmise that if the topology of the domain is more complicated
(higher connectivity) then it takes fewer points to make a determining
set. We would like to explore all these aspects in the discussions below.

We begin our work by investigating more generally what happens
if some, but not all, points of K lie on the boundary ∂D. First we
prove that a similar theorem to the one in [1] holds in the case that
K consists of the same number n + 1 points and one of these is in D
while the rest are on the boundary. In Theorem 1.2 we note that the
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Euclidean dimension of D × (∂D)n is 2n+ n · (2n− 1) = 2n2 + n, and
we use (2n2 + n)-dimensional Hausdorff-Lebesgue measure on subsets
of D × (∂D)n.

Theorem 1.2. Let D ⊂ Cn be a bounded domain with C1 boundary
such that the automorphisms of D are continuous up to the boundary.
Then there exists a subset W of D× (∂D)n of full Hausdorff-Lebesgue
measure, i.e., (D × (∂D)n)\W has (2n2 + n)-dimensional Hausdorff-
Lebesgue measure 0, with this property: if (p0, p1, . . . , pn) ∈ W , then
{p0, p1, . . . , pn} is a determining subset of D.

Remark. The number of points (n+1) for a general domain in Cn in
the above theorem is the least possible. To verify this assertion consider
the unit ball B ⊂ Cn and n arbitrary points (p0, p1, . . . , pn−1), where
p0 ∈ B, pi ∈ ∂B for i = 1, . . . , n − 1. For a domain D, let Aut (D)
denote the automorphism group of D.

Consider g ∈ Aut (B) such that g(p0) = 0. Consider now n − 1
vectors g(pi) and the complex linear space π spanned by these vectors.
Since dim(π) ≤ n − 1, there is a rotation f ∈ Aut (B) that is not the
identity and keeps all the points of π fixed. Now the automorphism
h = g−1 ◦ f ◦ g ∈ Aut (B) is not the identity and it fixes all n points
(p0, p1, . . . , pn−1).

To prove Theorem 1.2 we will need the following four statements.
In these, we will use the notation f ′ to denote the complex Jacobian
matrix of the mapping f .

Lemma 1.3 (Cartan). Let D ⊂⊂ Cn be a bounded domain, a ∈ D,
f : D → D a holomorphic map such that f(a) = a and f ′(a) = id.
Then f = id.

Lemma 1.4 (Cartan). Let D ⊂⊂ Cn, let z ∈ D, and let Gz be the
isotropy subgroup at z of the automorphism group of D. Then there
exists a holomorphic map φ : D → Cn such that φ(z) = 0, φ is a local
coordinate system at z, and for all f ∈ Gz one has φ ◦ f = f ′(z) ◦ φ.
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As in [5], for the proof of Lemma 1.4, we define φ : D → Cn by

φ(ζ) =
∫

Gz

f ′(z)−1(f(ζ) − z) dμ(f),

where dμ is the Haar measure on Gz (note that Gz is, perforce,
compact). Then φ(z) = 0, φ gives a local coordinate system at z,
and φ ◦ g = g′(z) ◦ φ for each g ∈ Gz. For a complete proof see [5].
It may be worth noting that Bergman representative coordinates may
serve the same purpose as the mapping φ, see [3].

The following is a one-dimensional version of the Privalov uniqueness
theorem, [2, Chapter 10, Section 2].

Lemma 1.5 (Privalov). If f is holomorphic on a bounded domain
D ⊂ C with a rectifiable boundary, f is continuous up to the boundary,
and is equal to zero on a set S ⊂ ∂D of positive one-dimensional
Hausdorff-Lebesgue measure, then f ≡ 0.

Corollary 1.6. Let D be a bounded domain in Cn with C1 boundary,
m, k integers, m > 0, m ≥ k ≥ 0, ψ : D

m → C, such that ψ is
holomorphic on Dm and continuous up to the boundary. If ψ = 0 on
a subset M ⊂ Dk × (∂D)m−k of positive, (2nk + (2n − 1)(m − k))-
dimensional, Hausdorff-Lebesgue measure then ψ ≡ 0.

Proof of the Corollary. 1. First let k = 0. We use induction on m.
For m = 1, the conclusion follows from the above Privalov uniqueness
theorem by considering the slicing of D by one-dimensional complex
lines, and applying Lemma 1.5 on the slices.

Now suppose that the statement has been verified for m = s. Let
m = s+ 1. There is an M1 ⊂ ∂D with positive, (2n− 1)-dimensional,
Hausdorff-Lebesgue measure such that, for each z ∈ M1, the set
Nz = {w ∈ (∂D)s : ψ(z, w) = 0} has positive, (2n − 1)s-dimensional,
Hausdorff-Lebesgue measure. By the induction hypothesis we see that
ψ = 0 on M1 × D

s
. Now ψ = 0 on a positive-measure subset of the

boundary ∂(Ds+1), and the statement now follows from the very first
observation in this proof.
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2. Now consider the case k > 0. There is an M̃1 ⊂ Dk with
positive, 2nk-dimensional, Hausdorff-Lebesgue measure such that for
each z ∈ M̃1 the set Ñz = {w ∈ (∂D)m−k : ψ(z, w) = 0} has positive,
(2n − 1)(m − k)-dimensional, Hausdorff-Lebesgue measure. By the
case already proved, ψ = 0 on M̃1 ×D

m−k
. Now ψ = 0 on a set of full

measure in Dm and the statement follows from the standard uniqueness
theorem for holomorphic functions.

Proof of Theorem 1.2. We follow Vigué’s idea [5] to use Lemma 1.4
for determining sets. Fix z ∈ D. We consider the mapping φ from
the proof of Lemma 1.4. Let ψ : D

n → ∧nCn ∼= C be defined by
ψ(w1, . . . , wn) = φ(w1) ∧ · · · ∧ φ(wn). Then ψ is a submersion near
(z, . . . , z), so ψ �≡ 0. Let Sz ⊂ (∂D)n be defined as Sz = {w =
(w1, . . . , wn) ∈ (∂D)n : ∃gw ∈ Gz, gw �= id, gw(wi) = wi, i = 1, . . . , n}.
Let w ∈ Sz. So g′w(z)φ(wj) = φ(wj), j = 1, . . . , n. By Lemma 1.3,
g′w(z) �= id. Thus φ(w1), . . . , φ(wn) belong to a proper complex linear
subspace of Cn, hence ψ(w) = 0. Therefore ψ = 0 on Sz. By
Corollary 1.6, where k = 0, m = n, Sz has (2n − 1)n-dimensional
measure 0. Let V = {(z, w) : z ∈ D, w ∈ Sz} andW = (D×(∂D)n)\V .
Then W has the specified properties.

The following is a more general result.

Theorem 1.7. Let D ⊂ Cn be a bounded domain with C1 boundary
such that the automorphisms of D are continuous up to the boundary.
Let 1 ≤ k ≤ n+ 1. Then there exists a subset W of Dk × (∂D)n+1−k,
of full Hausdorff-Lebesgue measure, such that if (p0, p1, . . . , pn) ∈ W
then {p0, p1, . . . , pn} is a determining subset of D.

Proof. Fix z ∈ D. Now one can proceed in a manner similar
to the proof of Theorem 1.2 by constructing a holomorphic function
that will be equal to zero on the set S̃z ⊂ Dk−1 × (∂D)n+1−k,
S̃z = {w = (w1, . . . , wn) ∈ Dk−1 × (∂D)n+1−k : ∃gw ∈ Aut (D); gw �=
id; gw(wj) = wj ∀j}. By Corollary 1.6, S̃z has zero measure. As before
the set W = (Dk × (∂D)n+1−k)\{(z, w) : z ∈ D, w ∈ S̃z} has the
specified properties.
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The next lemma is a boundary version of the classical Schwarz lemma.

Lemma 1.8. Let D ⊂ Cn be a bounded, strongly pseudoconvex
domain with C∞ smooth boundary. Further, assume that the automor-
phism group of D is compact. If g ∈ Aut (D), and there exists a point
z ∈ ∂D such that g(z) = z, and g′(z) = id, then g = id.

Example 1.9. The compactness of the group is necessary for the
lemma, since the conclusion is not true for the ball B in Cn, n ≥ 1.
(Of course B does not have compact automorphism group.) Let (z, w)
denote the coordinates in Cn, where z ∈ C, w ∈ Cn−1. Define
g : B → Cn by

g(z, w) =
(
− i

z − a

1 − āz
, e−πi/4

√
1 − |a|2
1 − āz

w

)
,

where a = (−1 + i)/2. Then g is an automorphism of B, g(−1, 0) =
(−1, 0), g′(−1, 0) = id. But of course g is not the identity map.
It should be stressed that, by an important theorem of Wong [6],
the ball is the only strongly pseudoconvex domain with non-compact
automorphism group.

Proof of Lemma 1.8. By a result of [3], there is a smooth metric
g on D such that any automorphism of D is an isometry in g. Now
observe that, since ∂D is smooth, there is a convex cone, with nonempty
interior, of directions at z such that the geodesics emanating from z in
those directions will travel, for a short time, into the interior of D. Of
course the mapping g, being an isometry, will preserve each of those
geodesics. Hence, g will be the identity on an open set in D. As a
result, g = id.

Now we can prove our theorem when all points are on the boundary.

Theorem 1.10. Let D ⊂ Cn be a bounded, strongly pseudo-
convex domain with C∞ boundary and compact automorphism group.
Then there exists a subset W of (∂D)n+1 such that W has full,
(2n− 1)(n+ 1)-dimensional, Hausdorff-Lebesgue measure and such
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that if (p0, p1, . . . , pn) ∈ W , then {p0, p1, . . . , pn} is a determining
subset of D.

Proof. The proof of Theorem 1.2, with Cartan’s theorem (Lemma
1.3) replaced by Lemma 1.8, applies here.

In view of Wong’s theorem cited above, we now formulate a result
for the only strongly pseudconvex domain that has non-compact auto-
morphism group.

Theorem 1.11. Let n ≥ 2 and let B be the unit ball in Cn. Then
there is an open dense subset W of (∂B)n+1, of full measure, such that
if (p0, p1, . . . , pn) ∈W then {p0, p1, . . . , pn} is a determining subset of
B.

Proof. The proof follows familiar lines and we omit the details.

Remark. Theorem 1.11 does not hold for n = 1 since one needs three
points on the boundary of the unit disc to make a determining subset.

2. Examples. The four examples presented here indicate in what
sense our results are sharp, and in what sense something more may be
true, especially in the case of more complicated topology of the domain
D.

Example 2.1. Let

D = B(0, 2) \B(0, 1) ⊆ C2.

Then the only automorphisms of D are unitary rotations. Observe that
this domain D has nontrivial topology.

We note that any rotation in the z2 variable will fix all points of
d ≡ {(z1, 0) ∈ D}. Then d ∩ D is uncountable and also d ∩ ∂D is
uncountable. But of course d is not generic, in the sense that it is a
complex variety, hence has no real component.
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Example 2.2. Let D ⊂ C2 be defined as

D = B(0, 1) \
(
B

(
(−1/2, 0), 1/4

) ∪ B
(
(1/2, 0), 1/4

)
∪B(

(0,−1/2), 1/4
) ∪B(

(0, 1/2), 1/4
))
.

Then the automorphism group ofD is generated by the maps (z1, z2) �→
(−z1, z2), and (z1, z2) �→ (z2, z1), because the only possible automor-
phisms are unitary rotations that preserve the excised balls. Of course
the mapping (z1, z2) �→ (z1,−z2) fixes any point of the form (z1, 0) in
D. This set contains uncountably many points in the boundary and
uncountably many points in the interior.

By contrast, any single point of the form (−1 + ε,
√

2ε− ε2), some
small ε > 0, is a determining set for automorphisms.

Example 2.3. Let U = B(0, 1) ⊆ C2, and let E be a small,
asymmetric, i.e., having no unitary symmetries, perturbation of the
small ball B(0, 1/10) ⊆ C2. Define

ϕ(z1, z2) =
(
z1 − 1/2
1 − z1/2

,

√
1 − [1/2]2 z2
1 − z1/2

)
.

Finally, set

D = U \
( ∞⋃

j=−∞
ϕj(E)

)
.

Here ϕ0 = id, ϕj = ϕ◦ϕ◦· · ·◦ϕ (j times) when j > 0, and ϕj ≡ (ϕ−1)|j|

when j < 0. Observe that, by the Hartogs extension phenomenon, any
automorphism of D is the restriction to D of an automorphism of the
unit ball. Because E is asymmetric, the automorphism group therefore
contains no unitary rotations except the identity. Therefore it consists
only of Möbius transformation of the form

(∗) (z1, z2) �−→
(
z1 − a

1 − az1
,

√
1 − a2 z2
1 − az1

)
.

The possible choices of a in (∗) are uniquely determined by our con-
struction. (One way to see it is to use the Poincaré-Bergman metric
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on the unit ball. Since its curvature is negative, each hole ϕj(E) has
a unique center of mass. Since every automorphism of D extends to
an automorphism of the unit ball, it must permute the aforementioned
centers of mass. This determines the possible values for a, and in fact
leads us to conclude that the entire automorphism group is generated
by the map ϕ.)

Then any of the mappings ϕj fixes both (1, 0) and (−1, 0) in the
boundary of D. Any third point will give a determining set for auto-
morphisms of D just by the explicit given structure of the automor-
phism group. But note that the boundary of D is not smooth at (−1, 0)
and (1, 0).

Example 2.4. Let η ∈ C∞
c (C2) be nonnegative such that η(z1, z2) =

η(−z1, z2) and η has support in B((0, 1), 1/100). Define

ϕ(z1, z2) =
(
z1 − 1/2
1 − z1/2

,

√
1 − [1/2]2 z2
1 − z1/2

)
.

Now set
V = {z ∈ C2 : −1 + |z|2 + η(z) < 0}.

Define

D =
∞⋂

j=−∞
ϕj

(
V

)
.

Note that D is open because φj(V ) perturbs ∩j−1
j=−∞ϕ

j
(
V

)
in a region

of the boundary that is disjoint from all the previous perturbations (so
the intersection is locally finite). The domain D has as automorphisms
all the mappings ϕj together with the mapping (z1, z2) �→ (−z1, z2), see
[4]. Certainly the two-point set {(−1, 0), (1, 0)} is not a determining
set for automorphisms. The addition of any third point will make
this a determining set. By contrast, any single point of the form
(−1+ ε,

√
2ε− ε2), ε > 0 small, will be a determining set. The interest

of this example is that the domain D is topologically trivial. Note,
however, that the boundary of D is not C1, at the points (−1, 0), (1, 0).
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